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5.4 Quantum Teleportation

Alice wants to send the state of her qubit to Bob but she has access to only classical channel.

We will assume that Alice and Bob share an entangled pair of qubits. In that case
quantum state of Alice can be sent using a classical channel sending only two classical bits.

Alice and Bob initially share the Bell state |By) = f|00> \/5|11>.

Alice has the first and Bob has the second qubit. Suppose that Alice wants to send state
|¢) = «|0) + B]1). The state of the overall three qubits is given by

16| Boo) = (a0} + B1)) @ (%mow%uw)

_ % (]000) + a|011) + B[100) + B[111))

where the first qubit is the qubit to be sent, and the last two qubits are the entangled
pair.

e Alice applies CNOT to her own qubits where the qubit she wants to send is the control.

%(ayoom + @|011) + B]110) + B8]101))

e Alice applies H to the qubit she wants to send (first qubit).

1 ((a|000> +a]100)) | (af011) +a[111)) | (8J010) — F[110))  (5[001) — 5|101>))
V2 V2 V2 V2 V2

= 2 (00) (00} +511)))+5 (01 @ (510)+0[1))+ 5 (110)@(al0) ~ 1)+ 5 (1) B(~5]0) +01)))



e Alice measures her own qubits.
e Alice sends the measurement outcome to Bob - two bits of classical information.

e Depending on the measurement outcome, Bob either applies I, X, Z or X and Z to his
qubit.

Measurement of Alice | State of Bob’s qubit | Operation by Bob

| |
Hooy | aloy+Blny | I
L01) [ B0Y+all) X
1110) | al0) — B|1) | Z
}1|11) ‘ —50) + a|1) ‘ first X, then Z

At the end of the protocol, Bob’s qubit is now exactly in the state a|0) 4+ 3|1), whereas
Alice’s qubit is destroyed. Copying a qubit is not possible due to No Cloning Theorem.
Note that this is not faster than light speed as we also need classical communication.



6 Introductory Quantum Algorithms

In this section we will be talking about some basic quantum algorithms.

6.1 Simulating Classical Gates and Algorithms

Any irreversible computation can be transformed into a reversible computation. We con-

struct a circuit with three inputs and three outputs, so that input is a part of the output as
well, so that the computation is reversible.

Example:
in in | out
0 0] 0O ) X
AND 0 (1) 8 X, X,
1
y &G (x ax,)
1 111 Y ot

We construct the following table setting y = 0 and see that we can use Toffoli (CCX)
gate to implement AND gate in a reversible manner.

iIn in out|in in out

o 0 ]0 0 O

—_= O O

1 010 1 0
o 0|1 0 O
1 0|1 1 1

Example: Let’s implement OR gate using CNOTs and CCNQOTs.

in in | out
0 0] 0 X, X
OR 0 1 1 x, T X,
1 0 1 ¥ y @D (x,Vx)
1 1 1

In in out|in in out

— = O O




Consider any arbitrary function f{0,1}” — {0,1}. Such a function can be implemented
by a unitary operator as follows.

:g— xg

| — —Ki
KZ? Uf ._IKZ

y : fx) Dy

Up = |0)y) = |2}y @ f(2))

6.2 Phase Kickback

Consider a unitary operator Uy : |z)|y) — |z)|y @& f(x)). Let’s set |y) to be |—) = 7§|O> —
\/L§|1>

. 0) — 1) Ur(|2)10) = Up(l2)[1)\ _ [0)]f(z)) — |2)[1 & f(x))
() » (G )

Consider the two cases:

]0) [ (10) — 1)
2 "”( 2 )

|)[1) — [2)[0) _ 1) —10)
o (1)

We can write it as

U : |2)]=) = (=1)T@z)|-).

This is called phase kickback, as the phase -1 is kicked back in front of the first register
when f(z) = 1. In fact, when f(z) = 1, its effect is applying a NOT gate and the state |—)

is an eigenstate of the NOT operator with eigenvalue -1, that is, NOT|—) = -|—).



6.3 Deutsch Algorithm

Problem: Suppose we are given a function f{0,1} — {0,1}. We say that f is
e Constant if f(0) = f(1),
e Balanced if f(0) # f(1).

The aim is to understand whether f is constant or balanced by making queries to f.
Note that we treat f as a black box or an oracle. That is, we make queries to f but we
cannot look inside it.

(Classically, we need to make 2 queries to decide if f is constant or balanced. Now we
will see that, Deutsch algorithm makes only 1 queries to decide whether f is constant or
balanced.

To start with note that

o If f is constant, then f(0) ® f(1) =0

o If f is balanced, then f(0) & f(1) =1

Suppose that we are given the following operator Us|x)|y) — |z)|y & f(z)).

1% Try: Initially, let |x) = 0 and |y) = 0, then apply H to |z):

00) (%m n %m) 0)

~ o0y + 210y
BRZARARY

Now apply Uy:

U, (%mm + %um)
_ %Uf|00> + %Umm

1
= EIOHO @ f(0)) +

_ 1y 1
V2

1
ﬁ!lﬂ()@f(l»

)F0) + —=[DIFM)

v

We computed f(0) and f(1) in superposition. But it is not enough since if we make an
observation we either observe |0)|f(0)) or [1)|f(1)).



Algorithm:
e Apply H to the first qubit (input).
e Set the second qubit to state |—).
e Apply Uy.

e Apply H to the first qubit again.

Implementation:
H H
uf
X H
Analysis:
We start in
[¢) = 0)]=).

Apply H to the first qubit:

1 1
) = (E'(’) " E'”) )

Apply Uy: X )
|th1) = EIOH—) + E'DH
VORI | O
Check that:

(_1)f(0)(_1)f(1) — (_1)f(0)esf(1)

_1f0)®f(1)
o) = (—1)® (‘O> * - - >|1>) oy

H—D)IO (=) O (—1)ID) = (—1)f D)



o If f is constant, f(0) & f(1) =0

_ ol
) = (-1 Ly
e If f is balanced, f(0) ® f(1) =1
@l
A

Apply H to first qubit, if f is constant we get:
[1s) = (=170} =)

If f is balanced we get:
[¥s) = (=1)/O11)|-)

Measure the first qubit. If it is 0, then f is constant, and if it is 1, then f is balanced.
We determine whether f is constant or balanced with probability 1 by making only a single

query.



