
PageRank algorithm and Monte Carlo methods in PageRank

Computation

Özlem Salehi
2007103004

Abstract

PageRank is the algorithm used by the Google search engine for ranking web pages.
PageRank Algorithm calculates for each page a relative importance score which can be
interpreted as the frequency of how often a page is visited by a surfer. The purpose of this
work is to provide a mathematical analysis of the PageRank Algorithm. We analyze the
random surfer model and the linear algebra behind it which complements the discussion of
Markov Chains in matrix algebra. We also study Monte Carlo type methods for PageRank
computation, which have several advantages over the Power method used by Google: Monte
Carlo methods provide good estimation of the PageRank for relatively important pages
already after one iteration; Monte Carlo methods have natural parallel implementation; and
finally, Monte Carlo methods allow to perform continuous update of the PageRank as the
structure of the Web changes.

1 Introduction

The World Wide Web contains an infinite resource of information. Without the help of
search engines, it would be impossible for us to find the necessary information among billions of
web pages. A search engine is an information retrieval system for the web, which when queried
on some topic returns a list of documents which share same content or relationship to the topic.
A web search engine possesses three major components: a crawler which collects and stores
large amounts of raw data from the web, an indexer which extracts information from the data
collected by the crawler and builds an index so that the data can be searched efficiently for
relevant keywords and phrases and a query engine which responds in real time to queries from
users. An important component of the query engine is the ranking algorithm, which attempts
to rank web pages in order of their relevance to the query.

The first search engine was Archie, which was created in 1990, and was basically a database
of web filenames which could be queried by users. The first commercial search engines came out
in 1994, with the introduction of engines such as Lycos, Infoseek, and AltaVista. These search
engines were text-based, and in that they ranked pages higher which had a high frequency of
the query phase. Such engines were susceptible to spamming, where words are repeated in a
document to increase its ranking [12].

Rapid growth of World Wide Web required more effective ranking algorithms. The idea of
using the link structure of the Web first arose in 1990’s. In 1997 HITS algorithm proposed
by Jon Kleinberg appeared in [1]. In 1998, PageRank algorithm developed by Larry Page and
Sergey Brin appeared in [2]. A third algorithm, Stochastic Approach for Link Structure Analysis
(SALSA) which combined ideas from PageRank and HITS was proposed by Ronny Lempel and
Shlomo Moran in 2000 [4].

1

Our focus in this paper is the PageRank algorithm, the algorithm used by the Google search
engine. PageRank uses the link structure of the Web to produce a relative importance score
for every page so that more important pages can be presented first when a user searches the
web. The motivation behind the algorithm is the citation analysis techniques which date back
to 1940’s. The main goal was to rank academic documents by counting the number of times
they have been cited. One can think of every web page as an academic document and every link
as an academic citation.

In order to keep up with constant modifications in the World Wide Web, Google updates
its PageRank values at least once per month. Google uses the power method in PageRank
calculation which will be discussed in Section 3. Several proposals have been put forward to
accelerate the power method in [6, 7, 8, 9].

Here in contrast, we study Monte Carlo type methods in computation of PageRank. Monte
Carlo methods provide approximate solutions to mathematical problems by performing repeated
sampling experiments. Previously, Monte Carlo type methods have been applied to PageRank
in [9, 5]. Probabilistic Monte Carlo type methods have several advantages over deterministic
methods: the PageRank of important pages is determined with high accuracy already after
the first iteration; MC methods have natural parallel implementation; and MC methods allow
continuous update of the PageRank as the structure of the Web changes.

The paper is designed as follows. In section 2, mathematical formulation of PageRank
is presented. In Section 3, power method which is used by Google to compute PageRank is
analyzed. In Section 4, Monte Carlo methods to compute PageRank is proposed and they
are analyzed in Section 5. We show that the PageRank of relatively important pages can be
determined with high accuracy even after the first iteration.
We denote the indicator function by 1.

2 Formulation of PageRank

The main idea behind assigning a score to any given web page is that the page’s score is
derived from the links made to that page. Let u be a web page. Let Bu be the set of pages that
points to u and let Nu be the number of outgoing links from u. We can define a simple ranking
R as follows[10]:

R(u) =
∑
v∈Bu

R(v)

Nv
. (1)

Note that in this formulation, a link to page u from an important page increases page u’s
score more than a link from an unimportant page. Also, the rank is divided by the number of
outgoing links, since the probability of following the link to page u decreases as the number of
outgoing links increases.

In matrix notation, let Q be a square matrix with rows and columns corresponding to web
pages with:

Qij =

{
1/Ni if page i links to page j,

0 otherwise.

Let r be the PageRank vector with entries R(u), u = 1...n where n is the number of pages.
Then we have rQ = r so that r is a left eigenvector of Q with eigenvalue 1.

Random Surfer Model The definition of PageRank above is simply the stationary distribution
of a random walk on the graph of web. We can think of a random surfer which clicks with equal

2

probability one of the outgoing links and moves to another page. The definition has some
shortcomings which will be discussed next.

Definition 1. A square matrix is called a row stochastic matrix if all of its entries are
nonnegative and entries in each row sum to one.

Dangling Nodes A web with dangling nodes (pages with no outgoing links) produces a matrix
Q which contains one or more rows of all zeroes. Such a matrix must have all eigenvalues less
than or equal to 1, but 1 need not be an eigenvalue for Q. To be able to use some properties of
row stochastic matrices we eliminate the dangling pages. Let P be the matrix defined as:

Pij =

1/Ni if page i links to page j,

1/n if page i has no outgoing links,

0 otherwise,

where n is the number of pages. Now we have a random surfer which jumps to a random page
when stuck in a dangling node.

Proposition 1. Every row stochastic matrix has 1 as an eigenvalue.

Proof. Let M be an n× n row stochastic matrix and let 1 denote an n dimensional row vector
with all entries equal to 1. Since M is row stochastic it is easy to see that for all i = 1...n,
(M1T)i =

∑n
j=1Mij(1

T)j =
∑n

j=1Mij1 = 1 = (1T)i so that 1 is an eigenvalue for P .

Non-Unique Rankings Let V1(P) denote the eigenspace for eigenvalue 1 of matrix P . For
our rankings it is desirable that the dimension of V1(P) is equal to one so that there is a unique
eigenvector r that we can use for importance scores. However it is not always the case. If a
web W consists of k disconnected subsets, then dim(V1(P)) ≥ k and hence there is no unique
importance score vector. This makes intuitive sense since one would expect difficulty in finding
a common reference frame comparing the scores of pages in one subweb with those in another
subweb [10].

Modification to the matrix P We assume that a random surfer continues following the links
with probability c or jumps to a random page with probability 1− c. By this modification, we
get a connected web and we solve the problem mentioned above. Now, we can define the Google
matrix as follows:

P̃ = cP + (1− c) 1

n
E, (2)

where E is a n× n matrix of all ones and the value of c is chosen to be 0.85 in [2].

Proposition 2. If M is positive and row stochastic, then any eigenvector in V1(M) has all
positive or all negative components.

Proof. Suppose that x ∈ V1(M) contains elements of mixed sign. From xM = x, we have∑n
i=1 xiMij = xj and the summands xiMij are of mixed sign. As a result we have

|xj | =
∣∣∣∣ n∑
i=1

xiMij

∣∣∣∣ < n∑
i=1

|xi|Mij

3

Summing both equalities from j = 1 to j = n and swapping the i and j summation we find

n∑
j=1

|xj | <
n∑
j=1

n∑
i=1

|xi|Mij =
n∑
i=1

|xi|
n∑
j=1

Mij =
n∑
i=1

|xi|,

a contradiction. Hence x cannot contain both positive and negative elements.

Proposition 3. Let v and w be linearly independent vectors in Rm, m ≥ 2. Then for some
values of s and t that are not both zero, the vector x = sv + tw has both positive and negative
components.

Proof. Linear independence implies neither v nor w is zero. Let d =
∑

j vj . If d = 0 then v
must contain components of both sign, and taking s = 1 and t = 0 yields the conclusion. If

d 6= 0 set s = −
∑

j wj

d , t = 1, and x = sv+ tw. Since v and w are independent, x 6= 0. However,∑
j xj = 0. We conclude that x has both positive and negative components.

Lemma 1. If M is positive and row stochastic then V1(M) has dimension 1.

Proof. Suppose there are two linearly independent vectors v and w ∈ V1(M). Then for any real
number s and t that are not both zero, the nonzero vector x = sv + tw must be in V1(M) and
so have components that are all positive or all negative by Proposition 2. But by Proposition
3, for some choice of s and t the vector x contains components of mixed sign and we obtain a
contradiction. Hence, we conclude that V1(M) has dimension 1.

By the above lemma, we can conclude that V1(P̃) is one dimensional and the corresponding
eigenvector has entirely positive or negative components. We are thus guaranteed the existence
of a unique eigenvector π ∈ V1(P̃) with positive components such that

πP̃ = π,
∑
i

πi = 1. (3)

3 Power Method in PageRank Computation

The method used by Google in computation of PageRank is the power method [2]. The power
method is that one starts with an initial vector x(0), generates the sequence x(k) = x(k−1)M
and then lets k approach infinity. The vector x(k) is an approximation to the eigenvector for
the largest eigenvalue of M . We first give a proposition and then state a theorem which proves
that the PageRank vector can be computed as the limit of iterations of the Power method.

Definition 2. The 1-norm of a vector v is ||v|| =
∑

j |vj |.

Proposition 4. Let M be a positive row stochastic n×n matrix and let V denote the subspace of
Rn consisting of vectors v such that

∑
j vj = 0. Then vM ∈ V for any v ∈ V , and ||vM || ≤ c||v||

for any v ∈ V , where c = max1≤i≤n|1− 2min1≤j≤nMij | < 1.

Proof. Let w = vM , so that wj =
∑n

i=1 viMij and

n∑
j=1

wj =

n∑
j=1

n∑
i=1

viMij =

n∑
i=1

vi

n∑
j=1

Mij =

n∑
i=1

vi = 0.

4

Hence w = vM ∈ V . To prove the bound in the proposition note that

||w|| =
n∑
j=1

ejwj =
n∑
j=1

ej

n∑
i=1

viMij =
n∑
i=1

vi

n∑
j=1

ejMij =
n∑
i=1

aivi,

where ej = sgn(wj) and ai =
∑n

j=1 ejMij . Note that the ej are not all of one sign, since∑
j wj = 0. Then it is easy to see that

−1 < −1 + 2 min
1≤j≤n

Mij ≤ ai ≤ 1− 2 min
1≤j≤n

Mij < 1

We can thus bound |ai| ≤ |1 − 2min1≤i≤nMij | < 1. Observe that c < 1 and |ai| ≤ c for all i.
Then we have

||w|| =
n∑
i=1

aivi =

∣∣∣∣ n∑
i=1

aivi

∣∣∣∣ ≤ n∑
i=1

|ai||vi| ≤ c
n∑
i=1

|vi| = c||v||

which proves the proposition.

Theorem 1. Every positive row stochastic matrix M has a unique vector q with positive com-
ponents such that qM = q with ||q|| = 1. The vector q can be computed as q = limk→∞ x

(0)Mk

for any initial guess x(0) with positive components such that ||x(0)|| = 1.

Proof. By the above propositions it is clear that there is a unique vector q with positive compo-
nents such that qM = q with ||q|| = 1. Let x(0) be any vector in Rn with positive components
such that ||x(0)|| = 1. We can write x(0) = q+v where q ∈ V (V as in Proposition 4). We find
that x(0)Mk = qMk + vMk = q + vMk. As a result

x(0)Mk − q = vMk.

By Proposition 4 and doing simple induction, ||vMk|| ≤ ck||v|| for 0 ≤ c < 1 (c as in Proposition
4) and so limk→∞ ||vMk|| = 0. We conclude that limk→∞ x

(0)Mk = q.

We have thus proved that the vector π may be computed as the limit of iterations π(k) =
π(k−1)P̃ .

The Power method stops when the required precision ε is achieved. The number of flops
needed for the method to converge is of the order logε

logcnnz(P̃), where nnz(P̃) is the number of

non-zero elements of the matrix nnz(P̃) [9]. We note that the relative error decreases uniformly
for all pages.

4 Monte Carlo Methods in PageRank Computation

Probabilistic Monte Carlo (MC) methods have some principle advantages over the determin-
istic methods: the PageRank of important pages is determined with high accuracy already after
the first iteration; MC methods have natural parallel implementation; and MC methods allow
continuous update of the PageRank as the structure of the Web changes [11]. From equations
(2) and (3) we get,

π = πP̃ = πcP +
1− c
n
πE = πcP +

1− c
n

1

π(I − cP) =
1− c
n

1.

5

Monte Carlo algorithms are motivated by the following formula

π =
1− c
n

1[I − cP]−1, (4)

which directly follows from above, where 1 is the 1×n row vector of ones. Since [I − cP] is non
singular[3], π is uniquely defined by equation (4). Now we can write PageRank of page j as

πj =
1− c
n

n∑
i=1

[I − cP]−1ij . (5)

Consider a random walk {Xt}t≥0 that starts from a randomly chosen page. Assume that at
each step the random walk makes a transition according to the matrix P with probability c or
terminates with probability (1− c). Then it follows from (4) that the end-point of this random
walk (the last visited page before the random walk terminates) appears to be a sample from the
distribution π. Thus, after repeating the process many times, the estimate for πj for j = 1...n
can be determined as the number of times the random walk terminates at page j divided by the
total number of random walks. Hence, one can suggest the following algorithm:

Algorithm 1. MC end-point with random start. Simulate N runs of the random walk
{Xt}t≥0 initiated at a randomly chosen page. Evaluate πj as a fraction of N random walks
which end at page j.

Probability that k out of N random walks end at page j can be given by
(
N
k

)
πkj (1− πj)N−k.

Let π̂j,N be the estimator of πj obtained by Algorithm 1. Let Kj be the number of random
walks that end at page j. Then,

E(π̂j,N) = E
[
Kj

N

]
=

E[Kj]

N
=
Nπj
N

= πj ,

V ar(π̂j,N) = V ar

(
Kj

N

)
=

1

N2
V ar(Kj) =

1

N2
Nπj(1− πj) = N−1πj(1− πj).

In order to improve the estimator π̂j , one can think of various ways of variance reduction.
We can view πj as a given number (1/n) multiplied by a sum of conditional probabilities vij =
(1− c)[I− cP]−1ij that the random walk ends at j given that it started at i. Since n is known, an
unnecessary randomness in experiments can be avoided by taking N = nm and initiating the
random walk exactly m times from each page in a cyclic fashion, rather than jumping N times
to a random page. This results in the following algorithm.

Algorithm 2. MC end-point with cyclic start. Simulate N = nm runs of random walk
{Xt}t≥0 initiated at each page exactly m times. Evaluate πj as a fraction of N random walks
which end at page j.

Let Kij be the number of random walks initiated at i and ended at j. Then the estimator

suggested by Algorithm 2 can be expressed as ˆ̂πj = 1
N

∑n
i=1Kij .

For this estimator, we have

E[ˆ̂πj] = E
[

1

N

n∑
i=1

Kij

]
=

1

n

1

m

n∑
i=1

E[Kij] =
1

n

1

m

n∑
i=1

mvij =
1

n

n∑
i=1

vij = πj

6

V ar(ˆ̂πj) = V ar

(
1

N

n∑
i=1

Kij

)
=

1

N2

n∑
i=1

V ar(Kij) =
1

N2

n∑
i=1

m(1− vij)(vij)

=
m

N2

(n∑
i=1

vij −
n∑
i=1

v2ij

)
=

m

N2

(
nπj −

n∑
i=1

v2ij

)

= N−1
(
πj −

1

n

n∑
i=1

v2ij

)

By using Cauchy-Schwarz inequality we get
(∑n

i=1
1
nvij

)2
<
∑n

i=1
1
n2

∑n
i=1 v

2
ij . Using this in-

equality we obtain

V ar(ˆ̂πj) < N−1
(
πj −

1

n2

(n∑
i=1

vij

)2)
= N−1(πj − π2j) = N−1πj(1− πj) = V ar(π̂j).

Besides variance reduction, the estimator V ar(ˆ̂πj) has important advantages in implemen-
tation because it avoids the difficulty of picking a page at random.

Another way of reducing the variance is to rewrite the formula (4) as

π =
1− c
n

1
∞∑
k=0

ckP k. (6)

Hence we get,

πj =
(1− c)
n

n∑
i=1

∞∑
k=0

ckP kij . (7)

Note that
∑∞

k=0 c
kP kij can be regarded as the average number of times that the random walk

{Xt}t≥0 visits a page j given that the random walk started at page i. Thus, we can propose an
estimator based on a complete path of the random walk.

Algorithm 3. MC complete path. Simulate the random walk {Xt}t≥0 exactly m times from
each page. Evaluate πj as the total number of visits to page j multiplied by (1− c)/(nm).

Now let Kij denote the number of visits to page j given that the random walk {Xt}t≥0
initiated from page i. We can express the estimator for Algorithm 3 as π̃j = 1−c

nm

∑n
i=1Kij . We

denote the indicator function by 1. Then we have

E[π̃j] = E
[

1− c
nm

m

n∑
i=1

Kij
]

=
1− c
n

n∑
i=1

E[Kij] =
1− c
n

n∑
i=1

∞∑
k=0

E[1{Xk=j}|X0 = i]

=
1− c
n

n∑
i=1

∞∑
k=0

P(Xk = j|X0 = i) =
1− c
n

n∑
i=1

∞∑
k=0

ckP kij

= πj .

Algorithm 3 can be further improved by getting rid of the artifacts in matrix P related to
dangling pages. When a random walk reaches a dangling node, it jumps with uniform probability

7

to an arbitrary page. Clearly, it is more efficient to terminate the random walk once it reaches a
dangling node. Thus, we aim to rewrite (4) in terms of the original hyperlink matrix Q defined
as

Qij =

{
1/Ni if page i links to page j,

0 otherwise.

Denote by I0 the set of dangling pages and by I1 = {1...n}\I0 the set of pages which have
at least one outgoing link. It follows from (2) and (3)

πj = c
n∑
i=1

πiPij +
(1− c)
n

n∑
i=1

πi = c

n∑
i=1

πiQij + γ, (8)

γ =
c

n

∑
i∈I0

πi +
(1− c)
n

<
1

n
. (9)

Writing equation (8) as π = πcQ+ γ1, leads to the new expressions for π and πj :

π = γ1[I − cQ]−1, (10)

πj = γ

n∑
i=1

[I − cQ]−1ij . (11)

Consider now a random walk {Yt}t≥0 which follows links exactly as {Xt}t≥0 except the
transitions are governed by matrix Q instead of matrix P . Thus, the random walk {Yt}t≥0 can
be terminated at each step with probability (1 − c) or when it reaches a dangling page. The
element wij of the matrix W = [I − cQ]−1 is the average number of visits of {Yt}t≥0 to page j
given that the random walk started at page i. Denote w.j =

∑n
i=1wij . Summing πj in equation

(11) from j = 1 to j = n we get
∑n

j=1 πj = γ
∑n

j=1

∑n
i=1wij . Since the coordinates of π sum

up to 1, we have 1 = γ
∑n

j=1w.j . Then it follows,

γ =

(n∑
j=1

w.j

)−1
. (12)

Replacing γ back in equation (11) we obtain

πj =

(n∑
j=1

w.j

)−1
w.j . (13)

This calls for another version of the complete path method.

Algorithm 4. MC complete path stopping at dangling nodes. Simulate the random walk
{Yt}t≥0 starting exactly m times from each page. Evaluate πj as the total number of visits to
page j divided by the total number of visited pages.

Let Wij be a random variable distributed as number of visits to page j by the random walk

{Yt}t≥0 given that the random walk initiated at page i. Let W(l)
ij , l ≥ 1 be independent random

variables distributes as Wij . Then the estimator produced by Algorithm 4 can be written as

π̄j =

(m∑
l=1

n∑
j=1

W(l)
.j

)−1(m∑
l=1

W(l)
.j

)
(14)

8

Analysis of this estimator will be presented in the next section. We note that the complete
path versions of Monte Carlo methods also admit a random start. The corresponding algorithm
is as follows.

Algorithm 5. MC complete path with random start stopping at dangling nodes.
Simulate N samples of the random walk {Yt}t≥0 started at a random page. Evaluate πj as the
total number of visits to page j divided by the total number of visited pages.

One can show that Algorithm 4 provides an estimator with a smaller variance than Algorithm
5. Let Wuj be the number of visits to page j from a randomly chosen page u ∈ {1...n}. Then,
we have

V ar(Wuj) = V ar(
n∑
i=1

1{u=i}Wij)

=
n∑
i=1

V ar(1{u=i}Wij) + 2
n∑
i<k

Cov(1{u=i}Wij ,1{u=k}Wkj)

=
n∑
i=1

E[(1{u=i}Wij)
2]−

n∑
i=1

E[1{u=i}Wij]
2 + 2

n∑
i<k

E[1{u=i}Wij1{u=k}Wkj]

− 2
n∑
i<k

E[1{u=i}Wij]E[1{u=k}Wkj]

=
1

n

n∑
i=1

E[W2
ij]−

1

n2

n∑
i=1

E[Wij]
2 + 0−

((1

n

n∑
i=1

E[Wij]
)2
− 1

n2

n∑
i=1

E[Wij]
2

)

=
1

n

n∑
i=1

E[W2
ij]−

(1

n

n∑
i=1

E[Wij]
)2

=
1

n

n∑
i=1

V ar(Wij) +
1

n

n∑
i=1

E[W2
ij]−

(1

n

n∑
i=1

E[Wij]
)2

>
1

n

n∑
i=1

V ar(Wij).

since 1
n

∑n
i=1 E[W2

ij] >
(

1
n

∑n
i=1 E[Wij]

)2
follows from the Cauchy-Schwarz inequality.

Note that Algorithm 4 generates m samples of the sum
∑n

i=1(Wij), whereas Algorithm 5
generates N = mn samples ofWuj . Hence, Algorithm 4 generates random variables with smaller
variance in both numerator and denominator of (14).

5 Analysis of Monte Carlo methods

From the preliminary analysis of the previous section, we can already conclude that MC
algorithms with cyclic start are preferable to the analogous MC algorithms with random start.
In the present section we analyze and compare MC complete path stopping at dangling nodes
with MC end point. We show that MC complete path stopping at dangling nodes outperforms
MC-end-point.

We start by studying the properties of Wij ’s. Denote by qij the probability that starting
from page i, the random walk {Yt}t≥0 reaches page j. Note that in this definition, qjj < 1 is the

9

probability to return to page j given that the random walk started at page j. It follows that
Wij has geometric distribution with parameter 1− qjj ≥ 1− c:

P(Wjj = k) = qk−1jj (1− qjj),

E[Wjj] =
1

1− qjj
,

V ar(Wjj) =
qjj

(1− qjj)2
.

Further, one can show that

P(Wij = k) =

{
1− qij , x = 0

qijP(Wij = k), x = 1, 2...

E[Wij] = wij = qijE[Wij] =
qij

1− qij
, (15)

V ar(Wij) = E[W2
ij]− E[Wij]

2 = qijE[W2
jj]− w2

ij = qij
1 + qjj

(1− qjj)2
− w2

ij =
1 + qjj
1− qjj

wij − w2
ij .

Assuming that all W.j ’s are independent, we immediately obtain

E[W.j] =
n∑
i=1

wij = w.j , (16)

V ar(W.j) =
1 + qjj
1− qjj

w.j −
n∑
i=1

w2
ij <

1 + qjj
1− qjj

w.j , (17)

E[W] =
n∑
j=1

w.j = γ−1.

Let the empirical mean W̄ij = 1
m

∑m
l=1W

(l)
ij be the estimator of wij , and view W̄.j =∑n

j=1 W̄ij and W̄ =
∑n

j=1 W̄.j as estimators of w.j and γ−1 respectively. The estimator (14) can
be written as

π̄j = W̄−1W̄.j . (18)

Since the first term in (18) is same for every j, the estimator π̄j is completely determined by
W̄.j .

The following lemma gives us upper bounds for the expected value and the variance of
number of transitions of the random walk {Yt}t≥0, which will be useful in our further discussion.

Lemma 2. Let Wi. =
∑n

j=1Wij be the length of random walk {Yt}t≥0 initiated at page i. Then

for all dangling nodes i ∈ I0, it holds Wi. = 1 and for non-dangling nodes i ∈ I1, E[Wi.] ≤ 1
1−c

and V ar(Wi.) ≤ c(1+c3)
(1−c)2 .

Proof. The statement for dangling nodes is obvious. For non dangling nodes, the statement

of the lemma follows from the fact Wi.
d
= min{X,Ni}, where Ni is the number of transitions

needed to reach a dangling node from page i, and X has geometric distribution with parameter

10

1 − c with E[X] = 1
1−c and V ar(X) = c

(1−c)2 . The upper bound for the expectation of Wi.

follows directly from the identity Wi.
d
= min{X,Ni}.

For the variance, by using the law of total variance we write

V ar(Wi.) = E[V ar(Wi.|Ni)] + V ar(E[Wi.|Ni]).

For the first term of the equality, our claim is that E[V ar(Wi.|Ni)] < V ar(X). Conditioning
on events Ni = x,

V ar(Wi.|Ni = x)− V ar(X) = E[W2
i.|Ni = x]− E[X2] + E[X]2 − E[Wi.|Ni = x]2.

First, we look at the first two terms of the above equality.

E[W2
i.|Ni = x]− E[X2] =

x−1∑
k=1

k2ck−1(1− c) + x2P(X ≥ x)−
∞∑
k=1

k2ck−1(1− c)

= x2cx−1 −
∞∑
k=x

k2ck−1(1− c)

=

∞∑
k=x

x2ck−1(1− c)−
∞∑
k=x

k2ck−1(1− c).

= −2x

∞∑
k=x

(k − x)ck−1(1− c)−
∞∑
k=x

x2ck−1(1− c) + 2

∞∑
k=x

kxck−1(1− c)−
∞∑
k=x

k2cx−1(1− c)

= −2x

∞∑
k=x

(k − x)ck−1(1− c)−
∞∑
k=x

(k − x)2ck−1(1− c)

= −2x
∞∑
k=1

(k − 1)ck−1+x−1(1− c)−
∞∑
k=1

(k − 1)2ck−1+x−1(1− c)

= cx−1
(
− 2x

∞∑
k=1

(k − 1)ck−1(1− c)−
∞∑
k=1

(k − 1)2ck−1(1− c)
)

= cx−1(−2xE[X − 1]− E[(X − 1)2])

= cx−1
−2xc(1− c)− (c+ c2)

(1− c)2

Next, we look at the term E[X]2 − E[V ar(Wi.|Ni = x)]2 in more detail.

E[X]2 − E[V ar(Wi.|Ni = x)]2 =
(
E[X]− E[V ar(Wi.|Ni = x)]

)(
E[X] + E[V ar(Wi.|Ni = x)]

)

11

E[X]− E[V ar(Wi.|Ni = x)] =
∞∑
k=1

kck−1(1− c)−
x−1∑
k=1

kck−1(1− c)− xP(X ≥ x)

=
∞∑
k=x

kck−1(1− c)− xcx−1

=
∞∑
k=0

(k + x)ck−1+x(1− c)− xcx−1

=
∞∑
k=0

kck−1+x(1− c) +
∞∑
k=0

xck−1+x(1− c)− xcx−1

= cx−1
c

1− c
+ cx−1x− xcx−1

=
cx

1− c

Now replacing these back at the original equation we have

V ar(Wi.|Ni = x)− V ar(X) = cx−1
−2xc(1− c)− (c+ c2)

(1− c)2
+

cx

1− c

(
2E[X]− cx

1− c

)
= cx−1

−2xc(1− c)− (c+ c2) + 2c− c(cx−1)
(1− c)2

= cx
−2x(1− c)− 1− c+ 2− cx−1

(1− c)2

= cx
(1− c)(−2x+ 1)− cx−1

(1− c)2
< 0.

Thus E[V ar(Wi.|Ni)]− V ar(X) < 0. Furthermore we derive

E[Wi.|Ni = x] =

x−1∑
k=1

kP(X = k) + xP(X ≥ k) =

x−1∑
k=1

ck−1 =
1− cx+1

1− c
,

and thus the variance of E[Wi.|Ni = x] satisfies

V ar(E[Wi.|Ni = x]) =
c2V ar(cx)

(1− c)2
≤ c4

(1− c)2
,

since for non-dangling nodes the random variable cx takes values only in the interval [0, c]. So,
we have

V ar(Wi.) <
c

(1− c)2
+

c2

(1− c)2
=
c(1 + c3)

(1− c)2
,

which completes the proof of our lemma.

Theorem 2. Given the event that the estimator W̄.j satisfies |W̄.j − w.j | ≤ εw.j, the event
|π̄j − πj | ≤ εn,βπj occurs with probability at least 1 − β for any β > 0 and εn,β satisfying

|ε−εn,β| < C(β)(1+ε)√
nm

. The factor C(β) can be approximated as C(β) ≈ x1−β/2
√

n−n0
n (1 + c3) c

1−c ,

where x1−β/2 is a 1− β/2-quantile of the standard normal distribution and n0 is the number of
dangling nodes.

12

Proof. Using (12) and (13) we derive

π̄j − πj = W̄.jW̄−1 − πj
= W̄.jW̄−1 − w.jW̄−1 + w.jW̄−1 − πj
= W̄.jW̄−1 − w.jW̄−1 + γ−1W̄−1πj − πj
= γ(γW̄)−1(W̄.j − w.j) + πj((γW̄)−1 − 1)

≤ γ(γW̄)−1εw.j + πj((γW̄)−1 − 1)

= επj − επj + γ(γW̄)−1εw.j + πj((γW̄)−1 − 1)

= επj + επj((γW̄)−1 − 1) + πj((γW̄)−1 − 1)

= επj + ((γW̄)−1 − 1)(ε+ 1)πj .

Let us now investigate the term (γW̄)−1. First, note that the random variables W̄i. =∑n
j=1 W̄ij , i ∈ I1 are independent because they are determined by simulation runs initiated at

different pages. Further, for a non-dangling node i, using Lemma 2 we find E[W̄i.] =
∑n

j=1wij

and V ar(W̄i.) = 1
mV ar(Wi.) ≤ 1

m
c(1+c3)
(1−c)2 .

Thus, W̄ equals the number of non-dangling nodes n0 plus the sum of n − n0 independent
random variables W̄i., i ∈ I1. Since the number n−n0 is obviously very large, W̄ is approximately

normally distributed with mean γ−1 and variance V ar(W̄) =
∑

i∈I1 V ar(W̄i.) ≤ (n−n0) c(1+c
3)

m(1−c)2 .

Hence, γW̄ is approximately normally distributed with mean 1 and variance

V ar(γW̄) ≤ γ2(n− n0)
c(1 + c3)

m(1− c)2
<
n− n0
n2

c(1 + c3)

m(1− c)2
.

Now we look for the εn,β which will satisfy the statement of our theorem.

P(|π̄j − πj | ≤ εn,βπj) ≥ P(επj + |(γW̄)−1 − 1|(1 + ε)πj ≤ εn,βπj)

= P
(
|(γW̄)−1 − 1| ≤

|ε− εβ,n|
1 + ε

)
= P

(
|(γW̄)−1 − 1| ≤ C(β)√

nm

)
.

Let us consider a (1−β)-confidence interval defined as P(|(γW̄)−1−1| ≤ z) ≥ 1−β for some
small positive β and z. If z is small enough so that 1/(1 − z) ≈ 1 + z and 1/(1 + z) ≈ 1 − z,
then the above probability approximately equals P(|γW̄ − 1| ≤ z) and the inequality holds for

all z satisfying z ≥ x1−β/2 c
1−c

√
n−n0
n (1 + c3) c

1−c
1√
nm

so that P(|(γW̄)−1− 1| ≤ C(β)√
nm

) ≥ 1− β is

true for

C(β) ≈ x1−β/2

√
n− n0
n

(1 + c3)
c

1− c
.

Consider the confidence interval for W̄.j defined as P(|W̄.j −w.j | < εw.j) ≥ 1−α. From (16)

and (17), we have E[W̄.j] = w.j and V ar(W̄.j) ≤ 1
m

1+qjj
1−qjjw.j . Since W̄.j is a sum of large number

of terms, the random variable (W̄.j − w.j)/
√
V ar(W̄.j) has approximately a standard normal

distribution. Thus, we have
εw.j√

V ar(W̄.j)
≥ x1−α/2,

13

which results in

m ≥ 1 + qjj
1− qjj

x21−α/2

ε2w.j
. (19)

So, as m goes to infinity, condition of the theorem is satisfied and therefore the estimator π̄j
converges to πj in probability. Thus the estimator π̄j is consistent.

The theorem also states that the error in the estimate of πj originates mainly from estimating

w.j . The additional relative error caused by estimating γ as
(∑
W̄.j

)−1
, is of the order 1/

√
mn

with arbitrarily high probability, and thus this error can be neglected.
Now, applying w.j = γ−1πj to (19), we get

m ≈ 1− qjj
1− qjj

γx1−α/2

ε2πj
.

Note that πj ≥ γ for all j = 1...n. Thus, with a high probability, a couple of hundred iterations
allows to evaluate the PageRank of all pages with relative error at most 0.1. In practice, however
it is essential to evaluate well the PageRank of important pages in a short time. Therefore, let
us evaluate the relative error ε for a given value of πj . Using (9), we derive

ε ≈ x1−α/2

√
1 + qjj
1− qjj

√
1− c+ c

∑
i∈I0 πi

√
πj
√
mn

. (20)

From the examples of PageRank values presented in [2], it follows that the PageRank values
of popular pages are at least 104 times greater than the PageRank values of average pages.
Since the PageRank value is bounded from below by (1 − c)/n, the formula (20) implies that
if the important pages have PageRank values 104 times larger than the PageRank of the pages
with minimal PageRank value, the Monte Carlo method achieves an error of about %1 for the
important pages already after the first iteration.

Let us now compare the precision of the end-point version and the complete path version of
the Monte Carlo methods. According to Algorithm 1, the end-point version estimates πj simply
as a fraction of N = mn random walks that end at page j. We can construct a confidence
interval as follows:

P(π̂j,N − πj |) < επj) = 1− α.

Using again the standard normal distribution, we get

ε = x1−α/2

√
1− πj

√
πj
√
mn

. (21)

Forgetting for a moment about slight corrections caused by the trade-off between random
and cyclic start, we see that the choice between end-point version and the complete path version
essentially depends on two factors: the total PageRank of dangling nodes and the probability
of a cycle when a random walk started from j returns back to j. If the Web graph has many
short cycles, then the information from registering visits to every page is obtained at cost of high
variability which leads to a worse precision. Also if the total rank of dangling nodes is high, then
the random walk will often reach dangling nodes and stop. This can have negative impact on the
complete path algorithm. The two points mentioned above can make the difference between the
end-point and the complete-path versions negligible. However the experiments in [11] indicate
that the complete path version is more efficient than the end-point versions when the real Web
structure is considered. For further information on numerical experiments, one can look at [11].

14

We remark that if the results of the first iteration are not satisfactory, it is hard to improve
them by increasing m. After m iterations, the relative error of the Monte Carlo method will
reduce on average only by factor 1/

√
m whereas the error of the power iteration method decreases

exponentially with m. However, because of simplicity in implementation, the Monte Carlo
algorithms can be still advantageous even if a high precision is required.

Finally, we would like to emphasize that the Monte Carlo algorithms have natural parallel
implementation and they allow to perform a continuous update of the PageRank vector. Google
prefers to recompute the PageRank vector starting from the uniform distribution rather than
the PageRank vector of the previous month as initial approximation and it takes about a week
to compute the new PageRank vector. We suggest to run Monte Carlo algorithm continuously
while the database is updated with new data. Hence, we would have an up-to-date estimation
of the PageRank for relatively important pages with high accuracy. Then once in a while, one
can run the power iteration method to have a good PageRank estimation for all pages.

References

[1] J. Kleinberg, Authoritative sources in a hyperlinked environment, Proceedings of the ninth
annual ACM-SIAM symposium on Discrete algorithms (Philadelphia, PA, USA), SODA ’98,
Society for Industrial and Applied Mathematics, 1998, pp. 668–677.

[2] L. Page and S. Brina and R. Motwani and T. Winograd, The pagerank citation ranking:
Bringing order to the web, Stanford University Technical Report, 1998.

[3] C. Meyer, Matrix analysis and applied linear algebra, SIAM, 2000, 527.

[4] R. Lempel and S. Moran, Salsa: the stochastic approach for link-structure analysis, ACM
Trans. Inf. Syst. 19 (2001), 131–160.

[5] L.A. Breyer, Markovian page ranking distributions:some theory and simulations, Tech. re-
port, 2002, available at http://www.lbreyer.com/preprints.html.

[6] S.D. Kamvar and T.H. Haveliwala and C.D. Manning and G.H. Golub, Adaptive methods
for the computation of pagerank, Tech. report, Stanford University, 2003.

[7] , Extrapolation methods for accelerating pagerank computations, 2003, pp. 261–270.

[8] A.N. Langville and C. Meyer, Survey: Deeper inside pagerank, Internet Mathematics 1
(2003), no. 3, 335–380.

[9] , Updating pagerank with iterative aggregation, Proceedings of the 13th international
World Wide Web conference on Alternate track papers & posters (New York, NY, USA),
ACM, 2004, pp. 392–393.

[10] K. Bryan and T. Leise, The $25,000,000,000 eigenvector: the linear algebra behind google,
SIAM Review 48 (2006), 569–581.

[11] K. Avrachenkov and N. Litvak and D. Nemirovsky and N. Osipova, Monte carlo methods
in pagerank computation: When one iteration is sufficient, SIAM J. Numer. Anal. 45 (2007),
890–904.

[12] A. Bonato, A course on the web graph, American Mathematical Society, Boston, MA, USA,
2008, 97–110.

15

