Projects (CASLAB)

Body Institution Date Project Leader
Investigating the Conversion Between Mild Cognitive Impairment and the Alzheimer’s Disease using Artificial Intelligence

Alzheimer's disease negatively affects the life quality of millions in our country and worldwide. Mild Cognitive Impairment (MCI) is a stage that impairs patients' cognitive abilities while their daily activities are not severely affected. Some MCI patients develop Alzheimer's disease after a while. The exact cause of this transition is unknown. For this reason, early prediction of Alzheimer's disease is vital to improving patients' quality of life. In addition, understanding the factors that cause this transition enables patient-specific and effective treatments that alleviate the financial burden on countries' healthcare systems. Therefore, it is essential to examine the structure of different patient groups and the cause of the conversion from MCI to Alzheimer's. This project aims to develop a machine learning-based healthcare system that facilitates the early diagnosis of Alzheimer's disease by determining the variables and interactions that cause the transition between MCI and Alzheimer's. For this purpose, we will model the conversion between MCI to Alzheimer's by designing classification and clustering models compatible with different data types. The proposed methods will be developed and tested using databases in the literature and a local database created during this project. Clinical interpretation of the project outcomes and deploying the proposed healthcare system in real-life scenarios will be conducted under the guidance of neurologists at the University of Health Sciences Sultan Abdulhamid Khan Educational and Research Hospital in İstanbul.

TUBITAK 3501 2022 to 2025 İnci Meliha Baytaş
Linguistics-supported Turkish Natural Language Processing Platform

The proposed project has two main goals. The first one is improving the Turkish natural language processing resources
developed mainly by the researchers in the project team based on the current technology. The second goal is compiling all these
resources in an open platform and thus contributing to new research. In the scope of the university, there are plenty of resources
developed by the researchers working on natural language processing. In the project, these resources will be collected, will be
improved by the support of linguistics researchers and a natural language processing platform will be built. The platform will be
open-sourced and will be open to development. In this respect, resources required for Turkish natural language processing will be
opened to researchers.

BAP 2021 to 2022 Tunga Güngör
Compiling a Verbal Multiword Expression Corpus for Turkish and Developing a Multilingual Deep Learning based System for Verbal Multiword Expression Identification

The first aim of this project is disambiguating the definitions of Turkish verbal multi-word expressions (VMWE) and compiling a text corpus. For this purpose, we will start with the corpus developed at PARSEME action Shared Task 1.0, and then update and expand it. The VMWEs in the corpus will be labeled according to the published guidelines. The text corpus is formed of newspaper articles on the topics of politics, world, life, and art. The corpus that will be built will be published at PARSEME Shared Task 1.1. The corpus will be a valuable resource for Turkish natural language processing studies including syntactic parsing, machine translation, and n-gram language modeling. The second and main aim is, by using gold standard corpora for different languages, developing a VMWE identification system that is based on deep learning techniques and that is suitable to multi-language structures. Processing of multi-word expressions is an important challenge in natural language processing. The use of deep learning frameworks in this task is a relatively new topic. We will try to increase the success rates in VMWE identification of multi-language systems in the literature.

BAP 2018 to 2019 Tunga Güngör
Developing a Comprehensive Sentiment Analysis Framework for Turkish

Sentiment analysis is the process of extracting the sentiment (positive, negative, neutral) in texts using natural language processing and machine learning techniques. This process has five components: the sentiment, person owing the sentiment, time period of the sentiment, the object and the aspect of the object related to the sentiment. There is no sentiment analysis work for Turkish that takes these five parts into account. In this project, we will form a sentiment analysis framework for Turkish. The works conducted for foreign languages cannot be adapted to Turkish easily. Moreover, most of the sentiment analysis studies for Turkish employ supervised methods; they do not use unsupervised or semi-supervised methods. This poses problems when supervised data are limited. Also, Turkish studies usually give rise to less satisfactory results compared to other languages. Other issues are forming sentiment vectors and building an aspect-based sentiment analysis system. In this project, a framework for Turkish sentiment analysis that incorporates polarity, its score, related object, its time, and owing person. For this purpose, neural networks and unsupervised/semi-supervised methods will be used. Finally, domain-specific sentiment lexicons will be built.

BAP 2018 to 2019 Tunga Güngör
Developing Structure-preserving and Query-biased Automated Summarization Methods for Web Search Engines

In this project, a new summarization approach was developed to improve the effectiveness of Web search based on two stages. In the first stage, a rule-based approach and a machine learning approach were implemented to identify the sectional hierarchies of Web documents. In the second stage, query-biased summaries are created based on document structure. The evaluation results show that the system has significant improvement over unstructured summaries and Google snippets.

BAP 2006 to 2007 Tunga Güngör
Morphotactic based Statistical Language Modeling for Large Vocabulary Continuous Speech Recognition Systems

Bu projede, Türkçe gibi eklemeli dillerde geniş sözcük dağarcıklı sürekli konuşma tanıma (large vocabulary continuous speech recognition – LVCSR) sistemleri için kullanılacak yeni bir dil modelinin geliştirilmesi amaçlanmaktadır. Bilindiği gibi, eklemeli dillerde sınırsız sayıda kelime üretilebilmesi, konuşma tanıma sistemlerinde dil modeli oluşturmada zorluklara neden olmaktadır ve iyi bir dil modelinin eksikliği bu sistemlerin etkinliğini önemli ölçüde etkilemektedir. İngilizce gibi nispeten eklemeli olmayan dillerde konuşma tanıma sistemlerinin başarıyla geliştirilmiş olmasının ve Türkçe gibi dillerde henüz aynı başarıya ulaşılamamasının en önemli nedenlerinden birisi, etkin bir dil modelinin eksikliğidir. Konuşma tanıma sistemlerinde yaygın olarak n-birimli (n-gram) dil modeli kullanılmaktadır. Bu model, dili istatistiki olarak modellemeye çalışmaktadır. Geniş bir metin havuzundan (corpus) sözcüklerin birbiri ardına gelme sıklıklarını göz önüne alarak oluşturulan model, sözcük dizilerinin olasılıklarını hesaplamakta kullanılmaktadır. Türkçe’de diğer bir sorun, sözcüklerin cümle içinde diziliminin nispeten serbest olmasıdır. Bu serbestlik sorunu Türkçe’nin eklemeli bir dil olması ile birleştiğinde, sözcük bazında basit bir n-birimli dil modelinin konuşma tanıma sistemlerinde etkinliğini azaltmaktadır. Bu çalışma ile Türkçe’nin morfotaktik (morphotactic) (morfların dizilim kuralları) bilgisini n-birimli bir dil modeli ile birleştirerek etkin bir dil modelinin oluşturulması hedeflenmektedir. Böylece Türkçe için birçok uygulama alanına sahip geniş sözcük dağarcıklı konuşma tanıma sistemleri geliştirilebilecektir.

BAP 2005 to 2006 Tunga Güngör
Developing Natural Language Processing-based Methods for Text Classification

Bu projede, metin sınıflandırma (text categorization) problemi için doğal dil işleme tekniklerinin kullanılması düşünülmektedir. Günümüzde metin sınıflandırma amaçlı pek çok araştırma yürütülmektedir ve bunlardan bazılarının pratik uygulamaları da mevcuttur. Fakat, bu çalışmaların başarı oranı belli bir sınırı geçememektedir. Bunun başlıca sebebi, hemen hemen bütün çalışmalarda, sadece sentaktik (sözdizimsel – syntactic) bilgilerin kullanılması ve semantik (anlambilimsel – semantic) bilgilerden yararlanılmamasıdır. Diğer bir deyişle, metinlerdeki kelimeler anlamlarından bağımsız olarak ele alınmaktadır. Bu projede, bu eksikliğin giderilmesi ve metinlerin içerdikleri anlam gözönüne alınarak sınıflandırılması amacıyla yeni metotlar önerilecektir.

BAP 2004 to 2005 Tunga Güngör
Developing Dynamic and Adaptive Methods for Turkish Spam Filtering

Bu projede, spam e-posta mesajlarının önlenmesine yönelik olarak Türkçe için spam-önler filtreleme metotları geliştirilecektir. Günümüzde spam mesajlar tüm e-posta mesajlarının %10’unu oluşturmaktadır ve kullanıcılar açısından önemli zaman kayıplarına neden olmaktadır. İngilizce gibi yaygın diller için filtreleme algoritmaları mevcuttur, fakat Türkçe mesajlar için henüz böyle bir çalışma yapılmamıştır. Bu tür bir çalışmada Türkçe’nin karmaşık morfolojik yapısının gözönüne alınması gerekmektedir. Bu projede geliştirilecek olan metotlar dinamik olacaktır ve yapay sinir ağları ile Bayesian ağları tekniklerine dayanacaktır. Ortaya konulacak olan algoritmaların iki temel bileşeni içereceği düşünülmektedir: Mesaj içeriklerinin morfolojik analizini yapacak bir morfoloji modülü ve mesajları normal ve spam olarak sınıflandıracak bir öğrenme modülü.

BAP 2003 to 2004 Tunga Güngör
Statistical Analysis of Turkish

Bu projede, yeni bir yaklaşım olan doğal dillerin istatistiksel işlenmesi (statistical processing) konusu Türkçe’ye uygulanacaktır. Bu konuda, bazı yaygın dillerle ilgili araştırmalar yapılmaktadır; fakat Türkçe için henüz bu tür bir çalışma bulunmamaktadır. Bu amaçla, proje elemanları tarafından kapsamlı bir literatür taraması yapılacaktır. Bu taramaya dayanılarak, Türkçe’nin istatistiksel işlenmesi için bir altyapı oluşturulacak ve bir program geliştirilecektir. Programın tasarımı, implementasyonu ve testi yapılacaktır.

BAP 2002 to 2003 Tunga Güngör
System for Localizing Drone Signals and Remote Control Units (CONNECT)

Small Unmanned Aerial Vehicles (UAVs) are used in many areas including search & rescue applications, geographic mapping, disaster management, precision agriculture, wildlife monitoring, shipping, delivery, and aerial photography. However, there are also undesired/malicious usages of drones such as: terrorist attacks, surveillance for restricted/critical zones, and smuggling across borders/prisons. Therefore, there are regulations for drone usage to identify these threats.

The CONNECT project aims to develop a localization system to prevent undesired/malicious use of drones. In the literature, there are proposals and solutions focusing on single sensor type. CONNECT will be a multi-sensor platform including sound, radio frequency (RF), and optic sensors to overcome the weaknesses of each sensing mechanism. These kinds of measurement systems with multiple types of sensors are called multimodal acquisition systems. CONNECT will consist of three sensing stations and each of them will be equipped with RF-based, acoustic, and optical sensing devices. For complex phenomena like drone localization, it is not expected to have a single modality that provides complete and robust knowledge. Therefore, each modality introduces a diversity that can be exploited. In addition to drone detection and localization, CONNECT will also aim to localize the remote controller units, If there is a communication link between the drone and the control unit.

Model-driven approaches require realistic models of the underlying processes and they always come with some assumptions, which may not be plausible. For complex and multimodal systems, model-driven approaches may not be the best choice for revealing the relationships between modalities. On the other hand, Machine Learning (ML) algorithms and artificial neural networks architectures are frequently used to perform detection, classification, and tracking within the data-driven framework. Data-driven approaches have been successful in human motion tracking, object detection, astrophysics, audiovision, and more. By focusing on data-driven approaches, we plan to reduce the number of assumptions and external inputs. We will compare datadriven and model-driven approaches within the modalities and we aim to improve the localization accuracy of the CONNECT by incorporating ML-based approaches to the existing techniques within the modalities and the fusion 

BAP STARTUP 2021 to 2023 H. Birkan Yılmaz
Protein Etkileşim Haritalarının Üretilmesi ve İncelenmesi TUBITAK 1001 2007 to 2010 Can Özturan
Şişecam Matematiksel Modelleme Programlarının Çok Çekirdekli Bilgisayarlar için Paralelleştirilmesi Projesi Şişecam 2013 to 2014 Can Özturan
Yapay Sinir Ağı Tabanlı Varlık Tanıma Sistemi

 

Projenin amacı Türkçe gibi sondan eklemeli ek yapısına sahip dillerdeki zengin biçimbilimsel bilginin de kullanıldığı bir varlık tanıma aracı geliştirmektir. Proje sonunda, Türkçe için geliştirilmiş diğer varlık tanıma araçlarının başarı seviyelerini geçmek hedeflenmektedir. Bunun için doğal dil işleme alanının yanında diğer alanlarda da başarılı sonuc ̧lar alınmasında yardımcıölan derin öğrenme yaklaşımı izlenecektir. Literatür özeti ve Özgün Değer bölümlerinde de görüleceğiüzere, biçimbilimsel bilgiyi değerlendiren varlık tanıma sistemleri üzerine çalışmalar kısıtlı kalmıştır. Bu projede yapılacak çalışmalarla bu boşluğun doldurulması hedeflenmektedir. önerdiğimiz yöntem, öncelikle verili metindeki sözcükleri daha önceden öğrenilmiş sözcük temsilleri, karakter tabanlı sözcüktemsilleri ve bic ̧imbilimsel bilgiye dayanan temsil sistemlerinden elde edilen temsillerin arka arkaya konulmus ̧ haliölarak temsil etmeyi önerir. Yöntemimiz bu temsilleri tek katmanlı bir LSTM vasıtasıyla is ̧lemeyi ve çıktıları koşullu rastgele ağlar (CRF) ile modellemeyi öngörüyor.

BAP 2018 to 2021 Suzan Üsküdarlı
Infinitech: Tailored IoT & BigData Sandboxes and Testbeds for Smart, Autonomous and Personalized Services in the European Finance and Insurance Services Ecosystem EU Horizon 2020 2019 to 2022 Can Özturan
Interactions of Body Representations in Rubber Hand Illusion and Tool-Use Paradigms

For over a century in the neuropsychological literature, it is thought that there are (at least) two different body representations in the brain, one for perception, called body image, and one for action, called body schema. Rubber hand illusion and tool-use paradigms have been used frequently for the past twenty-five years to study body representations in the brain, but they have produced two distinct literatures that have progressed independently of each other. While the changes in the body representation resulting from the rubber hand illusion are often attributed to body image, it is widely accepted that the changes that occur due to tool-use are represented by body schema. The effects of rubber hand illusion are often measured by proprioceptive drift and subjective experience questionnaires. On the other hand, the effects of tool use are evaluated through kinematic measurements recorded during the movement of the limb using the tool, or by pointing the midpoint of this limb with the other hand (forearm bisection). Although these two experimental paradigms are thought to affect different body representations, interactions between these representations are inevitable, considering the common sensory modalities targeted by the techniques used to measure changes in these representations. The aim of this study is to show, for the first time in the literature, that the measurement made in one of these two experimental paradigms, which are theorized to be based on different body representations, can change with manipulations in the other method. 

BAP 2022 to 2023 Emre Uğur
Adversarial Robustness and Its Applications in Healthcare

This project focuses on a recent challenge in deep learning and its potential effects on healthcare systems that utilize deep models. Deep networks have demonstrated a strong capability in detecting, classifying, and recognizing patterns in various domains. However, a recent discovery showed that convolutional neural networks are vulnerable to specifically crafted perturbations, also known as adversarial perturbations. One of the

state-of-the-art adversarial defense approaches is adversarial training. However, adversarial training suffers from overfitting. The objectives of this project are two-fold. First, an alternative adversarial defense approach will

be designed to address the poor generalization performance of adversarial training. Secondly, potential effects of adversarial attacks in the healthcare domain will be investigated and the proposed defense technique will be

extended to healthcare applications. It has been shown that adversarial attacks on medical images alter clinical decision-making. In addition to medical images, Electronic Health Records (EHRs) are commonly utilized to

train deep models in healthcare. EHRs have different characteristics than images, such as heterogeneity and temporal dependence, which can be modeled using Recurrent Neural Networks (RNNs). Adversarial training for

RNN models have not been studied thoroughly in the literature. In summary, an adversarial training approach, which is more generalizable and adoptable by different deep architectures, is the main result to be achieved in this project.

BAP STARTUP 2020 to 2023 İnci Meliha Baytaş
Automated Classification of Software Requirements Captured in Natural Language BAP 2020 to 2022 Fatma Başak Aydemir
Abstract Reasoning and Life-Long Learning via symbol and rule discovery

Abstraction and abstract reasoning are among the most essential characteristics of high-level intelligence that distinguishes humans from other animals. High-level cognitive skills can only be achieved through abstract concepts, symbols representing these concepts, and rules that express relationships between symbols. This project aims to self-discover abstract concepts, symbols, and rules that allow complex reasoning by the robot. If the robots can achieve such abstract reasoning on their own, they can perform new tasks in completely novel environments by updating their cognitive skills, or by discovering new symbols and rules. If the objectives of this project are achieved, scientific foundations will be laid for robotic systems that learn life-long lasting symbols and rules through self-interacting with the environment and express various sensory-motor and cognitive tasks in a single framework.

TÜBİTAK 1001 2021 to 2024 Emre Uğur
A Computational Model of Event Learning and Segmentation: Event Granularity, Sensory Reliability and Expectation

Event is a fuzzy term that refers to a closed spatio-temporal unit. The aim of the project is to develop a computational model that can learn event models and use learned event models to segment ongoing activities in varying granularities and compare its performance with human subjects. By doing so, we aim to clarify the effect of the reliability of sensory information and expectation on event segmentation performance by several experiments through our computational model and to develop a computational model that is capable of learning, segmenting and representing new events while being robust to noise. In addition to comparing human event segmentation performance with that of the computational model, we plan to design a new validation method to increase the reliability of assumptions of the computational model in terms of validating the psychological theory and assessing how well the computational model performs in terms of capturing human event representations. Results of our experiments and our computational model will be used to validate predictions of a psychological theory, namely Event Segmentation Theory, and to develop robotics models that are capable of simulating higher-level cognitive processes such as action segmentation in different granularities and formation of concepts representing events.

BAP 2020 to 2021 Emre Uğur
Wearable Flexible Sensor Supported Lower Body Exoskeleton System

In this project, a novel wearable exoskeleton with flexible clothing will be developed for the use of paraplegic persons who have lost their lower extremity motor functions due to low back pain, paralysis and similar disturbances. This prototype will be designed as a rigid-link exoskeleton that is actuated via series-elastic actuators. The user’s physical state will be observed using soft elements attached to a wearable sensorized clothing, which will be used in conjunction with the exoskeleton. Trajectory planning will be explored by a human-to-robot skill transfer problem to minimize the metabolic cost. Stability and balance analyses will run, and environmental factors will be estimated to provide safe walking support to the human using a hierarchical control structure.

TUBITAK-1003 2020 to 2023 Emre Uğur
Smart Magnetic Identification Technology

The goal of this project is to develop an anti-counterfeiting system that is almost impossible to copy, and erase with magnetic fields. Smart magnetic materials and novel fabrication and detection technologies will be utilized to realize this project. A working prototype of a magnetic tag embedded on a real product and its special reader system will be designed and implemented at the end of this project. The technology demonstration will be done for anti-counterfeiting of precious metals.

ETH Zurich

Magnes

KuveytTurkish Participation Bank Inc.  R&D Center

Bogazici University

PS: Accordingto the funding rules of Turkiye (TUBITAK TEYDEB 1509), Bogazici University acts as the project consultant

 

H2020 Eurostars 2015 to 2017 Fatih Alagöz
Design And Development of Security-Hardened Software Defined Networks TÜBİTAK 2018 to 2021 Fatih Alagöz
Content-Centric Satellite-Integrated Cognitive Radio Networks TÜBİTAK 2017 to 2020 Fatih Alagöz
Gezgin Cihazlar için Tahrif Dayanıklı Çoklu Ortam Yakalama Sistemi BAP 2013 to 2014 Fatih Alagöz
COWLOCATOR: Süt Üretim Çiftliklerinde Hayvanların Yer Tespiti Sanayii Bakanlığı 2012 to 2014 Fatih Alagöz
Attack Detection and Countermeasures (ADAX),

Project description

Cybersecurity is vital to any person or entity, from consumer to government, involved in conveying information. The key lies in being able to detect attacks and react quickly and efficiently by launching appropriate countermeasures. The ITEA 2 project ADAX has delivered a set of key innovations improving prevention, detection, decision support, countermeasure enforcement and knowledge management to support security operation on complex and critical IT infrastructures.
Alt
 
DETAILS:

 

 

FP7-ITEA2 project 2013 to 2015 Fatih Alagöz
Requirements Engineering for Digital Transformation TUBITAK BIDEB 2232 2020 to 2023 Fatma Başak Aydemir
Molecular Signal Source Localization for Underwater and Medical Applications
Moleküler iletişim (MC), hem çok hücreli organizmalarda hem de sosyal kolektif eylemde organize davranış kurar. Son yıllarda, bilginin moleküller aracılığıyla taşındığı farklı ölçeklerde sentetik olarak tasarlanmış MC sistemleri tasarlamak için eşzamanlı çaba gösterilmiştir. Mevcut MC araştırmalarının çoğu teoriktir ve sonuçların simülasyonlarla doğrulanmıştır. IEEE, MC'yi 2017'deki iletişim teknolojisi trendlerinden biri olarak belirlemiştir ve MC'nin çeşitli zorluklarını metodolojik ve kapsayıcı bir şekilde ele almak için bir standardizasyon grubu (IEEE 1906.1) kurmuştur. Buna ek olarak, MC araştırmasının gelecekteki yönü, gerçek yaşam problemleri için alternatif ve yeni yaklaşımlara katkıda bulunacak deneysel test ortamlarını tasarlamak ve geliştirmektir. 
 
Bu projedeki amacımız, MC'den ilham alan bir perspektifte lokalizasyon problemlerini çözmek için makro ve mezo ölçekli test ortamları, lokalizasyon uygulamaları için simülatörler ve moleküler sinyal yayılımı için analitik modeller geliştirmektir. Makro ölçekli lokalizasyon test ortamı, sualtı arama kurtarma ve çevresel izleme gibi su altı lokalizasyon uygulamaları için bir su kanalı olacaktır. Mezo ölçekli lokalizasyon test ortamı, kanser hücresi lokalizasyonu, hedeflenmiş ilaç dağıtımı ve vücut içi NEMS / MEMS koordinasyonu gibi tıbbi uygulamalar için insan dolaşım sistemine benzer bir dolaşım ağı olacaktır. Her iki test ortamında da zorlu ortamlarda moleküler sinyallere dayanan MC'den ilham alan lokalizasyon teknikleri kullanacağız. Tasarlanacak ve geliştirilecek olan lokalizasyon teknikleri, karmaşık ve aktif MC uygulamalarına yol açma potansiyeline sahiptir.
TUBITAK - BIDEB - 2232 2020 to 2023 H. Birkan Yılmaz
Molecular Signal Source Localization for Underwater and Medical Applications
Molecular communication (MC) establishes organized behavior in both multi-cellular organisms and social collective action. In recent years, concurrent efforts have been made to design synthetic engineered MC systems in different scales, where the information is carried via molecules. Most of the existing research on MC is theoretical where the results are verified via simulations. IEEE determined MC as one of the communication technology trends in 2017 and has established a standardization group (IEEE 1906.1) to address the various challenges of MC in a methodological and inclusive manner. In addition to that, the future direction of MC research is to design and develop experimental testbeds, which will contribute to alternative and novel approaches for real life problems. 
 
Our goal in this project is to develop macro and meso scale testbeds for solving localization problems in an MC-inspired perspective, simulators for localization applications, and analytical models for the molecular signal propagation. Macro scale localization testbed will be a water channel for underwater localization applications such as underwater search & rescue and environmental monitoring. Meso scale localization testbed will be a mock circulatory network similar to human circulatory system for medical applications such as cancer cell localization, targeted drug delivery, and intra-body NEMS/MEMS coordination. In both testbeds, we will employ MC-inspired localization techniques, which rely on molecular signals in challenging environments. Designing and implementing MC-inspired localization in challenging environments has potential to pave the way for complex and driving MC applications. 
TUBITAK - BIDEB - 2232 2020 to 2023 H. Birkan Yılmaz
TİARA: Türk İşaret dili videolarının görsel sorgularla Aranması

İşaret dili, işitme engellilerin ana dilidir. İşaret dili, mesajı iletmek için pek çok görsel öğeden yararlanır: El şekli ve yörüngesinden oluşan jestler (işmarlar); vücut pozu, ve yüz ifadeleri. Her kültürel grubun ayrı bir işaret dili vardır ve Türk işaret dili (TİD), Türkiye’deki işitme engellilerin ana dilidir. TİD’den Türkçe yazılı ve sözlü dile tercüme ve bunun tersi, ancak her iki dili de bilen ve işitme engeli olmayan tercümanlar yoluyla yapılabilmektedir ve pahalıdır. Örneğin, ancak sınırlı sayıda televizyon programı, TİD ile simültane tercüme edilerek yayınlanmaktadır. İşaret dilinin otomatik tanınması, bilgisayarla görmede çözülmemiş zor problemlerden birisidir. İşaret dili tanıma teknolojisinin gelişmesi, işitme engelli bireylerin topluma katılmasını kolaylaştıracak ve hızlandıracaktır. Öte yandan, işaret dili tanıma, bilgisayarla görme teknolojisinin gelişmesi için öncü rol yapmaktadır; ve bu alandaki gelişmeler insan- bilgisayar etkileşiminde de kullanılmaktadır.

Bilgisayarla görmede derin öğrenme yaklaşımı, son yıllarda, nesne tanımada büyük başarı kazanarak, en tercih edilen yöntem haline gelmiştir. Bu gelişmeyi hazırlayan etkenlerden birisi, çok büyük ölçekli imge veri tabanlarının toplanması ve içeriğinin işaretlenmesi olmuştur. İşaret dili alanında, benzer şekilde, her dilin işaret diline ait geniş veri setleri toplanmaktadır. Bu projede amacımız, toplanan bu veri tabanlarını kullanarak işaret dili için özelleşmiş bir derin sinir ağı eğitmektir. Derin sinir ağlarının eğitiminde, başka bir alanda eğitilen bir ağın, hedeflenen alanda kullanılması için transfer öğrenmesi teknikleri kullanılır. Eğitilen derin ağ, değişik işaret dillerinin betimlenmesinde kullanılabilecek ortak bir gösterim verecektir; ancak başarımının artırılması için, hedef alandaki veriyle tekrar eğitilmesi gerekir. Bu amaçla, TİD’de toplanmış kaynaklarda transfer öğrenmesi yöntemlerini kullanacağız.

Yapılan araştırmalar sonucunda, işaret dilinde yapılmış ayrık bir işaretin tanınması ve bir video içinde işaret dili ile sorgu yapılması için sistemler geliştirilecektir. Bu sistemlerle, işaret dili bilmeyen bir kişinin, gördüğü bir işaretin anlamını öğrenmesi, ve bir işitme engelli kişinin, işaret dili ile videolarda sorgu yapması mümkün olacaktır. Aynı zamanda, işaret dili ile işaretlenmiş sesli videolarda yapılan sorgularla, videodan sese ve yazıya tercüme yapabilen TİD sözlüğü geliştirilmiş olacaktır.

TUBITAK 2017 Lale Akarun
TİARA: Searching of Turkish Sign Language Videos with Visual Queries

Sign is the native language of the Deaf. Sign language uses a collection of visual constructs to convey messages: Gestures comprised of hand shapes and trajectories; body poses and facial expressions. Every cultural group has a distinct sign language and Turkish Sign Language (TSL) is the sign language of the Deaf community in Turkey. Translation of TSL to and from Turkish speech is possible only through hearing human translators proficient in both languages: an expensive process. For example, only a limited number of  television programs are broadcast with simıltaneous translation. Automatic recognition of sign language is one of the difficult, unsolved problems in computer vision. The development of sign language recognition technology will facilitate and accelerate the inclusion of the Deaf to society. In addition, advances in sign langauge recognition blaze the trail for other advances in computer vision; and lead to new technology in human-computer interaction.  

In the last 5 years, deep learning has scored great success in computer vision and has become the state of the art approach in object recognition. The collection and annotation of databases with a huge number of images is one of the factors facilitating this development. Large sign language video databases in different sign languages are being collected in recent years. In this project, our purpose is to use these databases to train a specialized deep neural network for sign language recognition. Transfer learning techniques may be employed to use  a network trained in a source domain in a different, target domain. Our aim is to reach a common representation for different sign languages; and then to use TSL data using transfer learning to improve this representation.

The results of the research will lead to the development of systems for isolated sign language recognition and for video based query in sign language videos. These systems may be used by a non-signing user to learn the meaning of a sign or by the Deaf to conduct sign-based searches in signed videos. Additionally, queries in videos with simultaneous speech and sign will be used to build a sign dictionary between signs and speech and text.

TUBITAK 2017 Lale Akarun
Imagining Other's Goals in Cognitive Robots (IMAGINE - COG++)

https://www.cmpe.boun.edu.tr/~emre/projects.html#imagine-cog

In this research project, we aim to design and implement an effective robotic system that can infer others' goals from their incomplete action executions, and that can help others achieving these goals. Our approach is inspired from helping behavior observed in infants; exploits robot's own sensorimotor control and affordance detection mechanisms in understanding demonstrators' actions and goals; and has similarities with human brain processing related to control and understanding of motor programs. Our system will follow a developmental progress similar to infants, whose performance in inferring goals of others' actions is closely linked to development of their own sensorimotor skills. At the end of this project, we plan to verify whether our developmental goal inference and helping strategy is effective or not through human-robot interface experiments using upper body Baxter robot in different tasks.

 

 

BAP 2018 to 2019 Emre Uğur
IMAGINE: Robots Understanding Their Actions by Imagining Their Effects

https://www.cmpe.boun.edu.tr/~emre/projects.html#imagine

Today's robots are good at executing programmed motions, but they do not understand their actions in the sense that they could automatically generalize them to novel situations or recover from failures. IMAGINE seeks to enable robots to understand the structure of their environment and how it is affected by its actions. The core functional element is a generative model based on an association engine and a physics simulator. "Understanding" is given by the robot's ability to predict the effects of its actions, before and during their execution. This scientific objective is pursued in the context of recycling of electromechanical appliances. Current recycling practices do not automate disassembly, which exposes humans to hazardous materials, encourages illegal disposal, and creates significant threats to environment and health, often in third countries. IMAGINE will develop a TRL-5 prototype that can autonomously disassemble prototypical classes of devices, generate and execute disassembly actions for unseen instances of similar devices, and recover from certain failures.

European Union, H2020-ICT 2017 to 2020 Emre Uğur
Sağlarlık güdümlü karmaşık manipülasyon ögrenme çerçevesi

https://www.cmpe.boun.edu.tr/~emre/projects.html#afford

Bu proje ile, ortamın robota sunduğu sağlarlıkları (affordances) öğrenip modelleyerek sağlarlıklar ve sensör geribildirimleri ile desteklenen gelişmiş bir manipülasyon beceri sistemini kurmayı hedeflemekteyiz. Bu tip ortamlardaki `tutmak', `taşımak' ve `yerleştirmek' gibi eylemler tipik oldukları için, hareketleri, gösterim yolu ile öğrenme (learning by demonstration) ile robota aktarmayı planlamaktayız. Bu yolla yarı-yapısal ortamlar için gerekli manipülasyon becerilerini öğrendikten sonra, robot, ortamın sunduğu görsel ve diğer sağlarlıkların, bu becerilerin yürütülmesini nasıl etkilediğini öğrenmelidir.

TUBITAK - BIDEB - 2232 2017 to 2019 Emre Uğur
Learning in Cognitive Robots

https://www.cmpe.boun.edu.tr/~emre/projects.html#cogrob

The aim of this project is to start forming a new cognitive and developmental robotics research group in Bogazici University with a special emphasis on intelligent and adaptive manipulation. This start-up fund is used to build the laboratory with the most important and necessary setup that includes a human-friendly robotic system for manipulation (Baxter robot), a number of sensors for perception, and a workstation for computations and control.

BAP 2016 to 2017 Emre Uğur
OpenMaker: Harnessing the power of Digital Social Platforms to shake up makers and manufacturing entrepreneurs towards a European Open Manufacturing ecosystem

Introduction:

The European manufacturing landscape is in urgent need of change. In 2014, manufacturing represented about 16% of the EU GDP, more than 80% of EU total exports, 80% of private Research & Development expenditure, and employed 30 million people. However, the financial crisis has heavily hit the sector, combining its negative effect with ongoing globalisation and technological innovation negative externalities. Together these factors have culminated in the loss of over 3.8 million jobs.

Reinvigorating the manufacturing sector is a complex task that requires transformation at the heart of production processes and models upon which our industrial society has been built. Inroads in generating this scale of shift in manufacturing have been made in areas conducive to open technologies in the fields of digital fabrication and craftsmanship – where the manufacturing sector has come into contact with the emerging social-technology based Maker movement, innovation and growth emerges. This drives the democratisation of production, turning manufacturing into a participatory, collaborative, and open process in which all agents share risks and benefits and, ultimately, increase the value of production. 

More information here

Call: H2020 Collective Awareness Platforms for Sustainability and Social Innovation

Start Date: 20 June 2016 (24 months)

Project page: http://openmaker.eu/

European Union, H2020, Collective Awareness Platforms for Sustainability and Social Innovation -Digital Social Platforms 2016 to 2018 Ali Taylan Cemgil, Suzan Üsküdarlı
AffecTech: Personal Technologies for Affective Health

The European ITN project AffecTech integrates outstanding yet fragmented expertise in developing personal health technologies for mental health. The specific aim is to support self-understanding and successful adoption of adaptive emotion regulation strategies in daily life. Within the project duration of 3 years, CMPE will develop mobile and wearable self-help technologies for capturing emotions and their regulation in real life.

European Union, H2020 Innovative Training Networks 2017 to 2020 Bert Arnrich, Cem Ersoy
WebEd-Internet Bazlı Eğitim İçin Yönetim Sistemi BAP 2002 to 2004 Haluk O. Bingöl
LBSAPB-Location Based Services Application Platform on Bluetooth BAP 2003 to 2005 Haluk O. Bingöl
Self-Organized Complex Networks BAP 2005 to 2006 Haluk O. Bingöl
Self-Organized Complex Systems BAP 2006 to 2008 Haluk O. Bingöl
Human Dynamics as Complex Systems BAP 2007 to 2009 Haluk O. Bingöl
Short Description of Human Modeling by Simulations EU 2007 to 2009 Haluk O. Bingöl
M-Learning National 2008 to 2010 Haluk O. Bingöl
Eğrilik ölçek uzayı öznitelikleriyle spina bifida tanısı BAP 2014 to 2015 Fikret Gürgen
Akıllı Yaşam Ortamları için Kesintisiz İzleme BAP 2014 to 2016 Cem Ersoy
Yapay Öğrenmede Esnek Karar Ağaçları BAP 2014 to 2016 Ethem Alpaydın
Sosyal Medya Metinlerinde Varlık İsimlerinin Tanınması ve Hashtag Ayrıştırılması BAP 2015 to 2016 Arzucan Özgür
Hafıza içi Veritabanı Erişimi için Hızlandırıcı Tasarımı BAP 2015 Arda Yurdakul
Çevrimiçi Sosyal Ağ Oyunlarında Oyuncu Modelleme Ve Iletişim Analizi Ile Şikayetlerin Otomatik Analizi

The main aim of this project is to discover situations like verbal aggression, harrassment, and cheating in games over social media, and to provide a tool for automatically evaluating player complaints in terms of importance and veracity. Such a system will reduce the moderation costs of gaming companies, as well as constitute a tool for analysis of gamer behavior.

TUBITAK 2015 to 2016 Albert Ali Salah
Renkli Tekstil İmgelerinin İşlenmesi

Jakarh dokumada en zahmetli aşama, desenin hazırlanmasıdır. Geleneksel olarak, hazırlanan desen, zaman alıcı bir yöntemle kartonlara delinır ve bu iş, kumaş üretiminde bir tıkanma noktası olurdu. Jakarh dokuma için desen hazırlanmasının otomasyonu, bu tıkanıklığı giderdiği gibi, yurdumuzda yaygın olarak kullanılan mekanik jakarlann da daha verimli olarak kullanılabilmesini sağlamıştır.

Tübitak 1993 Lale Akarun
Turkce Metinlerin Analizine Yonelik Olarak Kavram Madenciligi Yontemlerinin Gelistirilmesi Tubitak 2011 to 2014 Tunga Güngör
Sosyal Yazılımlar için Ontoloji Tabanlı Mahremiyet Yönetimi

Sosyal yazılımlar, genelde Web üzerinde çalışan, kullanıcıların birbirlerine bir sosyal ağ ya da benzeri bir örgüt modeliyle bağlı oldukları yazılımlardır. Bu yazılımlar, gündelik sosyal ilişkilerin yürütülmesinden, karmaşık iş süreçlerinin yürütülmesine kadar birçok farklı ortamlarda çok sayıda kullanıcı tarafından kullanılmaktadır. Örneğin, sadece Facebook.com'un bir milyardan fazla kullanıcısı vardır. Bu yazılımlar kullanıcıların yoğun içerik paylaştıkları sistemlerdir. Paylaşılan içerik, yazılımı kullanan bir grup kullanıcı için paylaşılır ve diğer kişilerin bu içerikten haberdar olması istenmez. Bu kullanıcıların temel bir mahremiyet hakkıdır. Oysa görülmektedir ki, birçok durumda, sosyal yazılım kullanıcılarının mahremiyetleri değişik şekillerde ihlal edilmektedir. Bu bir kişinin temel mahremiyet hakkını ihlal ettiği gibi (ör. istenmeyen bir resmin ortaya çıkması), bazı durumlarda güvenlik sorunlarına (ör. kredi kartı bilgisinin paylaşılması), bazı durumlarda buluş haklarının ihlali sorunlarına (ör. şirket içinde paylaşılan bir ürünün dışarı sızması) ve değişik başka sonuçlara yol açar. Bu sebeple, insanların bu kadar yoğun kullandıkları sosyal yazılımlarda, kullanıcıların mahremiyetlerinin korunması büyük önem taşımaktadır. Bu açıdan, kullanıcıların kendi mahremiyet isteklerini kaydedecek, bunları sosyal yazılımların uygulayıp uygulamadığını kontrol edecek ve gerektiğinde kendilerine yol gösterecek akıllı yazılımlara ihtiyaçları vardır. Bu projenin amacı, mahremiyeti koruma odaklı akıllı yazılımlar geliştirmek için gerekli bileşenleri tasarlamak, bunları kullanacak metodları geliştirmek, ve metodların entegre edildiği bir yazılım ortaya çıkarmaktır.

Tubitak 2014 to 2016 Pınar Yolum
Ilkogretim Ve Ortaogretim ogrencilerinin Dogru Ve Guvenilir Bilgiye Erisimlerine Yonelik Uyarlamali Bir Soru Cevaplama Sisteminin Gelistirilmesi

-

Tubitak 2013 to 2015 Tunga Güngör
Pervasive Healthcare: Towards Computational Networked Life Science

In this project, two main research objectives will be investigated. In the first one, new approaches to monitor and interpret health-related behavior characteristics on a large-scale basis are investigated in order to overcome the state of the art limitations of today’s research prototype systems and to enable powerful data-rich systems. The second objective on persuasive recommender systems deals with new approaches to advance the feedback loop to the user by providing objective evidence on the effectiveness of healthy behavior change.

Read more >>>

Tübitak / Marie-Curie 2013 to 2015 Bert Arnrich
Human Computer Interaction Platform for the hearing impaired in Health and Finance Applications

The principal goal of this project is the development of a depth based sign language recognition prototype and related demo applications, which hearing impaired users will make use of to aid in their communications with healthcare and finance professionals in their daily tasks. 

According to the 2000 DIE census, there are 109.000 people with total hearing disablity in Turkey. In their daily routines, the hearing impaired , are forced to use either written materials or the aid of an accompanying Turkish sign language interpreter to establish basic communication since they are unable to use speech as a medium of communication. The staggeringly low literacy rate among the hearing impaired greatly reduces the integration of this population, thus creating both a social and an economic disadvantage.

Sign languages are the main communication medium of the hearing impaired people. Sign languages convey meaning through hand movements, facial gestures and upper body postures.These languages differ from country to country. The Turkish Sign Language (TİD) is used by hearing impaired people of Turkish origin to convey their meaning through combinations of hand movements, facial gestures and upper body postures unique to it. In 2005, as part of the European Union integration effort, the Turkish Social Services law made it mandatory for all governmental organizations and offices to employ a TİD interpreter. In 2006, the use of TİD and the task of training TİD interpreters were introduced through regulations into the Turkish Social Services law.

These legal requirements constitute one of the emergence factors of this project. Since it is neither practicable nor economically feasible to train and employ TİD interpreters for every government office, practical solutions like establishing sign language translation call centers that employ TİD interpreters are considered. The ideal solution to such a dilemma is the recognition and translation of sign languages to speech through the use of technology. Such a system would diminish the need for sign language interpreters, while fully integrating the hearing impaired. However, the technology needed for such a system is beyond the current state of the art. Today’s technology only allows for sign-to-speech translation systems with extremely limited corpora that are heavily user dependent. The goal of this project is the realization of a sign language recognition system that performs successful recognition over an extended vocabulary and is signer independent.

For over half a century, Netas has presented communications solutions to both overnmental and private companies. The WEBRTC platform that is being developed by NETAS allows for two way real time text, audio and video communication between Internet browsers and classical networks. It is one of many solutions, which the company hopes to integrate with sign language recognition and accesibilty modules in the future.

One of the main goals of this project is to develop a computer vision based system that will recognize a chosen corpus of significant TİD gestures. The aim of the system will be to present notification and guidance services in healthcare and finance domains. Taking the market potential of the project into account, some sample application domains for the project are as follows: 

1- Hospital Information Desk: Providing guidance, direction and appointment services to hearing impaired users.
2- Bank: Providing guidance and service related information to hearing impaired users.

The university group of the project is well versed in the theoretical and application side of the sign language recognition domain. (Detailed information and full list of publications is available at: http://www.cmpe.boun.edu.tr/pilab/doku.php?id=research:sign_language_rec...) The research can now be considered to have reached a prototyping stage. With this project, a prototype will be developed which can be turned into products in the future.
The scientific goal of this system is to realize a state of the art TİD recognition and human computer interaction software. The software will make use of transfer learning and domain adaptation methods to enhance its sign vocabulary and establish increased signer independence. The TİD depth video dataset, which we aim to collect in this project will be a first in this field considering its size and scope and will serve as a valuable resource to
researchers working in this field.

SANTEZ 2014 Lale Akarun
Etmen Tabanli Anlamli Web Servisleri: Guvenilir Taraf Secimi, Birlikte Islem Ve Kompozisyon

-

Tubitak 2006 to 2010 Pınar Yolum
Yuksek Seviyedeki Modellerden Cok Islemcili Mobil Platformlar Icin Sentetik Uygulama Uretilmesi BAP 2013 Alper Şen
Egrilik Olcek Uzayi Oznitelikleriyle Spina Bifida Tanisi BAP 2014 Fikret Gürgen
TCS TURKEY: Analysis of Boolean Functions for Algorithms and Complexity EU 2013 to 2015 A. C. Cem Say
Kombinatoryal Nesnelerin Incelenmesi Icin Istatistiksel Yontemler BAP 2014 Ali Taylan Cemgil
Tup Bebek Tedavi Surecinde Yapay Ogrenme Tanbanli Embriyo Secimi BAP 2009 to 2010 Ayşe Başar
Yazilimda Hata Ve Maliyet Kestirimi Modellemesi Tubitak 2008 to 2010 Ayşe Başar
Tur Rehberi Robotlar Icin Coklu Sosyal Zeka Gelistirilmesi BAP 2013 H. Levent Akın
ASSYST: Action for the Science of Complex Systems for Socially Intelligent icT EU 2011 Haluk O. Bingöl
Isaret Dili Egitmeni (Ide) Tubitak 2007 to 2009 Lale Akarun
Kablosuz Iletisimde Kanal Parametrelerinin Kestirimi Icin Sistem Tasarimi Ve Gelistirilmesi BAP 2013 Tuna Tuğcu
Etkilesimli Tezgahta Grafik Islemci Tabanli Gelismis Gorsellestirme BAP 2010 Ali Vahit Şahiner
Tavsiyeler Ile Degisen Bellek Modeli Tubitak 2009 to 2012 Haluk O. Bingöl
UBIHEALTH: Exchange of Exellence in Ubiquitous Computing Technologies to Address HEALTHcare Challenges EU 2013 to 2016 Cem Ersoy
Bicimbilimsel Tabanli Dil Modeli Ile Turkce Konusma Tanima Sistemi Tubitak 2008 to 2010 Tunga Güngör
Ontology Based Privacy Management for Social Software

Social software is defined as software that enables its users to interact socially on the Web through organization structures such as a social network. The use of social software spans casual friendship networks to complex process management. The number of users of social software of various sorts is huge, for example Facebook.com by itself has more than one billion users. Users of these systems typically share a vast amount of content. The content that is being shared is always targeted for some of the users of the system but not for all of them. Every user has the right to demand that her privacy is preserved by not showing the content to those individuals for whom the content was not meant for. However, everyday more and more interesting cases of privacy breaches are taking place. A privacy breach by itself is not desired but it can have further effects. For example, if a private credit card information is shared with unknown people, it can result in serious security problems. Or, an invention that needs to be secret in a company is mistakenly shared with a competitor company, the invention details may leak. For these reasons, it is extremely important to preserve users' privacy in social software. To enable this, we need intelligent software that can keep track of users' privacy requirements, check if these requirements can be met by the system, and lead the user to take appropriate action as needed. For example, the software can suggest the user not to share a certain piece of information if the social software cannot guarantee its privacy or the software can signal that an important content has been shared with undesirable individuals. Accordingly, the aim of this project is to design and develop the necessary components and techniques for an intelligent software that will manage a user's privacy on her behalf.

TUBITAK 2014 to 2016 Pınar Yolum
Bilissel Bilim Laboratuvari BAP 2012 Albert Ali Salah
Reliable Embedded Systems Using Multicore and Message Passing Architectures Semiconductor Research Corporation, SRC 2010 to 2013 Alper Şen
3D Object Recognition TUBITAK 2002 to 2004 Lale Akarun
Player profiling and communication analysis for player complaints in social network based games

The main aim of this project is to discover situations like verbal aggression, harrassment, and cheating in games over social media, and to provide a tool for automatically evaluating player complaints in terms of importance and veracity. Such a system will reduce the moderation costs of gaming companies, as well as constitute a tool for analysis of gamer behavior.

TUBITAK 2015 to 2016 Albert Ali Salah
Checking Commitment Protocols For Conflicts BAP 2013 Pınar Yolum
Developing Coverage Metrics for Functional Design Verification BAP 2009 to 2010 Alper Şen
Eartquake Master Plan IBB ( ̇Istanbul Municipality) Project 2001 to 2002 Lale Akarun
FIRESENSE: Fire Detection and Management through a Multi-Sensor Network for the Protection of Cultural Heritage Areas from the Risk of Fire and Extreme Weather Conditions. EU 2009 to 2012 Cem Ersoy
Ortam Zekasi Uygulamalari Icin Karsilastirmali Etmen Mimarileri BAP 2009 to 2010 Pınar Yolum
Perceptual Human-Computer Interfaces DPT 1999 to 2003 Lale Akarun
SIMILAR Network of Excellence

http://www.similar.cc/

EU 2002 to 2006 Lale Akarun
Opinion Dynamics As Complex Systems BAP 2009 to 2011 Haluk O. Bingöl
Parallel Logic Simulation using Graphics Processing Units BAP 2010 to 2011 Alper Şen
Biosecure Network of Excellence EU, FP6 2004 to 2007 Lale Akarun
Turkiye'deki Yazilim Endustrisinin Rekabet Gucu Endeksi Modellenmesi BAP 2009 to 2010 Ayşe Başar
PredictMP-Predictive Techniques for System Level Analysis of Multi-Processors European Commission, FP7 Marie Curie International Reintegration Grant 2009 to 2013 Alper Şen
Sign Tutor

In this project, we have conducted research on the analysis of Turkish Sign Language and developed educational tools for teaching Turkish Sign Language, with the support of the Scientific and Technological Research Council of Turkey. Turkish Sign Language (TID) is a visual language, used by the hearing impaired, which consists of hand gestures and facial expressions. The study of sign language is a currently interesting research field both by computer vision researchers and linguists. Beyond the research interest, the development of educational tools for teaching sign language has benefits to the general community. The aim of this project is the development of educational tools for sign language while doing research on sign analysis and recognition from videos. With this purpose, we have worked in five different areas:

  • Development of Turkish Sign language databases for research and education
  • One of the databases collected has been used for a website and stand-alone application program for a TID sign dictionary
  • Research on analysis of sign language from videos and the development of a prototype of an interactive sign tutor
  • The development of Signiary, a Sign Dictionary which uses the Turkish Radio Television’s news for the hearing impaired
  • Research on distributed sign language recognition in a multi-agent environment.

The output of the project is in the form of theses, reports, journal papers and conference papers. In addition, we have produced databases and demonstrator programs.

Project Web page: http://www.cmpe.boun.edu.tr/pilab/doku.php?id=projects:sign_language_tutor

TUBITAK 2004 to 2007 Lale Akarun

Contact us

Department of Computer Engineering, Boğaziçi University,
34342 Bebek, Istanbul, Turkey

  • Phone: +90 212 359 45 23/24
  • Fax: +90 212 2872461
 

Connect with us

We're on Social Networks. Follow us & get in touch.