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We describe verification and coverage methods for multicore software that uses message passing libraries for
communication. Specifically, we provide techniques to improve reliability of software using the new industry
standard MCAPI by the Multicore Association. We develop dynamic predictive verification techniques that
allow us to find actual and potential errors in a multicore software. Some of these error types are deadlocks,
race conditions, and violation of temporal assertions. We complement our verification techniques with a
mutation-testing-based coverage metric. Coverage metrics enable measuring the quality of verification tests.
We implemented our techniques in tools and validated them on several multicore programs that use the
MCAPI standard. We implement our techniques in tools and experimentally show the effectiveness of our
approach. We find errors that are not found using traditional dynamic verification techniques and we can
potentially explore execution schedules different than the original program with our coverage tool. This is
the first time such predictive verification and coverage metrics have been developed for MCAPI.
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1. INTRODUCTION

Reliability of electronic systems is crucial since errors can result in loss of money,
time, and even human life. Many domains require reliable software and hardware.
Reliability is especially crucial for safety-critical embedded multicore systems used
in automobiles and medical instruments. The task of improving reliability has been
complicated by the concurrent nature of multicore systems since concurrent systems
can get into an exponential number of scenarios that cannot be completely analyzed. We
need reliability techniques that can deal with concurrent multicore systems. In addition
to the concurrent nature of hardware, concurrent software is also becoming common
place. New multicore software formalisms are developed to exploit the performance
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available in multicore hardware. Improving the reliability of multicore software is also
a big challenge due to concurrency.

Reliability is further reduced by the nondeterminism that is introduced by the con-
current software that uses the shared memory paradigm. Such software is also not scal-
able to heterogeneous embedded multicores with different types and number of cores,
different operating systems, and physical transports. The message passing paradigm
explicitly provides concurrency by using messages. This not only reduces the poten-
tial for nondeterminism but also is scalable. In the context of distributed systems and
scientific programming, the Message Passing Interface standard (MPI) [MPI 2011] is
widely used. The embedded system domain requires a standard with a smaller memory
footprint than MPI and that exploits the properties of the domain. The Multicore Asso-
ciation has developed such an industry standard for multicore software development.
The standard for message passing communication is called MCAPI [MCA 2011]. In
this article, we provide reliability techniques for multicore software developed using
MCAPI.

We use a twofold approach for improving reliability: verification and coverage. We
develop a dynamic predictive verification technique that is a combination of formal
methods and simulation techniques. In this technique, the designer can specify the
assertions (properties) that the multicore software should satisfy. Some assertions are
mutual exclusion, or deadlock and race conditions. Deadlocks and race conditions are
common problems for concurrent systems. Hence, while we provide a general algo-
rithm for checking designer-specified temporal assertions, we also provide specialized
algorithms for deadlock and race condition detection. We improve the performance of
our algorithms by developing enhanced dependency tracking techniques. In order to
complement our verification efforts, we develop coverage metrics. When the verification
process is complete, there is still a doubt whether enough properties have been written
or enough scenarios have been explored. Coverage metrics allow us to measure the qual-
ity of verification efforts. We develop mutation-testing-based coverage techniques for
multicore software using MCAPI. Specifically, we develop a set of mutation operators for
the MCAPI standard that get inserted in programs and then we check what percentage
of these mutations can be covered by verification tests. This is the first time such pre-
dictive verification and coverage metrics have been developed for the MCAPI standard.

We developed tools that implement our algorithms and experimented with multicore
programs that use MCAPI. We verified and found errors in some programs that were
not found using traditional dynamic verification techniques. This shows the predictive
nature of our approach. Also, we show that our specialized algorithms for deadlock and
race condition detection have better performance than temporal assertion verification.
Our mutation-based coverage tool allows us to explore execution schedules different
than the original program.

The article is organized as follows. We provide a detailed related work on reliability
techniques for multicore software. Then, we describe the model that we use in this
article. We describe our verification and coverage algorithms in Sections 4 and 5. The
experimental section displays the effectiveness of our approach. Finally, we present
our conclusions and future work.

2. RELATED WORK

There are several works that detect concurrency problems in MCAPI user applica-
tions. In Sharma et al. [2009a, 2009b] and Sharma and Gopalakrishnan [2009], the au-
thors present the first dynamic verifier for MCAPI applications, called MCAPI Checker
(MCC). Dynamic verification checks the behavior of the user application during its ex-
ecution. MCC explores all possible interleavings of an MCAPI application by using the
Dynamic Partial Order Reduction (DPOR) [Flanagan and Godefroid 2005] technique.
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MCC handles MCAPI’s connectionless send and receive functions and verifies asser-
tions and checks for deadlocks. On the other hand, our tool handles both connection-
oriented and connectionless sends and receives. MCC can insert wait in order to match
receives with sends and this can potentially change the behavior of the application, as
we show later in this article. MCC dynamically generates all possible execution paths
by repeatedly executing the instrumented program. Although MCC guarantees to find
all deadlocks and assertion violations for a given input, its overhead is high because it
tries to explore all possible interleavings of a multicore application. On the other hand,
our approach is orthogonal to the DPOR approach and does not suffer the overhead in
DPOR.

Fault localization helps us to identify exactly where the bugs are in programs. In
Elwakil and Yang [2010], a debugging tool used for detecting assertion failures that
are caused by (connectionless) message races is presented. MCAPI guarantees that the
messages sent from the same endpoint to a specific endpoint will arrive at the destina-
tion according to their transmission order. On the other hand, there is no rule about the
arrival order of concurrent messages from different endpoints. Two or more messages
can race for arriving at the same destination and in some cases, this nondeterminism
can lead to assertion failures. Localization of the fault by finding the specific order
of message arrivals that causes the assertion failure is as important as detecting the
assertion failure. The tool presented in Elwakil and Yang [2010] symbolically explores
all possible race conditions and then, by using an efficient SMT formula, it is decided
whether there exists a particular order of message arrivals that results in an error
state. Symbolic Debugger for MCAPI Applications (CRI) presented in Elwakil et al.
[2010] is similar to the work in Elwakil and Yang [2010]. CRI instruments the MCAPI
application source-code to be able to generate an execution trace of the application. The
instrumented source-code is compiled and run, and then a trace is generated. The trace
is encoded as an SMT formula where the formula is satisfiable, if there is a reachable
error state. The last step in CRI is solving the formula by an SMT solver. CRI only
supports connectionless message sends and receives. CRI finds violations of Boolean
assertions but cannot find violations of temporal assertions. CRI explores all possible
orders of message arrivals for a given input of an MCAPI application while deciding
the satisfiability of a formula. We develop efficient race condition detection algorithms
as well as verify temporal assertions.

Predictive Runtime Verification (PRV) offers a simple and efficient alternative over
model checking the entire program with respect to the given specification. The PRV
technique in Sen and Garg [2007] and Sen et al. [2008] is a dynamic technique where
partial order traces are used instead of total order traces to model an execution and
checks whether a temporal property is satisfied or violated on that partial order trace.
The PRV technique has been shown to detect actual and potential errors in Java as
well as in SystemC. The PRV technique catches some of the errors not exhibited in
the observed total order trace, but only those that are in the partial order trace ob-
tained from the observed total order trace. An example PRV tool, named BTV, is shown
in Ogale and Garg [2007]. Our approach is similar to the work in Sen [2011] where
predictive assertion verification and mutation testing have been applied to SystemC
designs, which are used for hardware/software codesign. By contrast, our article tar-
gets message passing multicore applications and specifically applications written using
the MCAPI standard. In this work, we present predictive deadlock and race condition
detection algorithms that do not exist in Sen [2011]. We have also developed a new mu-
tation library for message passing applications. Novel efficient vector clock algorithms
that improve scalability are also new contributions of this article.

PRV is similar to Dynamic Partial Order Reduction (DPOR) in that both techniques
are simulation based and apply a single input to the design, whereas in model checking
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all possible input combinations are applied. However, our work is also different from
DPOR. In DPOR, the order of dependent transitions in the generated simulation trace
is changed leading to the generation of new simulation traces until all possible changes
are exhausted. This may lead to the state explosion problem for complex designs.
However, we generate a partial order trace from a single simulation trace and do not
modify the order of dependent transitions in order to generate new traces. DPOR is
orthogonal to our approach and can be used in conjunction, where DPOR can provide all
partial order traces for a given input, and our work can check the temporal properties
on each partial order trace efficiently.

Checking concurrency problems such as deadlock and race conditions lends itself
to algorithms with better performance than assertion checking. MCAPI is similar to
the MPI standard although their target platforms are different. Hence, deadlock and
race condition detection techniques that are developed for MPI can potentially also be
applied to MCAPI applications.

In Hilbrich et al. [2009], the authors present a general deadlock model for MPI. They
use the AND⊕OR Wait For Graph (WFG) while detecting deadlocks in MPI programs.
Many MPI calls simply create a dependence on another and task dependencies must
be met before the issuing task can proceed. For example, a message send call causes
the task to wait for another task to post a matching receive. While all dependencies
must be satisfied for the process to continue and a cycle in the WFG is a necessary and
sufficient deadlock criterion for the AND model, a process may continue when any one
of a set of dependencies is satisfied under the OR model. The reason why they use the
AND⊕OR model instead of the AND or the OR model is that the AND model is sufficient
for handling receive functions but not wildcard receive functions and the OR model is
necessary for wildcard receives. Although the sender of a receive is specified for many
cases, wildcard receive does not specify the sender and can be satisfied by a matching
send from any task. Their detection mechanism does not detect all possible deadlocks
because this consumes time and decreases performance. Instead of analyzing all po-
tential matchings of wildcard receives, they only consider the matchings that actually
occur. This approach reduces the overhead and decreases the number of false positives.

Message races can cause nondeterministic executions of concurrent programs. Park
et al. [2007] present the MPIRace-Check tool, which is an on-the-fly detection tool for
MPI programs written in C. MPIRace-Check finds all race conditions between mes-
sage sends while the program is executed by checking the concurrent communication
events between processes. They use vector clocks to determine the concurrency rela-
tion between events. The slowdown of MPIRace-Check is 26% for 10000 send/receive
operations and 35% for the worst case. Our race condition detection is similar to this
work but we have developed higher-performance techniques.

In Sharma et al. [2007], the authors conduct a survey of MPI debugging tools. For
instance, MARMOT [Krammer et al. 2004] uses a time-out mechanism to conclude
the presence of a deadlock and cannot detect even simple deadlocks. In a time-out
mechanism, a blocking function call waits until a specified time and if this function
is still waiting, a deadlock is reported. While MPI-SPIN, which is a model checker
based on SPIN, is reliable and expandable, this suffers the state explosion problem.
UMPIRE [Vetter and de Supinski 2000] dynamically analyzes MPI programming errors
using a profiling interface. UMPIRE uses both a time-out mechanism and dependency
graphs for detecting deadlocks. MARMOT and UMPIRE are purely runtime checking
tools. On the other hand, Intel Message Checker (IMC) [Desouza et al. 2005] collects
information for each MPI call in a trace file during execution and analyzes this file
after the execution.

Coverage techniques have been developed in the literature. These include structural
coverage, code coverage (lines, branches), and functional coverage. We are interested
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in fault-insertion-based coverage. This allows to measure the impact of faults in the
system. Mutation testing is a fault-based software testing technique that provides a
testing criterion that can be used to measure the effectiveness of a test set in terms of its
ability to detect faults. Some mutation-based coverage metrics have been developed for
applications written in different languages such as Java, C, and SystemC [Bradbury
et al. 2006; Sen and Abadir 2010]. In Bradbury et al. [2006], the authors present a
set of concurrent mutation operators after giving bug patterns for concurrent Java
applications. These bug patterns are based on common mistakes that can be made by
programmers in practice. Sen and Abadir [2010] developed a fault model for concurrent
SystemC designs, where they define mutation operators for concurrent functions in
SystemC. Our approach is similar to this approach but we developed a new mutation
library that did not exist before for message passing programs.

3. MODEL

3.1. Background on Multicore Communication API (MCAPI)

Multicore Communication API (MCAPI) [MCA 2011] aims to supply communication
and synchronization between closely distributed embedded systems. MCAPI is a mes-
sage passing API like MPI but its target system and functionalities differ from MPI.
MCAPI provides low latency and low overhead for heterogeneous platforms (in terms
of types and number of cores, different operating systems, and physical transports).
Shared memory used by multicore systems can lead to nondeterminism. Message pass-
ing reduces the potential for nondeterminism by explicit messages for communication.
MCAPI has three fundamental communication types: connectionless datagrams for
messages; connection-oriented, unidirectional, FIFO packet streams for packet chan-
nels; and connection-oriented single-word unidirectional, FIFO packet streams for
scalar channels. Channels require opening before communication and closing after
communication completes. Basic elements of the MCAPI topology are nodes, which can
be a process, a thread, a hardware accelerator, etc. Communication occurs between
endpoints, which are termination points and created on nodes on each side of the
communication. More than one endpoint can be set up on each node and endpoints
are identified with unique identification numbers. Both connectionless and connection-
oriented communications take place between endpoints.

Connectionless messages can be sent or received in either blocking or nonblocking
fashion. The blocking send function (mcapi msg send) in our MCAPI library will block
if there is insufficient memory space available at the system buffer. When sufficient
memory space becomes available, the function will complete. Current implementation
of MCAPI library by the Multicore Association does not support this kind of blocking
send function, instead it returns immediately with an error even if there is no memory
space. This is similar to the nonblocking send function (mcapi msg send i), which re-
turns immediately even if there is no memory space available. MCAPI stores messages
in a queue at the receiver endpoint and the size of the queue can be configured accord-
ing to the user’s demands. The blocking receive function (mcapi msg recv) returns once
a message is available in the endpoint’s message queue, whereas a nonblocking receive
function (mcapi msg recv i) returns immediately even if there is no message available.
Message receive functions do not specify the sender endpoint and can match any of the
senders depending on the execution schedule. These are also called wildcard receives.
Packet channels use connection-oriented communication. They use FIFO order and
they can have blocking or nonblocking send and receive functions. Scalar channels are
aimed at systems that have hardware support for sending small amounts of data (for
example, a hardware FIFO) and scalar channels have only blocking functions due to
high performance.
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Table I. Some MCAPI Functions

Type MCAPI Function Description

General mcapi initialize Initializes an MCAPI node
mcapi finalize Finalizes an MCAPI node

Endpoints mcapi endpoint create Creates an endpoint
mcapi endpoint get
mcapi endpoint get i

Obtains the endpoint associated with a given tuple in
blocking/non-blocking fashion

Messages mcapi msg send
mcapi msg send i

Sends a blocking/non-blocking (connectionless) message
from a send endpoint to a receive endpoint.

mcapi msg recv
mcapi msg recv i

Receives in blocking/non-blocking fashion a
(connectionless) message from a receive endpoint

Packet
Channels

mcapi pktchan connect i Connects send and receive endpoints
mcapi pktchan recv open i Creates a typed and directional, local representation of

the channel on the sender side
mcapi pktchan send open i Creates a typed and directional, local representation of

the channel on the receiver side
mcapi pktchan send
mcapi pktchan send i

Sends a blocking/non-blocking data packet on a
(connected) channel

mcapi pktchan recv
mcapi pktchan recv i

Receives in blocking/non-blocking fashion a data packet
on a (connected) channel

mcapi pktchan release Releases a packet buffer obtained from a
mcapi pktchan recv()

mcapi pktchan recv close i Closes the receive side of the channel
mcapi pktchan send close i Closes the send side of the channel

Scalar
Channels

mcapi sclchan send uint64 Sends a 64-bit scalar on a (connected) channel
mcapi sclchan recv uint64 Receives a 64-bit scalar on a (connected) channel

Non-
blocking
operations

mcapi test Tests if a non-blocking operation has completed
mcapi wait Waits for a non-blocking operation to complete
mcapi wait any Waits for any non-blocking operation in a list to complete
mcapi cancel Cancels an outstanding non-blocking operation

For nonblocking function requests, the user program receives a handle for each
request and can then use the nonblocking management functions to test if the request
has completed with mcapi test function, or wait for it either singularly with mcapi wait
or wait for any one of requests in an array of requests with the mcapi wait any function.
The user program can also cancel nonblocking function calls using the mcapi cancel
function.

MCAPI provides sufficient number of functionalities while hiding or minimizing
communication overhead to get better performance. Table I contains a list of MCAPI
functions. Apart from MCAPI library implementation by Multicore Association, Open-
MCAPI [Open MCAPI 2011], created by Mentor Graphics, is also an open-source im-
plementation of the MCAPI standard.

Both MCAPI and MPI have similar functions for exchanging messages. For ex-
ample, the following function pairs (mpi function – mcapi function) have similar
behaviors: mpi send – mcapi msg send, mpi isend – mcapi msg send i, mpi recv –
mcapi msg recv, and mpi irecv – mcapi msg recv i.

We show an example multicore program that uses the MCAPI library in Fig-
ure 1. The program has two concurrent threads (Thread1 and Thread2) communi-
cating through connectionless nonblocking message exchange. Each thread initial-
izes the MCAPI environment and then creates an endpoint to communicate with the
other thread using mcapi endpoint create. Thread1 gets Thread2’s endpoint by using
the mcapi endpoint get function. Thread1 then sends a message to Thread2 and fi-
nalizes the MCAPI environment before exiting. Thread2 receives the message from
Thread1 using the nonblocking message receive function. In concurrent programs,
the order in which threads are scheduled is nondeterministic. If Thread1 executes
mcapi msg send i before Thread2 executes mcapi msg recv i then Thread2 receives
the message from Thread1. However, if Thread2 executes mcapi msg recv i before
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#define DOMAIN 1
#define NODE1 1
#define NODE2 2
#define PORTNUM 100
#define NUMTHREADS 2

void∗ run thread 1 (void ∗ t ) {
. . .
mcapi boolean t cs1 = MCAPI TRUE;
mcap i in i t i a l i z e (DOMAIN,NODE1,&parms,&version ,&status ) ;

ep1 = mcapi endpoint create (PORTNUM,&status ) ; /∗ e1 ∗/
ep2 = mcapi endpoint get (DOMAIN,NODE2,PORTNUM,MCA INFINITE,&status ) ; /∗e2∗/
cs1 = MCAPI FALSE; /∗ e3 ∗/
mcapi msg send i ( ep1 , ep2 , ‘ ‘MCAPI ’ ’ , s ize , pr ior i ty ,&request ,&status ) ; /∗e4∗/

mcapi f inal ize (&status ) ;
. . .

}

void∗ run thread 2 (void ∗ t ) {
. . .
buf fer = ‘ ‘ ’ ’ ;
mcapi boolean t cs2 = MCAPI FALSE;
mcap i in i t i a l i z e (DOMAIN,NODE2,&parms,&version ,&status ) ;

ep2 = mcapi endpoint create (PORTNUM,&status ) ; /∗ f1 ∗/
mcapi msg recv i ( ep2 , buffer ,BUFF SIZE,&request ,&status ) ;
. . .
cs2 = MCAPI TRUE; /∗ f2 ∗/
. . .
mcapi wait(&request ,& recv s ize ,MCA INFINITE,&status ) ; /∗ f3 ∗/

mcapi f inal ize (&status ) ;
. . .

}

int main ( ) {
. . .
/∗ run a l l threads ∗/
pthread create(&threads [ 0 ] ,NULL, run thread 1 ,NULL) ;
pthread create(&threads [ 1 ] ,NULL, run thread 2 ,NULL) ;
/∗ wait for a l l threads ∗/
for ( t = 0 ; t < NUMTHREADS; t ++) {

pthread join ( threads [ t ] ,NULL) ;
}
. . .

}

Fig. 1. Example multicore program using MCAPI.

Thread1 executes mcapi msg send i, Thread2 returns from mcapi msg recv i without
receiving a message since there is no message available in its receive queue. Thread2
then waits until the message is received by using the mcapi wait function.

3.2. Trace Model

A multicore system consists of a collection of distinct endpoints which communicate
with one another by message exchanges or shared memory. We consider a multi-
core system composed of a collection of sequential endpoints {ep1, ep2, . . ., epn}, and an
MCAPI library capable of implementing communication between pairs of endpoints for
message exchanges. Each endpoint epi has a local state, which is determined by the
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Fig. 2. A partial order trace of the example in Figure 1.

Fig. 3. State space of the partial order trace in Figure 2.

values of its local variables and events that are generated during an execution of a mul-
ticore program. Some example events are message send/receive and shared variable
read/write. These events change the state of the multicore program.

An execution trace can be viewed as a partially ordered set of events called a partial
order trace and we represent a partial order trace as a directed graph with vertices
as the set of events and a set of edges. Figure 2 shows an example partial order
trace of the example in Figure 1, when Thread2 executes mcapi msg recv i before
Thread1 executes mcapi msg send i. The dots (vertices) are events and the arrows
(edges) are dependencies. This partial order trace contains two endpoints (endpoint1
and endpoint2), where endpoint1 has four events which are e1, e2, e3, and e4 and
endpoint2 has three events which are f1, f2, and f3. A global state is the state of the
system and given by the set of events that have been executed from the beginning
of the system to the current state by all endpoints. For example, {e1, e2, f1, f2} is a
global state of the partial order trace in Figure 2. We define a consistent global state
on directed graphs as a subset of vertices such that, if a vertex is in the subset, then
all incoming neighbors are also in the subset. In Figure 2, the global state {e1, e2} is
not a consistent global state because it includes {e2} but not { f1}. However, {e1, f1} and
{ f1, f2} are consistent global states. Figure 3 shows the state space of the partial order
trace in Figure 2 that contains all consistent global states of the trace starting from
the initial state {}, and ending at the final state {e1, e2, e3, e4, f1, f2, f3} moving one
event at a time. This model allows us to capture concurrency via interleaving. That is,
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from a given state we can obtain new states by the addition of concurrent events. For
example, from state {e1, f1} we can reach {e1, f1, f2} or {e1, e2, f1}, since both e2 and f2
are concurrent as we will explain later.

3.3. Vector Clocks

There exist several techniques for tracking the concurrency information or the depen-
dencies between events. Lamport’s happened-before relation [Lamport 1978], which is
a partial order relation, is used for capturing ordering between concurrent events. The
happened-before relation (→) is formally defined as the least-strict partial order on
events such that:

—if events s and t occur on the same endpoint, s → t if the occurrence of event s
preceded the occurrence of event t;

—if event s is the sending of a message and event t is the corresponding receipt of that
message, s → t.

We use vector clocks [Fidge 1991; Mattern 1989] to capture the happened-before rela-
tionship between events in a concurrent system. We associate a vector clock with every
event. A vector clock (v) is an array of n nonnegative integers (one entry per endpoint),
where vi[i] is the local clock for endpoint epi and for i �= j, vi[ j] represents endpoint
epi ’s latest knowledge of endpoint epj ’s local clock.

For several applications such as predictive assertion verification, we need to track
dependencies between only the relevant events. Relevant events are a subset of all
the events generated during the execution, and we describe them in detail shortly for
message passing and shared memory systems.

Algorithm 1 shows the details of the operations on vector clocks for both message
passing and shared variables. The vector clock algorithm presented in Algorithm 1
is described by the initial conditions and the actions taken for each event type. For
message passing systems, relevant events are endpoint create, get, message send,
receive, test, wait, and cancel functions. Note that packet and scalar send, receive
operations are also relevant events. Each endpoint sends its vector clock with outgoing
messages. A message receiving endpoint receives the vector clock of the sender and
updates its vector clock by taking a component-wise maximum with the vector clock
included in the message.

For shared memory systems, the only relevant event is a shared variable write,
where the variable is used in the property to be checked. In multicore programs, tasks
(processes, threads, etc.) can communicate via a set of shared variables. Some variable
updates can causally depend on others. For instance, if a task writes a shared vari-
able x and then another task writes y due to a statement y = x + 2, then the update
of y causally depends upon the update of x. We only consider read-write, write-read,
and write-write causalities while updating vector clocks of shared variables, because
the order of multiple consecutive reads of the same variable is not important. We
have different vector clocks for writes and reads because changing the order of con-
secutive reads does not change the actual behavior of the program, whereas changing
the order of write with other operations results in different behavior. We can extend
the happened-before relation to read and write events of shared variables as in Rosu
and Sen [2007]. For this, we use two additional n-dimensional vector clocks for each
shared variable x. These vector clocks are called access and write vector clocks and we
denote the access vector clock of shared variable x by x.a and the write vector clock
by x.w.
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ALGORITHM 1: VectorClock
Input: an event s generated by endpoint epj
Output: updated vector clock v j

1: endpoint create event ():
2: for i = 1 to n do
3: v j[i] := 0;
4: end for
5: v j[ j] := 1;
6: endpoint get event (endpoint epk):
7: reserve request r;
8: let r.ep := epk, r.type := get;
9: send event (endpoint epj , endpoint epk, message m):
10: v j[ j] := v j[ j] + 1;
11: reserve request r and buffer b;
12: let r.b := b, r.type := send, r.completed := true;
13: store m and v j in b as b.m and b.vc, respectively;
14: add b to the receive queue of epk;
15: receive event (endpoint epj):
16: if the receive queue of epj is not empty then
17: receive the first request r from the receive queue of epj ;
18: r.completed = true;
19: else
20: reserve request r;
21: let r.type := recv, r.completed := f alse;
22: end if
23: test event (request r):
24: if r.type = receive and r.completed = true then
25: receive buffer b of r;
26: v j := componentwiseMax(v j , b.vc);
27: end if
28: if r.type = get and endpoint r.ep exists then
29: r.completed = true;
30: v j := componentwiseMax(v j , vr .ep);
31: end if
32: v j[ j] := v j[ j] + 1;
33: wait event (request r, timeout t):
34: timeout lt = 0;
35: while r.completed = f alse and lt < t do
36: call test event (r);
37: lt := lt + 1;
38: end while
39: shared variable read event (variable x):
40: v j := componentwiseMax(v j , x.w);
41: x.a := componentwiseMax(x.a, v j);
42: shared variable write event (variable x):
43: v j := componentwiseMax(x.a, v j);
44: x.a := v j and x.w := x.a;
45: if x is relevant to the property then
46: v j[ j] := v j[ j] + 1;
47: end if
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3.4. Efficient Vector Clocks for MCAPI

We now show some properties of Algorithm 1. The following relations are defined to
compare two vector clocks, s.v and t.v, where they are the vector clocks assigned to the
events s and t, respectively.

—s.v = t.v ⇔ ∀x : s.v[x] = t.v[x]
—s.v ≤ t.v ⇔ ∀x : s.v[x] ≤ t.v[x]
—s.v < t.v ⇔ s.v ≤ t.v ∧ ∃x : s.v[x] < t.v[x]

We can define happened-before and concurrency relations between events by using
vector clocks of the events as follows.

—s → t ⇔ s.v < t.v
—s||t ⇔ (¬(s → t) ∧ ¬(t → s)) (Concurrent, CC)

The last relation defined before states that events s the t are concurrent (or causally
independent). In addition, if the endpoint at which an event occurred is known, the
test to compare two vector clocks can be simplified and allows us to obtain performance
gains. If events s and t occurred at endpoints epi and epj and are assigned vector clocks
s.v and t.v, respectively, then

—s → t ⇔ s.v[i] ≤ t.v[i] (Efficient Happened Before, EHB)
—s||t ⇔ s.v[i] > t.v[i] ∧ s.v[ j] < t.v[ j] (Efficient Concurrency, ECC).

We next show that the relations given earlier hold for our vector clock algorithm.

LEMMA 3.1. Let s and t be events on endpoints epi and epj with vector clocks s.v and
t.v, respectively and s �= t. Then, ¬(s → t) ⇒ t.v[i] < s.v[i].

PROOF. We know that ¬(s → t). If i = j, then it follows that t → s because the local
component of the vector clock is increased after each relevant event, hence t.v[i] < s.v[i].
If i �= j, then we have two cases. The first case is t → s. In this case, s.v[i], which is the
local clock of epi, is increased in s and we have t.v[i] < s.v[i]. The second case is s||t.
We know that every endpoint has the most up-to-date knowledge of its local clock for
concurrent events s and t and it follows that t.v[i] < s.v[i].

THEOREM 3.2. Let s and t be events on endpoints epi and epj with vector clocks s.v
and t.v, respectively. Then, s → t if and only if (s.v[i] ≤ t.v[i]).

PROOF. We first show that (s → t) implies that (s.v[i] ≤ t.v[i]). If s → t, then there
is a message path or shared variable read/write dependency path from s to t. Since
every endpoint updates its vector clock on receipt of a message or on reading/writing
a shared variable and this update is done by taking the component-wise maximum,
we know the following holds: ∀k : s.v[k] ≤ t.v[k]. Thus (s → t) ⇒ (s.v[i] ≤ t.v[i]). The
converse, s.v[i] ≤ t.v[i] ⇒ (s → t), follows from Lemma 3.1.

Figure 4 shows our particular implementation of vector clocks in the MCAPI li-
brary for the mcapi msg send i function. This function begins with locking the MCAPI
database, which is shared between tasks, and ends with unlocking the database. All
MCAPI functions need locking/unlocking operations since the database is in shared
memory and accessing shared memory in multicore systems without a lock mechanism
is not safe. The mcapi msg send i function reserves a request and then checks the
validity of the sender and receiver endpoints. If the request reservation is successful
and endpoints are valid, then a free MCAPI buffer is found. Next, the sender endpoint
increments its local clock and stores the message, its vector clock, and the clock index
in the buffer. After preparing the buffer, the buffer is added to the receive queue of the
receiver endpoint.
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/∗ our vec tor c lock extension for endpoints ∗/
struct {
uint16 t c lock index ;
uint16 t vec tor c l o ck [MCAPI VECTOR CLOCK SIZE ] ;

} vec to r c l o ck ex t ;

void mcapi trans msg send i ( mcapi endpoint t send ep ,
mcapi endpoint t receive ep , const char∗ buffer ,
s i z e t buf fer s i ze , mcapi request t∗ request , mcapi status t∗ mcapi status )

{
struct vec to r c l o ck ex t ∗ vc ext ;
. . .
/∗ lock the database ∗/
assert ( mcapi trans access database pre ( global rwl ,MCAPI TRUE) ) ;

/∗ make sure we have an available request entry ∗/
i f ( mcapi trans reserve request have lock (&r ) ) {
. . .
assert ( mcapi trans decode handle have lock ( send ep ,&sd,&sn,&se ) ) ;
assert ( mcapi trans decode handle have lock ( receive ep ,&rd ,&rn,&re ) ) ;
. . .

/∗ f ind a f r e e mcapi buf f er ∗/
db buff = &mcapi db−>buf fers [ i ] ; /∗ i . th buf fer i s avai lable∗/

/∗ increment c lock ∗/
vc ext = &mcapi db−>domains [ sd ] . nodes [ sn ] . node d . endpoints [ se ] . vc ext ;
vc ext−>vec tor c l o ck [ vc ext−>c lock index ] += 1;

/∗ copy the buf fer parm into a mcapi buf f er ∗/
memcpy ( db buff−>buff , buffer , bu f f e r s i z e ) ;

/∗ s t o r e endpoint in mcapi buf f er ∗/
db buff−>sender clock index = vc ext−>c lock index ;

/∗ s t o r e vec tor c lock in mcapi buf f er ∗/
memcpy( db buff−>vector c lock , vc ext−>vector c lock ,
mcapi db−>v e r i f i e r e x t . num clocks ∗ ( sizeof ( uint16 t ) ) ) ;
. . .
assert ( setup request have lock(&receive ep , request , mcapi status ,
completed , buf fer s i ze ,NULL,SEND,0 ,0 ,0 , r ) ) ;
/∗ the non−blocking request succeeded ∗/
. . .

}
. . .
/∗ unlock the database ∗/
assert ( mcapi trans access database post ( global rwl ,MCAPI TRUE) ) ;

}

Fig. 4. Vector clock implementation in mcapi msg send i function.

4. PREDICTIVE VERIFICATION

In this section, we describe our predictive verification algorithms. Our algorithms are
predictive because we not only find actual errors but potential errors that may result
from an alternative execution of endpoints in the system. Also, our goal is to have a
solution with high performance. We have two types of verification, assertion verification
and deadlock/race condition detection. Given a multicore program and a property, our
automated verification flow consists of the following steps, where we can turn on and
off each type of verification or use them in conjunction.

(1) The property is read, and the variables are found.
(2) Tracing functions for relevant variables and shared variables are automatically

added to the program.
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Fig. 5. Overview of predictive verification tool architecture.

(3) The instrumented program is compiled and executed with our MCAPI Verification
Library, generating a partial order trace.

(4) The deadlocks and race conditions are detected during execution of the instru-
mented program.

(5) The resulting partial order trace and the property are passed to the BTV verifier
tool, which determines whether the property is satisfied or not.

Our technique records MCAPI calls into a trace file and then we use this information
to check the property given by the user. We not only detect actual errors but also
potential errors with this technique. Our technique dynamically collects information
about the communication and checks if deadlocks or race conditions exist. We handle
both MCAPI connectionless and connection-oriented communication functions since
both connectionless and connection-oriented functions create dependencies between
endpoints. In addition to the communication functions, we handle endpoint operations,
channel open/close/connect operations, and nonblocking operations that include wait,
test, and cancel functions. In multicore programs using MCAPI, if a corresponding
receive is not called for a send, we call such a send an unmatched send and if a
corresponding send is not called for a receive, we call such a receive an unmatched
receive. We detect unmatched sends, unmatched receives, and unclosed channels, as
well.

The overall structure of our MCAPI Predictive Verification Tool (MPVT) is shown
in Figure 5. The tool consists of 3 main modules: dependency tracker, analyzer, and
checker. The dependency tracker module instruments the multicore user program in or-
der to generate a partial order trace. The checker module dynamically checks deadlocks
and race conditions and the analyzer module determines if the property is satisfied or
not.

4.1. Instrumentation for Predictive Verification

The first step in predictive verification flow is instrumenting the multicore program.
The dependency tracker module generates the execution trace of an MCAPI user pro-
gram. We use vector clocks to obtain a partial order representation of traces. The partial
order execution trace contains all states of endpoints and each state contains the values
of variables relevant to the property.

For instrumenting the MCAPI library, instead of writing wrapper functions, we chose
to modify the library functions and developed an MCAPI Verification Library. The han-
dling of MCAPI function calls in wrapper functions can increase the execution time
of the user program. In addition, current MCAPI implementation from the Multicore
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Association uses shared memory to implement the MCAPI library, which may lead to
race conditions in wrapper functions and preventing these using locks reduces perfor-
mance. We keep the overhead low while making the solution robust. However, a wrap-
per function would be more beneficial for incorporating our verification algorithms to
new MCAPI library implementations.

For instrumenting an MCAPI user program, the dependency tracker module auto-
matically inserts code at appropriate locations in the user program to be monitored. The
instrumented program outputs the values of variables relevant to the property given
by the user. The instrumented program also updates vector clocks of endpoints for each
relevant event according to the algorithm given in Algorithm 1. This is accomplished in
the MCAPI Verification Library. In order to update vector clocks of shared variables, we
enforce shared variable reads and writes via our verification library functions. We used
shared variable instrumentation part of Inspect [Yang 2009] for instrumenting the user
program. For each read/write access on variables that are shared among endpoints, In-
spect intercepts the operations by adding a wrapper around it using C Intermediate
Language [CIL 2011]. Upon running the instrumented multicore user program, a log
file is generated. This log file consists of a sequence of events that a thread or process on
which an endpoint is created goes through. Each event contains the values of variables
relevant to the property being verified and a vector clock. Finally, this log file is used
to obtain a partial order representation of the execution trace.

4.2. Predictive Assertion Verification

After the instrumented multicore program executes and generates a partial order trace,
the analyzer module uses the Basis-based Trace Verifier (BTV) tool [Ogale and Garg
2007], to decide whether a given property is satisfied or not. BTV, which is an offline
trace verifier, detects all temporal properties that can be expressed in Basic Temporal
Logic (BTL). BTV can detect actual and potential errors due to a slicing technique
that we developed earlier [Sen and Garg 2007]. A BTL property can have arbitrary
negations, disjunctions, conjunctions, and the temporal possibly (EF) and temporal
invariant (AG) operators. A property l in BTL is defined recursively as follows.

—∀l ∈ AP (AP is the set of atomic propositions)
—If p and q are BTL properties then the following are BTL properties, p ∨ q, p ∧

q,¬p, EF(p)

Notice that AG(p) can be represented in BTL as ¬EF(¬p). A few examples of BTL
properties are listed next.

—Violation of mutual exclusion: Two endpoints are in the critical section at the same
time. EF(critical1 ∧ critical2).

—Resettability: It is always possible to get to a reset state. AG(EF(restart)).
—All processes are never red concurrently at any future state and process0 has the

token: ¬EF(red0 ∧ red1 ∧ . . .) ∧ token0.
—It is possible to get to a state where started holds, but ready doesn’t: EF(started ∧

¬ready).
—Received message size is never larger than the maximum message size defined in

MCAPI: AG(¬(recv size > MCAPI MAX MSG SIZE)).
—It is possible to get to a state where there is no request available: EF(status ==

MCAPI ERR REQUEST LIMIT).

The core of the BTV technique is in computing a compact representation of states
containing exactly those global states that satisfy the property. BTV uses a k-slicing
algorithm while detecting temporal properties on a given partial order trace. The slice
of a trace with respect to a property is a subtrace that contains all of the global
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states of the trace that satisfy the property such that it is computed efficiently and
represented concisely [Sen and Garg 2007]. BTV can efficiently explore all possible
traces generated from a partial order trace using slicing and without reexecution and
without state space generation. BTV takes a partial order trace and a property and
works recursively. The main idea behind the slicing algorithm is adding additional
edges on the directed graph, which is the representation of the partial order trace.
While finding the slice of p, which is a local property of endpoint ep , for each vertex
that does not satisfy p, we add an additional edge to this vertex from the next vertex
on ep and obtain a new graph. Notice that adding these new edges removes the states
that do not satisfy p. Now, the states that do not satisfy p are not in consistent global
states of the new graph since they have incoming edges from their next vertices. When
the edge adding process completes, the directed graph output is the slice with respect
to p. The other cases use an edge addition approach as well. While other temporal
property detection techniques such as SPIN [Holzmann 1997] and JMPaX [Sen et al.
2005] have exponential-time complexity, BTV has polynomial-time complexity due to
the slicing technique and restricting the subset of temporal properties; the proofs can
be found in Sen and Garg [2007] and Ogale and Garg [2007]. This subset is useful to
represent common concurrency properties.

4.2.1. Example. Figure 2 shows the partial order trace of an execution obtained
by running the instrumented version of the example in Figure 1. This partial or-
der trace is obtained for the observed execution schedule where Thread2 executes
mcapi msg recv i before Thread1 executes mcapi msg send i. The property to be
checked is the mutual exclusion property, whether both endpoints can be in the critical
section at the same time, that is, EF(cs1 == MCAPI TRUE ∧ cs2 == MCAPI TRUE).
Initially, vector clocks are all zeros and variable cs1 is MCAPI TRUE and vari-
able cs2 is MCAPI FALSE. For the schedule, when Thread2 execution is followed
by Thread1 execution, we have the following relevant operations. Relevant opera-
tions on the first endpoint are mcapi endpoint create (e1), mcapi endpoint get (e2),
cs1 = MCAPI FALSE (e3), mcapi msg send i (e4). Relevant operations on the second
endpoint are mcapi endpoint create ( f1), cs2 = MCAPI TRUE ( f2), and mcapi wait
( f3). Notice that, for the given execution schedule, the mcapi msg recv i event is not
in the relevant operations list of endpoint2. This is because since this is an unsuc-
cessful function call which means that there is no message available in the receive
queue and the function call returns immediately without creating any dependency.
Writes to cs1 and cs2 variables generate events since these variables are relevant to
the property. We assume that in the observed execution schedule the execution order
of endpoints is as follows. {}, {e1}, {e1, f1}, {e1, e2, f1}, {e1, e2, e3, f1}, {e1, e2, e3, e4, f1},
{e1, e2, e3, e4, f1, f2}, {e1, e2, e3, e4, f1, f2, f3}. In Figure 2, events are also labeled with
vector clocks and the values of local properties which are true(t) when the local prop-
erty is satisfied or f alse( f ), otherwise. Local properties of endpoint1 and endpoint2 are
(cs1 == MCAPI TRUE) and (cs2 == MCAPI TRUE), respectively. The partial order
trace is obtained from the observed execution schedule that has vector clocks associ-
ated with events. Figure 3 shows the state space of the partial order trace in Figure
2. When we use BTV, we find that there exists a state that satisfies the property. In
fact, two states, {e1, f1, f2}, {e1, e2, f1, f2}, represented as bold in Figure 3, satisfy the
property. However, the observed execution schedule, which corresponds to a sequence
of states in the state space that does not go through any bold state, does not satisfy the
property. Hence, the error can be missed in the observed schedule but due to partial
order traces we can capture this error.

It is important that MCAPI functions behave correctly and we do not force scheduler
behaving in a specific way while checking a property. For instance, MCC [Sharma
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et al. 2009b] forces a task to wait until a nonblocking send matches with a receive
or until a nonblocking receive matches with a send. Although the MCAPI standard
allows the task to continue after a nonblocking operation, MCC forces the scheduler
to behave differently leading to a reduced state space and potentially false positives.
For instance, MCC inserts a wait after the mcapi msg recv i function, which makes the
aforesaid property unsatisfied, and misses the error. However, our algorithm finds the
error.

4.3. Predictive Deadlock and Predictive Race Condition Detection

The predictive verification technique is very effective in finding bugs in concurrent
programs. However, it requires user-defined properties. On the other hand, deadlocks
and race conditions are undesirable for multicore programs and they can be detected
automatically without any user-defined properties. We say that a deadlock occurs in a
multicore program if two or more endpoints are each waiting for the other to complete
before proceeding. If a deadlock occurs for an observed execution, we call it an actual
deadlock and if it does not occur for an observed execution but it can potentially occur
for any of the other schedules, we call it a potential deadlock. We say that a race
condition occurs in a multicore program if two or mode endpoints send a message to
the same endpoint concurrently. In this case, the receiver endpoint can receive any of
the sent messages and the received message can change the execution behavior. Note
that all connectionless message receive functions in MCAPI are wildcard receives so
multicore programs using MCAPI can potentially include many race conditions. In this
work, we detect both actual and potential deadlocks and race conditions.

The checker module of MPVT contains our deadlock and race condition detection
algorithms that are shown in Algorithm 2. For deadlock detection, we use a graph-based
detection technique in order to detect actual and potential deadlocks. We dynamically
build a relevant event dependency graph, which uses the AND model, and detects
deadlocks. In the AND model, a vertex represents an endpoint and an edge represents
the dependency between two endpoints. A cycle is sufficient to declare a deadlock with
this model. When a new endpoint is created, our checker module adds a new vertex to
the graph. We add a new edge from a sender endpoint to a receiver endpoint for each
blocking message and packet send operation and we remove this edge when the receiver
successfully receives the message or the packet. After adding a new edge, a deadlock
is detected if any cycles are found in the graph and it is reported with endpoints that
are in the cycles. An endpoint is allowed to make several send function calls, and it is
blocked when the receive queue of the receiver is full. When we detect a deadlock, we
call it an actual deadlock, if all the receive queues of endpoints, which are in a detected
cycle, are full. If there is at least one endpoint with no full receive queue, we call it
a potential deadlock. In potential deadlocks, it is possible that the receive queues of
all endpoints may become full for other execution orders of send/receive calls. If the
receive queues of all endpoints are never full for all execution orders of send/receive
calls, we detect a false deadlock.

For race condition detection, we use a concurrency check mechanism in order to
detect race conditions between message sends. We handle race condition detection in
receive functions as seen in Algorithm 2. If there exists a previous receive operation
on the receiver endpoint, we check the happened-before relation between the last send
operation s1 that matched with previous receive r1 and the current send operation
s2 that matches with the current receive operation r2 by using their vector clocks. If
s1 and s2 are concurrent, we report a race condition. We later show that this can be
more efficiently accomplished by checking whether s1 did not happen before s2. After
checking the race condition, we store the current vector clock of the send operation in
order to use it in next receive operation on the receiver endpoint. This mechanism is
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ALGORITHM 2: DeadlockAndRaceCondDetection
Input: an event s generated by endpoint epj
Output: list of potential deadlocks and race conditions

1: endpoint create event ():
2: add vertex j to Dependency Graph (DG);

3: send event (endpoint epj , endpoint epk, message m):
4: add a new edge e from sender epj to receiver epk in DG;
5: call check deadlock(e);
6: reserve buffer b;
7: store m in b;
8: store v j and j in b as b.vc and b.ci, respectively;
9: add b to the receive queue of epk;

10: receive event (endpoint epj):
11: if the receive queue of epj is not empty then
12: receive the first buffer b from the receive queue of epj ;
13: call check race condition(b);
14: remove the edge from b.ci to epj in DG;
15: end if

16: check race condition(buffer b):
17: if lastsender exists then
18: if lastsender vc j[lastsender ci j] > b.vc[lastsender ci j] then
19: report race condition with receiver and senders;
20: end if
21: end if
22: lastsender vc j := b.vc;
23: lastsender ci j := b.ci;

24: check deadlock(edge e):
25: if e creates any cycles in DG then
26: report deadlocks with the corresponding endpoints;
27: end if

very efficient in detecting race conditions because we can decide the happened-before
relation by a single comparison.

We now prove that comparing single components of vector clocks is sufficient for
reporting race conditions. Current implementation of MCAPI library by the Multicore
Association guarantees that a receiver endpoint receives the messages in FIFO order
even if they are sent from different endpoints since the library uses shared memory
while exchanging messages. This system is a causally system defined as follows. Our
example in Figure 6 will clarify these mechanisms further.

Definition 4.1 (Causally Ordered). Let any two send events s1 and s2 from any end-
points to the same endpoint in a multicore system be related such that s1 happened
before s2. The corresponding receive events are r1 and r2, respectively. Then, the first
message is received before the second message. Formally, we have the following.

s1 → s2 ⇒ r1 → r2 (CO)

THEOREM 4.2. Let s1 and s2 be causally ordered send events such that s1 did not
happen before s2 and r1 and r2 are the corresponding receive events, respectively. If s1
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. . .
void∗ run thread 1 (void ∗ t ) {

. . .
ep1 = mcapi endpoint create (PORTNUM,&status ) ; /∗ e1 ∗/
/∗ get other endpoints : ep2 , ep3 ∗/
mcapi msg send ( ep1 , ep2 , ‘ ‘ msg12.1 ’ ’ ,msgSize , pr ior i ty ,&status ) ; /∗ e2 ∗/
mcapi msg send ( ep1 , ep3 , ‘ ‘ msg13.1 ’ ’ ,msgSize , pr ior i ty ,&status ) ; /∗ e3 ∗/
mcapi msg send ( ep1 , ep3 , ‘ ‘ msg13.2 ’ ’ ,msgSize , pr ior i ty ,&status ) ; /∗ e4 ∗/
. . .

}
void∗ run thread 2 (void ∗ t ) {

. . .
ep2 = mcapi endpoint create (PORTNUM,&status ) ; /∗ f1 ∗/
/∗ get other endpoints : ep3 ∗/
mcapi msg send ( ep2 , ep3 , ‘ ‘ msg23.1 ’ ’ ,msgSize , pr ior i ty ,&status ) ; /∗ f2 ∗/
mcapi msg recv ( ep2 , buffer ,BUFF SIZE,&recv s ize ,&status ) ; /∗ f3 ∗/
mcapi msg recv ( ep2 , buffer ,BUFF SIZE,&recv s ize ,&status ) ; /∗ f4 ∗/
. . .

}
void∗ run thread 3 (void ∗ t ) {

. . .
ep3 = mcapi endpoint create (PORTNUM,&status ) ; /∗ h1 ∗/
/∗ get other endpoints : ep2 ∗/
mcapi msg send ( ep3 , ep2 , ‘ ‘ msg32.1 ’ ’ ,msgSize , pr ior i ty ,&status ) ; /∗ h2 ∗/
mcapi msg recv ( ep3 , buffer ,BUFF SIZE,&recv s ize ,&status ) ; /∗ h3 ∗/
mcapi msg recv ( ep3 , buffer ,BUFF SIZE,&recv s ize ,&status ) ; /∗ h4 ∗/
mcapi msg recv ( ep3 , buffer ,BUFF SIZE,&recv s ize ,&status ) ; /∗ h5 ∗/
. . .

}
int main ( ) {

. . .
/∗ run a l l threads ∗/
/∗ wait for a l l threads ∗/
. . .

}

Fig. 6. Example multicore program for predictive deadlock and race condition detection.

did not occur before s2 then they are concurrent. Formally, (¬(s1 → s2) ∧ (r1 → r2)) ⇒
s1 || s2.

PROOF. We will use proof by contradiction. We assume that ¬(s1 → s2), r1 → r2 and
¬(s1||s2). Using CC we have that ¬((¬(s1 → s2)) ∧ (¬(s2 → s1))). Combining ¬((¬(s1 →
s2)) ∧ (¬(s2 → s1))) with ¬(s1 → s2) we have that (FALSE) ∨ ((s2 → s1) ∧ (¬(s1 → s2))).
Using CO this implies that (r2 → r1), whereas from the theorem we assume that
(r1 → r2). This leads to a contradiction.

4.3.1. Example. Figure 6 shows an example MCAPI user program which has a poten-
tial deadlock. The program has three threads and one endpoint for each thread. The
first endpoint sends a message to the second endpoint and then sends two other mes-
sages to the third endpoint. The second endpoint sends a message to the third endpoint
and then receives two messages. The third endpoint sends a message to the second
endpoint and then receives thread message from any endpoint. For this example, we
assumed that the receive queue size of an endpoint is 1. In other words, the receiver
endpoint can store only one incoming message and the second send operation to this
receiver endpoint is blocked until the receiver endpoint receives a message.

Our tool detects two race conditions during the execution of the multicore program
in Figure 6. Figure 7 shows the generated partial order trace that has three endpoints
ep1, ep2, and ep3. In the example, ep2 receives the first message ( f3) from ep3 (h2).
We do not check the race condition at this receive operation since there is no previous
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Fig. 7. Partial order trace of example in Figure 6.

Fig. 8. Relevant event dependency graph.

receive operation on this endpoint. ep2 receives the second message ( f4) from ep1 (e2).
Since there exists a previous receive operation on ep2, we check the happened-before
relation between the previous send operation (h2) and the current send operation (e2).
We find that there is no happened-before relation and report this situation as a race
condition. We detect a second race condition on ep3. When ep3 receives a message (h4)
from ep1 (e3), we detect a race condition by finding that there is no happened-before
relation between f2 and e3. When the third endpoint receives the second message (h5)
from ep1 (e4), we check for a race condition but it is clear that e3 happened before e4,
therefore we do not report this situation as a race condition.

Figure 8 shows the relevant event dependency graph generated by the execution
of the multicore program in Figure 6. Our deadlock detection mechanism runs dy-
namically and adds and removes edges between endpoints. First, we add the edge,
represented as 1, when ep2 sends a message ( f2) to ep3. Second, we add the edge (2),
when ep3 sends a message to ep1 (h2). We then check if a cycle exists on the graph. We
find a cycle in the graph and report this as a potential deadlock. We add the third (3)
and the fourth (4) edges when ep1 sends a message to ep2 (e2) and to ep3 (e3), respec-
tively. The detected deadlock caused by the cycle between ep2 and ep3 is not an actual
deadlock since the receive queue of ep3 is not full and ep3 continues by receiving the
incoming message from ep2 (h3) after sending a message to ep2 (h2). Next, ep2 receives
the message sent by ep3 ( f3). ep2 and ep3 receive the remaining messages ( f4, h4, h5)
and the execution completes. The execution in Figure 7 shows the observed execution
but the order of message send and receive operations can change from one execution to
the other. For example, if ep1 sends a message to ep2 (e2) and to ep3 (e3), respectively,
then ep2 sends a message to ep3 ( f2) and ep3 sends a message to ep2 (h2). Notice that
ep3 is blocked in the third send operation (e4) since the receive queue of ep3 is full.
ep2 is also blocked ( f2) because the receive queue of ep3 is already full. The only way
to continue is that ep3 receives at least one message and unblocks one of the send
operations from ep1 and ep2 but ep3 sends a message to ep2 (h2) and completes the
cycle between ep2 and ep3 in the graph and causes a deadlock. The cycle in our case
contains two endpoints; however, multicore programs can create large cycles which are
detected by our detection mechanism efficiently. Our graph-based (potential) deadlock
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Fig. 9. Overview of mutation coverage tool architecture.

detection algorithm can report nondeadlocks as deadlock since the deadlock situation
depends on the receive queue size of an endpoint.

5. VERIFICATION COVERAGE

Predictive verification aims to find errors in multicore programs. We also need a suf-
ficient number of tests that cover all possible behaviors of the multicore program. We
use mutation testing to check if the test set is sufficient for catching errors. Mutation
testing is a software testing method that involves inserting faults into user programs
and then rerunning a test set against the mutated program. A good test will detect the
change in the program. Our aim is to check the adequacy of a test set developed for
testing multicore programs that use the MCAPI library. Mutation testing allows us to
have a verification coverage measure which we perform with the following steps.

(1) We create a set of mutant programs. In other words, each mutant program differs
from the original program by one mutation, for example, one single syntax change
made to one of the program statements.

(2) We run the original program and the mutant program with the same test set.
(3) We evaluate the results, based on the following set of criteria: If both the original

program and the mutant program generate the same output, our test set is inad-
equate. Our test set is adequate if one of the tests in the test set detects the fault
in our program, that is, one mutant program generates a different output than the
original program.

We developed a tool as seen in Figure 9 for concurrent MCAPI programs to inject
functional faults. Each change of the program by a mutation operator generates a
mutant multicore program. We generate mutations based on our fault model and insert
these mutations into a given MCAPI program to obtain a mutant. A mutant is killed
(detected) by a test case that causes it to produce different output from the original
multicore program. The ratio of the number of mutants killed to the number of all
mutants is called mutation coverage.
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Table II. Mutation Coverage Example

Test1 Outputs (buffer) Test2 Outputs (request is valid)
Original Mutant Original Mutant
“MCAPI” “MCAPI” FALSE TRUE

We illustrate the need to have a mutation coverage metric with a mutant obtained
from the example in Figure 1. First, we generate a mutant program by removing the
mcapi wait function from the second thread’s function body. Our test set has one test
(Test1) which checks the value of the buffer variable. We run both the original and the
mutant programs. If the first thread executes and exits and then the second thread
executes and exits, both programs produce same value “MCAPI” for the buffer variable.
This result shows that the test set is not sufficient and we add a new test (Test2) which
checks the validity of the request variable in order to improve the test set. Note that
a request is valid until the receive operation by Thread2 completes and a test or wait
operation is completed. Now, the original program produces FALSE and the mutant
program produces TRUE for Test2 in the test set since the wait operation has been
deleted. Table II summarizes the testing process.

5.1. Mutation Operators for MCAPI

In this section, we will identify some bug patterns in MCAPI and then develop mu-
tation operators for MCAPI functions that will trigger these bugs. The following list
contains our bug patterns. Notice that some errors in a multicore program can match
with multiple bug patterns. Java concurrency bug patterns [Bradbury et al. 2006] and
SystemC bug patterns [Sen and Abadir 2010] are some resources we used in developing
our bug patterns.

(1) Nondeterminism (ND). Changing the timeout duration of a function, canceling an
uncompleted operation may lead to a nondeterministic situation.

(2) Deadlock (DL). Insufficient system-side buffering causes deadlocks in send func-
tions. An unmatched receive function also causes a deadlock. A task can get stuck
in the mcapi endpoint get function if the endpoint that the task waits for is not
created. If a task waits infinitely for a request that never completes, this causes a
deadlock.

(3) Race Condition (RC). Sending two or more concurrent messages to the same end-
point causes message race conditions.

(4) Starvation (SV). A process may starve due to actions of other processes. If a task
does not delete an endpoint when it is done and if other tasks try to create endpoints
they can fail because of a lack of endpoints. Not closing a channel and not freeing
a packet are other reasons of starvation.

(5) Resource Exhaustion (RE). A group of endpoints all have a finite set of resources,
such as requests, and one of the endpoints needs a resource but none of the other
endpoints gives up. In MCAPI, we use the mcapi test or mcapi wait function in
order to remove a completed request from the system. If we do not use these
functions, we may fail on new operations. Similarly, not freeing a packet even if we
successfully received it may fail new message exchange operations.

(6) Incorrect Parameters (IP). This occurs when some of the parameters of an MCAPI
function call are wrong. Initializing the MCAPI environment with a wrong domain
identifier, creating an endpoint with a wrong node or port identifier, deleting a
wrong endpoint, sending a message to the wrong endpoint, and connecting to a
wrong endpoint lead to incorrect parameters bug patterns.

(7) Forgetting Functions (FF). Forgetting to call an MCAPI function causes this bug
pattern. For instance, if we forget to free a packet on a memory-constrained de-
vice this causes resource leak. Forgetting to initialize or to finalize the MCAPI
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Table III. Mutation Operators for MCAPI

Concurrency Mutation
Operator Category Operators for MCAPI Description
Modify parameters of
concurrency function

MFT Modify Function Timeout
MPF Modify Parameter of Concurrent Function

Remove, replace,
exchange, reorder
concurrency function

RCF Remove Concurrency Function
EFC Exchange Function Call with Another
RTF Replace Timed Function with Untimed Function

Table IV. MCAPI Bug Patterns and the Corresponding Mutation Operators

Index MCAPI Bug Patterns Mutation Operators
1 Nondeterminism (ND) MFT, RCF, EFC, RTF
2 Deadlock (DL) MFT, MPF, RCF, EFC, RTF
3 Race Condition (RC) MFT, RCF, EFC, RTF
4 Starvation (SV) RCF, EFC
5 Resource exhaustion (RE) RCF
6 Incorrect parameter (IP) MPF
7 Forgetting function (FF) MFT, RCF, EFC, RTF
8 Incorrect function (IF) MPF, RCF, EFC

environment, forgetting to establish a connection between two endpoints before
transferring packet or scalar data are some examples of this pattern. If we forget
to use mcapi test or mcapi wait after a nonblocking receive operation, we may be
trying to use an unavailable data.

(8) Incorrect Functions (IF). Using a blocking function instead of a nonblocking function
or vice versa causes this bug pattern. Sending or receiving a packet instead of scalar,
sending or receiving a packet or scalar data on an unconnected channel, using
mcapi test instead of mcapi wait, sending or receiving a message (not a scalar or
packet data) on a connected channel are the other reasons for this bug pattern.

We present a set of mutation operators for MCAPI. These mutation operators aim to
check concurrency in multicore programs. We also identify the set of MCAPI functions
that a mutation operator can be applied to. Table III shows the mutation operators for
MCAPI and Table IV relates them to the bug patterns previously described.

(1) Modify Function Timeout (MFT). This operator changes the timeout value of the
function and can be applied to mcapi wait and mcapi wait any functions since they
are the only functions that have timeout parameters. We modify mcapi wait(time)
to mcapi wait(time*2) or mcapi wait(time/2) or mcapi wait(MCAPI INFINITE).
This modification may result in nondeterminism ND, deadlock DL, or race
condition RC. For instance, when we modify the mcapi wait(10, request) with
mcapi wait(MCAPI INFINITE, request) in Figure 11, it results in a deadlock.

(2) Modify the Parameter of Function (MPF). This operator may lead to deadlock DL,
or incorrect parameter IP.

(3) Remove Concurrency Function (RCF). This operator removes calls to concurrency
functions in Table I. For example, if we remove mcapi wait from the multicore
program displayed in Figure 10, it leads to a race condition between ep1 and ep2.

(4) Exchange Function Call with Another (EFC). This operator exchanges a function in
Table I with another appropriate function. For example, we can exchange a blocking
function with a nonblocking one such as mcapi msg send and mcapi msg send i.
This may lead to nondeterminism ND, deadlock DL, or starvation SV. If we
exchange mcapi msg recv i with mcapi msg recv in Figure 11, we cause a dead-
lock since ep1 waits for ep2 and ep2 waits for ep1.

(5) Replace Timed Function with Untimed Function (RTF). This operator replaces a
timed function with an untimed function. For example, when we replace mcapi wait
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void∗ run thread 1 (void ∗ t ) { /∗ Thread1 has ep1 ∗/
. . .
mcapi msg send ( ep1 , ep3 , ‘ ‘ msg13 ’ ’ ,msgSize , pr ior i ty ,&status ) ;
mcapi msg send i ( ep1 , ep2 , ‘ ‘ msg12 ’ ’ ,msgSize , pr ior i ty ,&request ,&status ) ;
. . .

}
void∗ run thread 2 (void ∗ t ) { /∗ Thread2 has ep2 ∗/
. . .
mcapi msg recv i ( ep2 , buffer ,BUFF SIZE,&request ,&status ) ;
mcapi wait(&request ,& recv s ize ,MCAPI INFINITE,&status ) ; // mutation
mcapi msg send ( ep2 , ep3 , ‘ ‘ msg23 ’ ’ ,msgSize , pr ior i ty ,&status ) ;
. . .

}
void∗ run thread 3 (void ∗ t ) { /∗ Thread3 has ep3 ∗/
. . .
mcapi msg recv ( ep3 , buffer ,BUFF SIZE,&recv s ize ,&status ) ;
. . .
mcapi msg recv ( ep3 , buffer ,BUFF SIZE,&recv s ize ,&status ) ;
. . .

}

Fig. 10. Inserting a mutation results in a race condition.

void∗ run thread 1 (void ∗ t ) { /∗ Thread1 has ep1 ∗/
. . .
mcapi msg recv ( ep1 , buffer ,BUFF SIZE,&recv s ize ,&status ) ;
mcapi msg send ( ep1 , ep2 , ‘ ‘ msg1 ’ ’ ,msgSize , pr ior i ty ,&status ) ;
. . .

}
void∗ run thread 2 (void ∗ t ) { /∗ Thread2 has ep2 ∗/
. . .
mcapi msg recv i ( ep2 , buffer ,BUFF SIZE,&request ,&status ) ;
mcapi wait(&request ,& recv s ize ,10 ,& status ) ; /∗ // or ig inal ∗/
/∗ mcapi wait(&request ,& recv s i z e ,MCAPI INFINITE,&status ) ; // mutant ∗/
mcapi msg send ( ep2 , ep1 , ‘ ‘ msg2 ’ ’ ,msgSize , pr ior i ty ,&status ) ;
. . .

}

Fig. 11. Inserting a mutation results in deadlock.

with mcapi test, function mcapi test does not block the task and this situation may
result in nondeterminism ND, deadlock DL, or race condition RC.

5.2. Mutation Coverage Tool for MCAPI

We have developed an automated tool that inserts relevant mutations to the multicore
programs one by one and then checks if the mutant program is killed by any of the tests.
The mutation coverage tool called MCAPI Mutation Coverage Tool (MTCT) consists of
3 main modules: generator, tester, and library. The generator has three submodules
which are analyzer, instrumentor, and mutant generator.

The mutation testing process of MCAPI programs starts with program analysis. The
analyzer records the locations (function name, source file path, and line number) of
MCAPI functions by statically analyzing the source code and then the instrumentor
module automatically replaces original function calls with wrapper function calls in
order to handle mutation operations in wrappers. The instrumentor needs the location
of the MCAPI functions in the program and this information is supplied by the analyzer.
The mutant generator creates a list of mutants according to the function list and
predefined mutation operators. For instance, we have two different mutation operators
MPF and RCF for the mcapi endpoint create function.

The library module includes two libraries. The first library is the original MCAPI
library and the second library is our mutation library. The mutation library contains
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void mcapi mut msg recv i (char∗ f i l e , mcapi uint32 t l ine ,
mcapi endpoint t receive ep , void∗ buffer , s i z e t buf fer s i ze ,
mcapi request t∗ request , s ta tus t ∗ status )

{
s i z e t rece ived s i ze = 0;
i f ( l ine == mut line && strcmp ( f i l e , mut f i le ) == 0) {
switch ( mut type ) {
case 1: /∗ remove ∗/

∗ status = MCAPI ERRMUTATION;
return ;

case 2: /∗ exchange with blocking ∗/
mcapi msg recv ( receive ep , buffer , buf fer s i ze ,& rece ived s ize , status ) ;
break ;

default :
mcapi msg recv i ( receive ep , buffer , buf fer s i ze , request , status ) ;
break ;

}
} else {
mcapi msg recv i ( receive ep , buffer , buf fer s i ze , request , status ) ;

}
}

Fig. 12. mcapi mut msg recv i function from our mutation library.

wrapper functions that handle mutation operations and then call the original library
function. In each wrapper function, we check the mutation parameters (source file
name, line number, mutation type) that are passed to the function and if they match
with the current function then we activate the mutant, otherwise this function directly
calls the original library function. Figure 12 shows part of the mcapi mut msg recv i
function from our mutation library. In order to generate a mutant by exchanging the
mcapi msg recv i function with mcapi msg recv function, we set mut f ile as the file
name of the multicore program, mut line as the line of this function, and mut type as 4.

The last module, tester, activates mutants one at a time. The tester module then
executes a mutant program with each test in the test set and checks if there exists a
test that kills the mutant. This module returns the mutation coverage result of the test
set. Higher coverage values indicate that the test set is capable of detecting concurrency
bugs.

6. EXPERIMENTAL RESULTS

We have developed tools for both predictive verification and mutation testing. We
obtained a scalable and fast solution that can be seamlessly integrated with current
multicore programs. We tested our tools successfully on multicore programs supplied
by MCAPI and developed by us because no publicly available benchmark using MCAPI
is currently available. Table V shows the characteristics of multicore programs we used.
The first five multicore programs are from MCAPI tests and the remaining multicore
programs are developed by us. The first column in the table shows the name of the
multicore program, the second column denoted by #line shows the number of lines in
the multicore program, the column denoted by #ep shows the number of endpoints
created during the multicore program execution, and the last column gives a brief
description of the multicore program. These multicore programs cover message, packet
channel, and scalar channel operations of MCAPI as well as blocking and nonblocking
operation types. All the experiments were performed on a PC running Linux with
a CPU of 800 MHz and 4GB of memory. The performance metrics we measured are
running time (seconds) and memory usage (megabytes). The results represented in the
tables are the average values that we got after running our tools one hundred times.
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Table V. Characteristics of the Benchmarks

Multicore program #line #ep Description
msg2 186 2 Tests blocking message send and receive calls between endpoints.
msg11 374 2 Tests non-blocking message send and receive calls between endpoints.
pkt5 402 2 The packet channel version of msg11. The order of the calls (send or

receive) is chosen randomly as well as the number of packets sent or
received each time.

scl1 451 8 Tests scalar channel send and receive calls.
multiMessage 419 12 A simple work pool multicore program that performs matrix

multiplication and uses blocking message exchange operations.
pv1 200 16 Message exchanging between endpoints where each endpoint first

sends messages and then receives the incoming messages.
pv2 156 2 Non-blocking message send and receive calls between endpoints as

well as non-blocking operations such as wait. (Predictive assertion
verification example in Fig. 1.)

drc1 183 32 Blocking message send/receive calls between endpoints. Each
endpoint sends a message to a specific endpoint. The order of the calls
generates a cycle that contains all endpoints.

drc2 189 3 Blocking message send/receive calls between endpoints. ( Predictive
deadlock and race condition detection example in Fig. 6.)

drc3 200 32 Multicore program pv1 with 32 endpoints.
rc1 233 3 Two endpoints concurrently sending messages to the same endpoint.

Table VI. Properties for the Benchmarks

Multicore
program Property
msg11 Overflow or underflow occurs at any time during execution. Overflow occurs when the

number of the un-received messages is greater than 16 and underflow occurs when the
number of un-sent message is greater than 16:
(EF((i s >= i r + 16)|(i r >= i s + 16)))

pkt5 Overflow, underflow, memory limit error in sender, or request limit error in receiver
occurs at any time during execution:
(EF(((i s >= i r + 64)|(i r >= i s + 64))|((sender status ==
MCAPI ERR MEM LIMIT)|(recvr status == MCAPI ERR REQUEST LIMIT))))

scl1 The return codes (rc) of the function calls in main function are always true:
(AG(rc == MCAPI TRUE))

pv1 Sent message size is greater than MCAPI MAX MSG SIZE or received message is
truncated at any time during execution:
(EF((s size > MCAPI MAX MSG SIZE)|(recv status ==
MCAPI ERR MSG TRUNCATED)))

pv2 Two endpoints are in critical section at the same time:
(EF((cs1 == MCAPI TRUE)&(cs2 == MCAPI TRUE)))

rc1 It is always true that if one of the senders sends a message, eventually the receiver
receives the message:
AG(((is sender1 turn == MCAPI TRUE)|(is sender2 turn == MCAPI TRUE)) ⇒
EF(is receiver turn == MCAPI TRUE))

6.1. Predictive Verification Experiments

We have performed two experiments on multicore programs using our predictive ver-
ification tool. In the first set of experiments, we check assertion violations and detect
deadlocks, race conditions, as well as unmatched calls. In the second set of experiments,
we only detect deadlocks, race conditions, and unmatched calls. Unmatched calls con-
tain unmatched sends and unmatched receives of messages, packets, and scalars, as
well as unmatched channel open calls. If an opened channel is not closed with a channel
close call, this causes an unmatched channel open call.

6.1.1. Predictive Assertion Verification Experiments. For the first set of experiments, we
used six of the benchmarks for validating our predictive assertion verification tool.
Table VI contains the multicore programs and the properties for each multicore
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Table VII. Experimental Results of Predictive Assertion Verification

Multicore
program Satisfied ORGtime Itime IRtime TCtime BTVtime BTVmem TotalTime
msg11 Yes 0.022 0.19 0.027 0.269 0.028 0.32 0.514
pkt5 Yes/No 0.022 0.20 0.031 0.517 0.098 0.32 0.846
scl1 Yes 0.021 0.21 0.025 0.317 0.010 0.01 0.562
pv1 No 0.102 0.18 0.118 0.105 0.004 0.32 0.573
pv2 Yes 0.010 0.17 0.013 0.092 0.001 0.01 0.276
rc1 Yes 0.049 0.20 0.058 0.269 0.014 0.32 0.541

program that we developed. Our properties are related with problems that occur in
concurrent message passing systems, for instance, the size of the sent message be-
ing larger than the maximum message size defined in the MCAPI library or the re-
ceived message being truncated since the size of the available buffer, which is used
for storing the received message, is not sufficient. In addition, we can define prop-
erties for checking whether a specific status such as MCAPI ERR MEM LIMIT or
MCAPI ERR REQUEST LIMIT returns from a MCAPI function call at any time dur-
ing the execution of a multicore program.

Table VII shows our predictive assertion verification results. In the table, the column
denoted by Satisfied represents whether the property given in Table VI is satisfied or
not. We denote the running time of original multicore program in the column ORGtime
and the running time of the instrumented multicore program in the IRtime column.
The column denoted by Itime represents the time used by the instrumentor Inspect for
shared variable instrumentation. The column denoted by TCtime represents the time
used by our trace converter that converts a partial order trace generated by execution
of the instrumented multicore program to the input format of BTV for assertion verifi-
cation. We represent the time and the memory used by BTV in columns BTVtime and
BTVmem, respectively. The last column, TotalTime, represents the total time that in-
cludes instrumentation, running time of instrumented multicore program, conversion
of the partial order trace, and BTV analysis time. Note that during the execution of the
instrumented program, we run our vector clock, deadlock, and race condition detection
algorithms. We also check unmatched calls and generate the partial order trace of the
execution.

We verified that msg11, scl1, pv2, and rc1 always satisfied the properties and pv1
never satisfied the property. Multicore program pkt5 satisfied the property for some
observed executions and did not satisfy for other observed executions since messages
are randomly sent and received. In other words, depending on the execution order of
send/receive calls the property is satisfied or not. Two components, namely the trace
converter and the Inspect instrumentor, result in the largest slowdown for our approach
although the instrumented program and the BTV analyzer run fast. For example, we
have the largest slowdowns for pkt5 and pv2 since the values of variables relevant to
the property are updated many times in these programs, and for each update we dump
the new value of the variable in the trace. That is, the sizes of the partial order traces to
be converted are large and more time is spent on instrumenting the programs. We also
observed that for programs with more complex assertions the BTV analysis time goes
up, for example, the pkt5 example. Our predictive assertion verification tool found not
only actual assertion violations but also potential ones. For instance, when we observed
the execution of pv2, there was no state where both cs1 and cs2 are true. However, our
tool found a state where the property is satisfied, and found the error by exploring the
partial order trace generated during execution of pv2.

6.1.2. Predictive Deadlock and Race Condition Detection Experiments. For the second set of
experiments, we used all multicore programs given in Table V. Table VIII shows our
predictive deadlock, race condition, and unmatched call detection results. In the table,
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Table VIII. Experimental Results of Predictive Deadlock and Race Condition Detection

Multicore Unmatched
program #DL #RC Calls ORGtime Itime IRtime TotalTime
msg2 – – No 0.011 0.15 0.012 0.162
msg11 – – Yes 0.022 0.17 0.023 0.193
pkt5 – – Yes 0.022 0.18 0.024 0.204
scl1 – – Yes 0.021 0.15 0.023 0.173
multiMessage – – No 0.033 0.16 0.035 0.195
pv1 1 2 No 0.102 0.14 0.115 0.255
pv2 – – No 0.010 0.15 0.011 0.161
drc1 1 – No 0.200 0.17 0.208 0.378
drc2 1 2 No 0.016 0.18 0.019 0.199
drc3 4 7 No 0.221 0.17 0.283 0.453
rc1 – 99 No 0.049 0.16 0.055 0.215

Fig. 13. Slowdown of pv1 deadlock, race condition detection.

the column denoted by #DL represents the number of deadlocks detected, and #RC
represents the number of race conditions detected. The column denoted by Unmatched
Calls represents whether unmatched calls were detected or not. We denote the run-
ning time of the multicore program in column ORGtime and the running time of the
instrumented multicore program in column IRtime. The column Itime represents the
instrumentation time by Inspect and the last column represents the total time used.

Our deadlock and race condition detection algorithms work online and do not use the
entire partial order trace. However, predictive assertion verification works offline and
needs all of the partial order trace to detect temporal assertions. Additionally, we need
to monitor the variables relevant to the property in predictive assertion verification
as well as shared variables. Hence, the times have gone down in Table V for the same
examples compared with Table VII.

Experimental results in Table VIII show that multicore programs msg2, multiMes-
sage, and pv2 are error-free programs. Six of the programs do not include deadlocks
or race conditions but three of the programs have unmatched calls. We detected un-
matched calls for multicore programs msg11, pkt5, and scl1. First, msg11 has 4 un-
matched message receive calls. Second, pkt5 has 3 unmatched packet send calls, 1
unmatched packet send open call, and 1 unmatched packet receive open call. Last, scl1
has 4 unmatched scalar send calls.

We observe that multicore programs with a large number of deadlocks have larger
slowdowns. In fact, the slowdown mostly depends on the number of the endpoints in
the cycle. For instance, we have the largest slowdown for drc3 and where we detected
4 deadlocks and each detected deadlock has more than 20 endpoints that generated
the cycle. Figure 13 shows the slowdown values for different numbers of endpoints for
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Fig. 14. Performance improvement due to reduced vector clock comparisons in race condition detection.

deadlock, race condition checking. We used pv1 for obtaining slowdown values where
we incremented the number of the endpoints while the other parts of the multicore
program were the same. For instance, the slowdown of checking errors in pv1 is 1.18×
for 32 endpoints and 1.24× for 64 endpoints, which shows that we do not suffer from
performance when the number of endpoints is increased.

For estimating the efficiency of our race condition detection technique, we use the
multicore program rc1. This program consists of mcapi msg send and mcapi msg recv
operations and users can change the number of those operations. In this program,
there are three endpoints and only the second endpoint receives messages sent from
the first and the third endpoints. We disabled deadlock and unmatched call detection
mechanisms in order to see only the slowdown of race condition detection. Moreover,
we extended our experiment in order to see the improvements due to Theorem 4.2.
We know that if two endpoints concurrently send messages to the same endpoint, a
message race occurs in the receive operation. We can check whether the sender events
can be concurrent by two comparisons when using ECC and 2n comparisons when
using CC, where n is the number of endpoints in the system. In CC, we need 2n
comparisons since we compare each component of two vector clocks with n elements
for two happened-before relations. We further improved the performance by the help
of Theorem 4.2, where a single comparison to check the happened-before relation as
shown in EHB is sufficient.

Figure 14 shows the slowdown of our technique and compares the results of a single
comparison with two comparisons and 2n comparisons. For example, when we set the
number of send/receive operations to 5000, the original program took 3.018 seconds.
When we ran with our verification tool, it took 3.712 seconds with single comparison,
3.727 seconds with two comparisons, and 3.801 seconds with 2n comparisons. As we
increase the number of send/receive operations, the enhancement that comes from
doing a single comparison becomes more visible. Therefore our tool is efficient as an
on-the-fly detection tool and can work on large-scale multicore programs.

In summary, our tool meets scalability while providing fast predictive verification.

6.2. Mutation Coverage Experiments

We have performed experiments on multicore programs using our mutation coverage
tool. In the experiments, due to the lack of test sets, we used a single test that checks
the exit code of the given multicore program. If a mutant multicore program exits with
a code that is equal to the exit code of original multicore program, then we say that the
mutant is alive, otherwise it is killed. We ran our mutation coverage tool and obtained
the mutation coverage results in Table IX.
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Table IX. Experimental Results for Mutation Testing

Multicore #Killed
program #Mutants Mutants MutCov (%) Runtime
msg2 17 11 65 0.562
msg11 26 12 46 0.308
pkt5 34 13 38 0.294
scl1 91 57 63 0.905
multiMessage 20 10 50 1.112
pv1 11 6 55 0.297
pv2 25 15 60 0.612
drc1 17 14 82 1.115
drc2 23 12 48 0.070
drc3 11 7 64 0.411
rc1 27 16 59 0.685

In the table, we denote the number of generated mutants in column #Mutants and
the number of killed mutants in the #Killed Mutants column. The column denoted
by MutCov represents the mutation coverage percentage. Finally, the last column
represents the total time that is consumed for mutant generation and executing all
mutants. Experimental results show that mutation coverage is over 50% for many
programs. The running time of our tool is nearly one second even for a high number
of mutants. For instance, our tool generated 91 mutants for scl1 and 57 of them are
killed by the test set in less than one second. The running time increases if an actual
deadlock occurs when a mutant executes. In order to detect deadlocks in a mutant,
we used a timeout approach, which declares a deadlock if a specified time period has
elapsed. Multicore program drc1 has the maximum time (1.115 seconds) and we know
that many of the generated mutants result in actual deadlocks. For instance, when we
remove the matching send call of a blocking receive call in drc1, this causes an actual
deadlock. We obtained low coverage for mutants where the injected mutation code does
not execute in the observed execution.

The user can improve the mutation coverage by checking the exit status after every
MCAPI function call. For example, in the multicore program pv2, although the coverage
was 44%, we increased it to 68% after the addition of six status checks. It is clear that
checking the status of MCAPI function calls is efficient in killing a mutant obtained by
the RCF operator. For killing the mutants injected using other operators, the user can
iteratively improve the test set by adding new tests.

Generated mutant multicore programs can potentially have different execution
schedules than the original multicore program. For instance, the multicore program in
Figure 1 can have a mutant that uses a blocking message receive call (mcapi msg recv)
instead of a nonblocking one. The execution order of send/receive operations in the
original multicore program depends on the thread schedule. The send operation in
the mutant always completes before the receive operation since the receive operation
blocks Thread2 until a matching send is called. Mutants generated by our tool can help
detect errors due to other possible executions of the same program.

We also performed experiments which show that mutants with race conditions, dead-
locks, inference, etc., can all be detected by our predictive verification tool.

7. CONCLUSIONS AND FUTURE WORKS

We present verification and coverage techniques for multicore applications that use
the message passing MCAPI standard. Our techniques are dynamic and predictive,
which allows us to efficiently detect not only actual errors but also potential ones.
Specifically, we developed predictive temporal assertion verification algorithms and
specialized algorithms for predictive deadlock and race condition detection. We exper-
imentally showed the effectiveness of our techniques on several applications, where
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we found bugs that were not found using traditional dynamic verification approaches.
Performance was also an important factor in developing our algorithms. We observed
that the specialized deadlock and race condition detection algorithms run much faster
compared to the assertion verification algorithms. We further improved performance
of our race condition detection algorithm by developing a faster comparison engine for
concurrent events while exploiting the MCAPI standard. We believe that the perfor-
mance of our tools can further be improved since the main slowdown comes from the
partial order trace converter and the program instrumentor.

In order to develop and measure the quality of tests for message passing multicore
programs, we developed mutation operators for the MCAPI standard. We observed that
the mutant programs obtained by inserting mutations into the original programs can
potentially explore execution schedules different than the original program. This is a
useful tool for analyzing different behaviors of concurrent systems. Also, we showed
that the coverage can be improved by writing new tests.

In summary, our solutions can improve the reliability of heterogeneous embedded
multicore systems by pruning out actual and potential errors and determining the
verification coverage, all with a small overhead.

A future research topic could be developing an AND⊕OR model for detecting dead-
locks in multicore programs using MCAPI. Using the AND⊕OR model handles more
deadlock situations and increases deadlock detection coverage.

MCAPI lacks larger benchmarks, hence we plan to work on developing benchmarks
that will allow us to better measure the effectiveness of our techniques.
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