
42 1541-1672/04/$20.00 © 2004 IEEE IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

S e m a n t i c W e b S e r v i c e s

Filtering and Selecting
Semantic Web Services
with Interactive
Composition Techniques
Evren Sirin, Bijan Parsia, and James Hendler, University of Maryland

To demonstrate the utility of Semantic Web Service descriptions for service com-

position, we’ve developed a goal-oriented, interactive composition approach that

uses matchmaking algorithms to help users filter and select services while building the

composition. Indeed, it is the filtering and selection of services that helps the user drive

the composition process. We’ve implemented these
ideas in a prototype system that can compose the
Web Services deployed on the Internet and provide
filtering capabilities where a large number of simi-
lar services might be available.

As this article describes, our prototype is the first
system to directly combine the OWL-S semantic ser-
vice descriptions with actual invocations of the
WSDL descriptions, letting us execute the composed
services on the Web.

The Semantic Web meets
Web Services

Web Services provide interoperability between
diverse applications, using platform- and language-
independent interfaces for easily integrating hetero-
geneous systems. Universal Description, Discovery,
and Integration (UDDI, www.uddi.org), WSDL,1 and
SOAP define standards for service discovery, descrip-
tion, and messaging protocols, respectively.2

Service-oriented architectures tend to be compo-
nent oriented, emphasizing loose coupling as a sys-
tematic design approach. Not only should services
be loosely coupled with their particular implemen-
tation or deployment, but inter-service dependencies
should be minimized to allow easy combination of
services into larger systems. Given such combina-
tions—called service compositions—a service con-

sumer can mix and match component services at
will, depending on such factors as service availabil-
ity, quality, and price. Although realizing service
compositions on particular concrete services is an
important task, generating such compositions to
achieve new functionality is equally important. Ulti-
mately, Web Services should be so flexible that ser-
vice composition is closer to the specification of
functionality than to programming.

An emerging industry initiative to standardize
some aspects of Web Service composition is the
Business Process Execution Language for Web Ser-
vices effort.3 BPEL4WS focuses on representing com-
positions in which the flow of processes and the bind-
ings between services are known beforehand. More
challenging is the problem of composing services
dynamically—on demand.4 In particular, when ser-
vice customers need a functionality that existing ser-
vices can’t individually realize, existing services can
be combined to fulfill the request.5

The dynamic composition of services requires that
we understand their capabilities as well as their com-
patibility. A successful, executable composition cor-
rectly combines a set of compatible components to
achieve the composition’s overall goal. Full automation
of composition is still the object of ongoing, highly
speculative research—with little short-term hope of
serious victory. However, partial automation of com-

Building complex

services by hand is

notoriously difficult.

At every step of a

composition, users

face a plethora of

choices. Our assisted

composition approach

uses the richness of

Semantic Web Service

descriptions and

information from the

compositional context

to filter matching

services and help select

appropriate services.

position, with a human controller as the most
significant decision mechanism, seems an
achievable and useful goal. One difficulty is
the gap between the concepts people use and
the data formats computers manipulate. We
can bridge this gap using Semantic Web tech-
nologies. (The “Related Web Service Compo-
sition” sidebar discusses related approaches.)

The Semantic Web extends the current Web
by giving information well-defined meaning,
better enabling computers and people to col-
laborate.6 Users provide structured informa-
tion by marking up content in a reasonably
expressive markup language with a well-
defined semantics. OWL7 is a W3C recom-
mendation for such a language (superseding
the earlier DAML+OIL8). OWL is an exten-
sion to the RDF, which lets us create ontolo-
gies for arbitrary domains and instantiate these
ontologies to describe resources.9 OWL-S
(the previous version of OWL-S was called
DAML-S and was based on DAML+OIL) is
a set of OWL ontologies supporting the rich
description of Web Services for the Semantic
Web. Our work uses OWL and OWL-S to
facilitate the user- and context-driven, dy-
namic composition of Web Services.

Interactive composition
approach

Our goal-oriented approach for service
composition gradually generates the com-
position with a forward or backward chain-
ing of services. At each step, our system adds
a new service to the composition and filters
further possibilities based on the current con-
text and user decisions. Let’s see how you
can use our approach to make neces-
sary travel arrangements.

As Figure 1 shows, the first step is
to book a means of transportation.
Start by finding the services that let
you make reservations for transporta-
tion. Then filter these services because
not all are relevant to your current
task: some might not provide trans-
portation to your destination, and oth-
ers might have no availability at the
desired dates. Filtering might further
help determine the service that best fits
your personal preferences, such as
ones that accept a certain credit card
or serve particular destinations with
nonstop flights.

After resolving this step, continue

the composition process by finding compat-
ible services. Perhaps you have a clear idea
of what further tasks you’d like to accom-
plish with this composition, or perhaps sim-
ply seeing the available, compatible services
will suggest further goals. Just as with busi-
ness or consumer services, propinquity is a
key factor in determining desirable compo-
sitions, particularly when the “extra” services

JULY/AUGUST 2004 www.computer.org/intelligent 43

Several industry efforts are under way to create support for
Web Service composition, with the Business Process Execution
Language for Web Services (BPEL4WS) as perhaps the most prom-
inent.1 BPEL4WS supersedes IBM’s WSFL and Microsoft’s XLANG.
BPEL4WS provides a language for scripting business processes and
business interaction protocols. It extends WSDL’s interaction
model to define a process that provides and consumes multiple
Web Service interfaces. We can think of such a process as com-
posing a set of Web Services from other Web Services.

Compositions built with our composer presumably could be
“compiled” to BPEL4WS workflows, although as you add more
complex OWL-S control constructs, the mapping becomes more
hairy. Also, BPEL4WS doesn’t support any sort of preconditions
and effects, nor is it particularly declarative. So while BPEL4WS

workflows might be useful as a grounding for our OWL-S
compositions (much in the way WSDL operations ground
AtomicProcesses), it is unlikely that any tighter integration would
be reasonable or useful.

The DAML-S Matchmaker system augments current UDDI
architecture with semantic service descriptions.2 The Match-
maker aims to improve the discovery process by allowing loca-
tion of services based on their capabilities in support of the
composition task. The basic idea behind the Matchmaker is to
use the subsumption relation between the classes to find flexi-
ble matchings beyond the capabilities of UDDI. Several re-
search groups extend the matchmaking algorithms to exploit
more features of subsumption relations.3,4 Lei Li and Ian Hor-
rocks also report some problems related to the design of the
OWL-S Profile specification. Our work uses slightly evolved ver-
sions of methods presented in these works directly in a compo-
sition editor. In a sense, our work is about effectively using

matchmaking while composing services, to help guide the
composition process.

Jihie Kim, Yolanda Gil, and Marc Spraragen present an inter-
active workflow composition tool named CAT (Composition
Analysis Tool). This tool combines knowledge-based represen-
tations of components, together with planning techniques
that can track the relations and constraints among compo-
nents.5 Although their tool is not using Web standards such as
OWL, OWL-S, or WSDL, it is possible to extend the tool to sup-
port these languages.

References

1. F. Curbera et al., “Business Process Execution Language for Web
Services, v1.0,” S. Thatte, ed., IBM, July 2001; www-106.ibm.com/
developerworks/webservices/library/ws-bpel.

2. M. Paolucci et al., “Semantic Matching of Web Services Capabil-
ities,” The Semantic Web–ISWC 2002: 1st Int’l Semantic Web Conf.,
LNCS 2342, Springer-Verlag, 2002, pp. 333–347.

3. J. Gonzalez-Castillo, D. Trastour, and C. Bartolini, “Description Log-
ics for Matchmaking of Services,” Proc. Workshop Applications of
Description Logics, CEUR, 2002.

4. L. Li and I. Horrocks, “A Software Framework for Matchmaking
Based on Semantic Web Technology,” Proc. 12th Int’l World Wide
Web Conf., World Wide Web Consortium, 2003, p. 48.

5. J. Kim, Y. Gil, and M. Spraragen “A Knowledge-Based Approach to
Interactive Workflow Composition,” Proc. Int’l Conf. Automated
Planning and Scheduling, Workshop Planning and Scheduling for
Web and Grid Services, AAAI Press, 2004.

Related Web Service Composition

Figure 1. A step-by-step composition of a
service that will make travel arrangements for
a trip.

Making Travel Arrangements
1. Book transportation

1.1 Find transportation services
1.2 Filter out the services that have no

availability at the desired dates
1.3 Select a service that accepts your

credit card, offers a good price, etc.
2. Make hotel reservation (feed date of

arrival information from previous service
to this one)
…

3. Record expenses in your financial
organizer(compute the total expenses
from previous steps)

aren’t strict requirements of the current task.
We’ve developed a service composition

prototype that guides users in creating a
workflow of services step by step as just
described. Users select services in the con-
text of a composition step. When a service
goes into the composition, this service’s
information about input, output, precondi-
tions, and effects (IOPE) serves to automat-
ically filter the services whose outputs are
incompatible with the current selection. We
support further, user-driven filtering of the
compatible services based on other service
features described against generally avail-
able OWL ontologies.

Service composition in our system relies
on semantic annotations of services. As an
example of how semantic descriptions aid the
composition process, consider a simple sce-
nario with two Web Services—an online lan-
guage translator and a dictionary service—
where the first translates text between several
language pairs and the second returns the
meanings of English words. If a user needs a
FrenchDictionary service, neither can satisfy the
requirement. However, together they can sat-
isfy it: the input can be translated from French
to English, fed through the English dictionary,
and then translated back to French. The
dynamic composition of such services is dif-
ficult using just their WSDL descriptions
because each description would designate
strings as input and output, rather than the
necessary concept for combining them. In
other words, some of these input strings must
be the names of languages, others the strings
representing user inputs and the translator’s
outputs. To describe the specific concepts
such as language or French, we can use ontolo-
gies published on the Semantic Web.

Service composition can also serve in link-
ing concepts to services provided in other
network environments. For example, take a
sensor network environment that includes
two types of services: basic sensor services
and sensor-processing services. Each sensor
relates to one Web Service that returns the
sensor data as the output. Sensor-processing
services combine the data coming from dif-
ferent sensors in some way and produce a
new output. A sensor ontology describes sen-
sor capabilities—sensitivity, range, and so
on—as well as other significant attributes,
such as name or location. Taken together,
these attributes indicate whether the sensor’s
service is relevant for, say, generating a
fusion of data from various services posi-
tioned in a certain way relative to each other.

The fused data itself might pass to feature-
extracting or pattern-recognition services,
with the ultimate results serving to identify
particular objects in the environment. In this
setting, we need to describe the services that
are available for combining sensors and the
sensor attributes that are relevant to those ser-
vices. More importantly, the user needs a
flexible mechanism for filtering sensor ser-
vices and combining only those that can real-
istically be fused—those covering the same
physical location.

Creating semantic service
descriptions

OWL-S partitions a Web Service’s de-
scription into three components: service pro-
file, process model, and grounding. The Ser-

viceProfile describes what the service does by
specifying the input and output types, pre-
conditions, and effects. The ProcessModel
describes how the service works; each ser-
vice is either an AtomicProcess that executes
directly or a CompositeProcess that combines sub-
processes—a composition. The Grounding con-
tains the details of how an agent can access
a service by specifying a communications
protocol, parameters to use in the protocol,
and serialization techniques to be employed
for the communication.

OWL-S resembles other technologies sev-
eral ways:

• The ServiceProfile is analogous to yellow-
page-like advertisements in UDDI.

• The ProcessModel is similar to the business
process model in BPEL4WS.

• The Grounding is a mapping from OWL-S to
WSDL.

OWL-S’s main contribution is its ability to
support richer service descriptions and the
real-world entities they affect sufficient for
greater automation of the discovery and com-
position of services.

OWL-S service descriptions link to other
ontologies that describe particular service
types and their features. For example, sup-
pose you’ve written an ontology in OWL for
describing sensors. This ontology contains a
top-level class Sensor to define the sensor con-
cept. Sensor has subclasses such as AcousticSen-
sor and InfraRedSensor. In OWL’s semantics,
subclasses inherit the properties of their
superclasses and can extend these attributes
with additional ones. Because OWL-S ser-
vice descriptions are nothing more than
OWL documents, we can use all of OWL’s
domain modeling features to directly struc-
ture our service descriptions, as well as freely
using concepts from other ontologies.

For example, for our prototype, we devel-
oped a hierarchy of ServiceProfile types. This
class tree, rooted in the ServiceProfile class, uses
our sensor ontology in the obvious ways—
for example, sensors provide Sensor services,
which have SensorServiceProfiles and acoustic
sensors provide AcousticSensor services having
AcousticSensorProfiles. We specialize ServiceProfiles
rather than services themselves because our
primary interest is service selection and
matchmaking, which, in our system, is done
using ServiceProfiles.

In particular, we use the ServiceProfile hier-
archy to help the user filter irrelevant ser-
vices. If, at a certain composition step, the
system knows only that some sort of sensor
service can be selected, the human user can
determine the more precise requirements by
examining the range of available sensor
types. The sensor ServiceProfiles also have spe-
cific sets of non-IOPE attributes associated
with them, defined using the extensible ser-
vice parameter mechanism in OWL-S. We
can use these attributes to define even more
specific named classes of ServiceProfiles such
as NearbyAcousticSensors, or simply let users
define complex class expressions to indicate
their requirements on the fly.

In OWL-S service descriptions, informa-
tion for executing the services is specified in
the Grounding. In most groundings, execution
information consists of pointers into WSDL
descriptions, which typically contain suffi-
cient information to directly invoke the
described service. Increasing numbers of
WSDL-described Web Services are available
on the Web, both from independent devel-
opers and large companies, such as Amazon
and Google. Annotating these Web Services
with OWL-S gives us a good opportunity to
access several semantically described, exe-
cutable services.

S e m a n t i c W e b S e r v i c e s

44 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

Annotating these Web Services with

OWL-S gives us a good opportunity

to access several semantically

described, executable services.

Some aspects of deriving OWL-S descrip-
tions from WSDL descriptions can be partially
automated (see Figure 2). For each operation
a WSDL document describes, the document
will describe the input and output messages
and their substructure for that operation. Nor-
mally, a WSDL operation corresponds to an
OWL-S AtomicProcess, with that process’s para-
meters corresponding to various message
parts. In nearly all WSDL documents, the con-
tent of message parts are described by XML
Schema data types, quite often complex
types—types that describe elements with pos-
sible attribute or subelement structure.

Because parameter type compatibility is
critical to our composition method, the ser-
vice description must supply sufficiently
expressive types. Two issues arise when try-
ing to incorporate XML Schema data types
in OWL-S service descriptions:

• OWL itself permits only a constrained
range of XML Schema data types.

• For those it does permit, it provides con-
structs and reasoning services that aren’t
nearly as interesting as those it provides
for OWL classes.

In particular, OWL currently only provides
for defining properties whose range is one of
a subset of the simple XML Schema data
types (such as integers or strings), but no pro-
vision exists for using complex types. This
situation isn’t due to any logical difficulty
with integrating complex types with OWL,
but rather because OWL references data types
by URI. Because there is no canonical way
in XML Schema to determine a URI for a
complex data type, OWL documents are con-
strained to use only data types with prede-
fined URIs. We expect that the XML Schema
working group will eventually resolve this sit-
uation. Until then, we can’t even expect OWL
reasoners with excellent data type support to
process complex data types interoperably.

Even when this problem resolves itself, it
would be preferable for many purposes to have
the parameter types of OWL-S services be
OWL classes, as that would allow for more
flexible matching and more natural OWL-
based descriptions. Because we’re already aug-
menting the information in a WSDL descrip-
tion, it seems reasonable to do so with the types
as well. Thus, we treat the WSDL-supplied
types as descriptions of the service parame-
ters’ “wire format”—that is, the serialization
of the values our process actually uses.

We extended the OWL-S grounding to

include marshaling and unmarshaling func-
tions that our OWL-S executor can use to
coerce XML Schema values to OWL indi-
viduals and back. (These extensions, with
further development by the OWL-S Coali-
tion, were subsequently included in OWL-S.
We did these extensions and their imple-
mentation in collaboration with Fujitsu Labs
of America, College Park, Maryland, with
extensive feedback from Ryusuke Masuoka.)

These functions are, by default, encoded
as Extensible Stylesheet Language Transfor-
mation stylesheets. For example, an unmar-
shaling function is written as an XSLT trans-
formation from XML fragments matching the
specific XML Schema type to an RDF graph
serialized in the RDF/XML exchange syntax.
That graph encodes the relevant assertions
about the individual, which becomes the
actual input to the service. Marshaling func-
tions are implemented as the inverse trans-
formation. Using published XSLT obviates
the need to extend the OWL-S executor with
specific type-coercion functions—it just
needs a generic XSLT processor, perhaps run-
ning as a remote service. Unfortunately, given
the extremely free syntax of RDF/XML—
especially, the plurality of equivalent forms—
it’s difficult to write XSLT that can handle all
the legal serializations of a given RDF graph.
The resulting stylesheet is almost impossible
to understand and maintain.

Clearly, hand-writing such transformation
functions is not feasible. Marshaling and
unmarshaling functions can already be a
source of subtle bugs because they require a
deep understanding of both source and target
formalism, coupled with a good understand-
ing of the services both on the WSDL side (of
the operational semantics of the service) and
on the OWL-S side (of how the descriptions
affect the various OWL-S related inferences).
Adding essentially irrelevant and idiosyn-
cratic details of a specific linear syntax for
RDF compounds the problem. Unfortunately,
current standard solutions tend to compro-
mise interoperability.

In our system, because we control all our
execution engines—in fact, we reuse a sin-
gle implementation—we can require a spe-
cific profile of RDF/XML that avoids con-
fusing or redundant constructs. Clearly, if
other engines don’t generate that profile, our
XSLT transformations can fail. Also, it’s
unclear that, even with a suitably designed
profile, the necessary XPath queries will be
sufficiently obvious and transparent to the
programmer. Finally, although feeding the
XSLT processor some XML allows for great
flexibility—in choice of both implementation
of processor and the specific instance of some
processor—it’s unlikely that the internal rep-
resentation of the individual will be, say, W3C
document object model (DOM) trees. So,

JULY/AUGUST 2004 www.computer.org/intelligent 45

Figure 2. A tool to automate translation from WSDL descriptions to OWL-S.

the constant need exists for additional data
conversion.

Incorporating an RDF- and OWL-sensitive
query language (such as RDQL or Versa) into
XSLT, or perhaps XQuery, standards would
deal with all three issues. (The 4Suite XSLT
parser already integrates the Versa RDF query
language as an XSLT extension.) Even if
generic XSLT or XQuery processors gener-
ally failed to include such extension, they
would provide a standard and appealing tar-
get for OWL-S engines to implement. Even if
the query languages weren’t ideal, they would
have both less of a conceptual gap and less of
an implementation gap than XPath queries.

As an appealing alternative to either tech-
nique, we could use a higher-level mapping
language, perhaps along the lines of Meaning
Definition Language (MDL),10 as Joachim
Peer proposed.11 If the mappings could be
compiled to XSLT or other transformation
languages, there would be an enormous gain
in portability; by eschewing the general
expressive power of programming languages
such as XSLT, there might be a significant
gain in transparency and analyzability.
Unfortunately, designing such a language
covering even a significant subset of the
expressivity of OWL is a formidable task.

Implementation
Our system uses OWL-S service descrip-

tions to support our interactive composition
approach. It filters and selects services using

matchmaking algorithms similar to those that
the DAML-S Matchmaker implements.12 The
Matchmaker uses ServiceProfiles to describe
both service requests and advertised services.
A service provider publishes a DAML-S—
or, presumably in a successor, updated match-
maker, OWL-S—description to a common
service repository.

When someone needs to locate a service to
perform a specific task, the system creates a
ServiceProfile for the desired service. The ser-
vice registry matches request profiles to
advertised profiles using DAML+OIL sub-
sumption as the core inference service. In par-
ticular, the DAML-S Matchmaker computes
subsumption relations between individual
IOPEs of the request and advertisement
ServiceProfile. If the corresponding parameter
classes are equivalent, there’s an exact and
thus best match. If there’s no subsumption
relation, then there’s no match. Given a clas-
sification of the types describing the IOPEs,
the matchmaker assigns a rating depending
on the number of intervening named classes
between the request and advertisement para-
meters. Finally, the ratings for all IOPEs com-
bine to produce an overall rating of the match.

Several researchers extended this algo-
rithm to consider the subsumption relation
between the request and advertisement pro-
files considered as whole concepts.13,14 But,
like the DAML-S Matchmaker, they then
map the subsumption relation into goodness
of match, specifically:

• Exact. If advertisement A and request R are
equivalent concepts, it’s called an Exact
match.

• PlugIn. If request R is a subconcept of
advertisement A, it’s called a PlugIn match.

• Subsume. If request R is a superconcept of
advertisement A, it’s called a Subsume
match.

• Fail. Otherwise, there’s no match.

Our system uses the same basic typology of
subsumption-based matches. In some con-
texts, we match on the basis of the sub-
sumption of the entire profiles; in others, we
use subsumption only to directly match indi-
vidual parameters.

Figure 3 shows the general system archi-
tecture. The system has two separate compo-
nents: an inference engine that stores service
advertisements and processes match requests
and the composer that generates the service
composition workflow. The inference engine
is an OWL-DL reasoner named Pellet
(www.mindswap.org/2003/pellet). The com-
poser communicates with the inference en-
gine to discover possible matches and present
them to users. It also lets users invoke the
completed composition on specific inputs.

The composer lets users create a workflow
of services by presenting the possible choices
at each step, starting in the first totally
unguided step with a list of all available ser-
vices registered to the system. Each subse-
quent composition step uses two sorts of
matching, on IOPEs (which is fully auto-
mated) and on other service parameters. The
system generates forms for entering con-
straints on the service parameters from the
ontologies defining those parameters. In any
step, the user makes the final selection of the
specific service.

Matching on IOPEs
At each composition step, a list shows the

IOPE-compatible services users can add to
the composition. (Currently, we only match
on IO because the specification of precondi-
tions and effects is still an open OWL-S
issue.) When the user selects a service from
the list, the composer presents as options
those services whose output could feed to the
current service as an input. Suppose the
selected service accepts an input of type
Address, which is defined in a certain ontology
with the concept hierarchy Figure 4 shows.
We’d like to find the services that have an
output compatible with this type. An output
of a service would be compatible if it were

S e m a n t i c W e b S e r v i c e s

46 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

Knowledge
base

WSDL
(SOAP calls)

XML
workflow

Noncentralized
execution
framework

Internet

Web Service
descriptions

OWL-S
translator

OWL
reasoner

Workflow editor

OWL-S
executor

Figure 3. An overview of the prototype system.

of type Address or another concept that’s sub-
sumed by Address, such as USAddress.

When a service input subsumes the output,
the output type is just a specialized version of
the input type, so these services can still chain
together. However, a service whose output is
Location couldn’t be composed with this ser-
vice because the Address concept will most
likely have additional properties and restric-
tions on the existing properties of Location.

Clearly, only Exact and Plug-In matches
between the parameters of ServiceProfiles would
yield useful results at this step. For service
selection, we need a match on individual
parameter types instead of whole profiles
because we consider all type-compatible ser-
vices to be reasonable “next steps” of a com-
position. One interesting extension would be
to consider certain service parameters against
global constraints as part of service compat-
ibility. For example, suppose before starting
the composition process, the user enters an
overall price limit on the composition. At any
step, the system sums all cost service para-
meter values for the currently composed ser-
vices, using the difference between that sum
and the set limit to filter potential next steps.

Results are ordered in the list according to
the degree of match. Exact matches are more
likely to be preferred in the composition, so
these services sit at the top of the list. The
Plug-In matches come after the Exact matches,
while Plug-In matches are ordered according
to the distance between the two types in the
ontology tree.

Filtering on service parameters
The number of services the list displays as

possible matches can be extremely large. For
example, a power grid or telephone network
might have many thousands of sensors, each
providing several services, making it infeasi-
ble for someone to scroll through a list and
choose a service simply by name. Further-
more, even if the number of services is low,

the service names themselves might not con-
tain enough information to let a user make an
informed choice. When the service’s name
does not help to distinguish the services, we
turn to the other service parameters, such as
location, to help determine the most relevant
service for the current task. Thus, users can
query a sensor description, linked to a partic-
ular service, as to the sensor’s location, type,
deployment date, sensitivity, and so forth.

The ServiceProfile hierarchies define a classi-
fication used at the first level of filtering. By
selecting a profile category from the list, the
user limits the shown available choices whose
ServiceProfile matches the selection. We exam-
ine the various ServiceProfiles’ definitions to
build various user input forms for specifying
further constraints on the desirable services.

Consider an example in the sensor net-
work where we want to select a specific sen-
sor service. With no other restriction, the sys-
tem will present every available sensor
service. This approach is better than pre-
senting all the services, but not sufficiently
better. The user can decrease the number of
matches significantly, for example, by filter-
ing the results to the services with AcousticSen-
sorServiceProfiles. The composer then queries the
inference engine about the possible service
parameters of the selected service type.
Based on the answer the engine returns, the
composer creates a GUI panel in which the
user can enter constraints for the service
properties, as Figure 5 shows.

A service request profile combines the
user’s constraints. The service request goes to
the inference engine, which applies the result
of this new query to the previous result set.
The engine removes from consideration ser-
vices that don’t satisfy the current con-
straints. The matchmaking for this step can
use Relaxed matches as well as Exact and Plug-In
matches. Using Relaxed matches will proba-
bly increase the choices presented, letting the
user make a more flexible selection. Relaxed
matches are permissible because we already
know that the set of services the user is con-
sidering are compatible in this context.

Generating composed services
Each composition the user generates using

the existing prototype can itself be realized as
an OWL-S CompositeProcess, so it can also be
advertised, discovered, and composed with
other services. In the composer, we generate
exactly such a CompositeProcess description and
also create the corresponding ServiceProfile with
user-added nonfunctional properties. Such a
description is immediately available to the
system as a named service, which can be fil-
tered and composed normally. In this way,
the user can quickly build up a set of com-
plex compositions piecemeal as the tasks at
hand demand.

Executing composed services
In its current implementation, the system

executes the composition by invoking each

JULY/AUGUST 2004 www.computer.org/intelligent 47

Location

GeographicLocation Address

USAddress

Figure 4. A simple hierarchy of location-
related concepts.

Figure 5. Filtering serves to present only omnidirectional acoustic sensors located at a
specific location. The display shows that only one of 55 services satisfies these constraints.

individual service and passing the data
between the services according to the flow
the user constructed. This method is primar-
ily dictated by the OWL-S and WSDL spec-
ifications (of the time), which both describe
the Web Services as an interaction of either
a request-response or as a notification mes-
saging between two parties. As a conse-
quence of this design, the client program
serves as the central control authority that
handles all remote procedure calls to invoke
individual services. Future iterations of both
specifications will likely include more com-
plicated arrangements of parties.

Improving IOPE matching with
ontology translation services

With both IOPE matching and service
parameter filtering, there’s a strong need for
a suitable set of service descriptions of suffi-
cient and compatible detail to support, for
IOPE matching, the appropriate subsump-
tions and, for service parameter filtering,
intelligible form-based queries. Elaborating
the service parameter filter forms by extend-
ing the definitions of the concepts used to
describe those parameters is a straightforward
process. We expect that such extension will
occur using standard ontology editing tools.

We’ve already discussed improving IOPE

matching by converting the IO type descrip-
tions from XML Schema data types to OWL
classes. In that process, the choice of target
OWL class is critical to generating match-
making hits. For any given domain, the
Semantic Web is likely to have several some-
what overlapping ontologies—that is, ontolo-
gies with fairly similar, but distinct, concepts.
If service description authors choose differ-
ent, but relevantly equivalent, classes to
unmarshal their XML Schema data types to,
the system will fail to match intuitively com-
patible services. Ideally, some sort of con-
cept or ontology mapping would make these
relevant equivalences transparent to the sys-
tem. Aside from the normal OWL constructs
for equating classes, we have the concept of
a TranslatorServiceProfile—that is, of services
whose entire job is to take the description of
an OWL individual against one ontology,
then produce the relevantly equivalent set of
assertions against another.

However, in one important sense these ser-
vices are unimportant to composition.
They’re only important insofar as they pro-
mote the composition of other services that
actually move the user closer to his or her
goal. They’re not suggestive of interesting
further steps, thus are merely a burden on the
user. To eliminate this obstacle, we don’t actu-

ally present the translation services to the
user, but rather have created fused services on
the fly. A fused service is a chain of transla-
tion services terminating in a nontranslation
service. The system presents the fused ser-
vice as a type-compatible nontranslation ser-
vice, thus increasing the number of substan-
tial options at any particular step.

The service composition in the current
framework requires a human in the

loop. A human who has the domain knowl-
edge for the task must guide the overall com-
position process while the composer deter-
mines the relevant choices at each step.
Incorporating planning technology in the
inference engine would further automate the
system. The ability to access the machine-
understandable data via the Semantic Web
should make it easier to integrate a planner
into the system.

One way to improve the suggestions pro-
vided for a match is to give the system the
capability to learn from past user activity.
The previous service compositions that oper-
ators created would give an idea about the
general tasks a user wants to accomplish.
Using this information, the composer could
reorder the available choices in the list pre-
sented or simply present a composition sim-
ilar to the previous ones.

The accuracy of the matches found by the
inference engine depend on how detailed the
ontologies are. Richer ontologies with more
specific descriptions for sensors and their
nonfunctional properties will help the engine
find better answers to the queries. As ontolo-
gies become widely used on the Semantic
Web, we expect to find an increasing num-
ber of cross-references between related con-
cepts in different ontologies (and OWL sup-
ports such cross-referencing directly) and
thus the impact of semantic information will
become more apparent.

Acknowledgments
We thank Ryusuke Masuoka for his contribu-

tion to this work. This work is supported in part by
the Army Research Laboratory, DARPA, Fujitsu
Laboratory of America College Park, Lockheed
Martin Advanced Technology Laboratories, the
National Science Foundation, the National Insti-
tute of Standards and Technology, and the NTT
Corporation.

S e m a n t i c W e b S e r v i c e s

48 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

T h e A u t h o r s
Evren Sirin is a doctoral candidate at the University of Maryland. He is a
member of Mindswap research group and works on Semantic Web Services
and Web Service composition. He has also been developing various tools for
the Semantic Web, including an API for OWL-S and a description-logic-
based OWL reasoner called Pellet. Contact him at evren@cs.umd.edu.

Bijan Parsia is a research philosopher at the University of Maryland’s MIND
Lab. His current research focuses on Web-based ontologies, description-logic
use and implementation, trust networks, and Semantic Web Services. Con-
tact him at bparsia@isr.umd.edu.

James Hendler is a professor at the University of Maryland and the direc-
tor of Mindswap research group. He has joint appointments in the Department
of Computer Science and the Institute for Advanced Computer Studies. He
was the recipient of a 1995 Fulbright Foundation Fellowship, is a member of
the US Air Force Science Advisory Board, and is a fellow of the American
Association for Artificial Intelligence. He is also the former chief scientist of
the Information Systems Office at DARPA and is a member of the World Wide
Web Consortium’s Semantic Web Coordination Group. Contact him at
hendler@cs.umd.edu.

References

1. E. Christensen et al., “Web Services Descrip-
tion Language (WSDL) 1.1,” World Wide Web
Consortium (W3C) note, 2001; www.w3.org/
TR/2001/NOTE-wsdl-20010315.

2. “SOAP 1.2,” World Wide Web Consortium
(W3C) recommendation, N. Mitra, ed., W3C,
June 2003; www.w3.org/TR/soap12-part0.

3. F. Curbera et al., “Business Process Execu-
tion Language for Web Services, v1.0,” S.
Thatte, ed., IBM, July 2001; www-106.ibm.
com/developerworks/webservices/library/
ws-bpel.

4. B. Benatallah et al., “Towards Patterns of Web
Services Composition,” Patterns and Skele-
tons for Parallel and Distributed Computing,
S. Gorlatch and F. Rabhi, eds., Springer-
Verlag, 2002, p. 265.

5. R. Masuoka, B. Parsia, and Y. Labrou, “Task
Computing—The Semantic Web Meets Per-
vasive Computing,” The Semantic Web–ISWC
2003: 2nd Int’l Semantic Web Conf., LNCS
2870, Springer-Verlag, 2003, pp. 866–881.

6. T. Berners-Lee, J. Hendler, and O. Lassila,
“The Semantic Web,” Scientific American,
vol. 284, no. 5, 2001, pp. 34–43.

7. M. Dean et al., “Web Ontology Language
(OWL) Reference Version 1.0,” World Wide
Web Consortium (W3C) note, Nov. 2002;
www.w3.org/TR/2002/WD-owl-ref -
20021112.

8. I. Horrocks et al., “DAML+OIL,” 2001;
www.daml.org/2001/03/daml+oil-index.
html.

9. D. Brickley and R. Guha, “Resource Descrip-
tion Framework (RDF) Model and Syntax
Specification,” World Wide Web Consortium
(WC3) recommendation, Feb. 1999; www.
w3.org/TR/1999/REC-rdf-syntax-19990222.

10. R. Worden. “Meaning Definition Language,
v2.06,” July 2002; www.charteris.com/XML-
Toolkit/MDL.asp.

11. J. Peer, “Bringing Together Semantic Web
and Web Services,” The Semantic Web–ISWC
2003: 1st Int’l Semantic Web Conf., LNCS
2342, Springer-Verlag, 2002, p. 279.

12. M. Paolucci et al., “Semantic Matching of
Web Services Capabilities,” The Semantic
Web–ISWC 2003: 1st Int’l Semantic Web
Conf., LNCS 2342, Springer-Verlag, 2002, p.
333.

13. J. Gonzalez-Castillo, D. Trastour, and C. Bar-
tolini, “Description Logics for Matchmaking
of Services,” Proc. Workshop Applications of
Description Logics (ADL 2001), CEUR, 2002.

14. L. Li and I. Horrocks, “A Software Frame-
work for Matchmaking Based on Semantic
Web Technology,” Proc. 12th Int’l World Wide
Web Conf., World Wide Web Consortium,
2003, p. 48.

h
t

t
p

:/
/

d
s

o
n

lin
e

.c
o

m
p

u
t

e
r

.o
r

g

To receive regular updates, email

dsonline@computer.org

a monthly magazine of the IEEE Computer Society

IEEE Distributed Systems Online

brings you peer-reviewed articles, detailed

tutorials, expert-managed topic areas, and

diverse departments covering the latest news

and developments in this fast-growing field.

Log on http://dsonline.computer.org

for free access to topic areas on

❍ Grid Computing

❍ Mobile & Pervasive

❍ Distributed Agents

❍ Security

❍ Middleware

❍ Parallel Processing

❍ Web Systems

❍ Real Time & Embedded

❍ Dependable Systems

❍ Cluster Computing

❍ Distributed Multimedia

❍ Distributed Databases

❍ Collaborative Computing

❍ Operating Systems

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

