
TURKISH-ENGLISH SENTENCE ALIGNMENT

by

Ahmet Mustafa Güngör

&

�erafettin Ta�cı

Submitted to the Department of Computer Engineering

in the Faculty of Engineering as

CMPE 492

Senior Project

Bo�aziçi University

2006

 1

ABSTRACT

TURKISH-ENGLISH SENTENCE ALIGNMENT

 Sentence alignment is an important subject in Machine Translation. An aligned parallel

corpus provides aid to human translators since it is possible to look up all sentences in which a

word or a phrase occurs to see the ways in which that word or phrase has been translated into the

other language. Sentence alignment is also a first step towards word alignment, which is used to

determine instances where a word in one language consistently appears in sentences aligned with

sentences containing the equivalent word in the other language. It is also used in extracting

structural and semantic information and deriving statistical parameters from bilingual corpora.

 In this project our aim is to design a sentence alignment algorithm for using with

bilingual texts in which one of the texts is Turkish. In our method, we use the location

information of sentences and paragraphs as well as the lengths of them for aligning the bilingual

texts. This method is quite easy to implement and independent of the languages of the bilingual

texts. The results of the experiments we did show that our method’s success is related with the

success in paragraph alignment phase. When the paragraph alignment is successful, if the text is

easy (90% 1-1 beads) it has 96.1% accuracy. If the text is difficult (65% 1-1 beads), it has

lower (about 70.3%) but still a high accuracy with respect to the difficulty of the text. However

if it makes too many errors in paragraph alignment, which is a rare case, it gives continuous

blocks of wrong alignment beads.

 In this paper, we also propose the difficulties and challenges in Turkish-English sentence

alignment and provide a bilingual resource bundle for using in following studies about sentence

alignment.

 2

TABLE OF CONTENTS

ABSTRACT ... 1

TABLE OF CONTENTS.. 2

1. INTRODUCTION ... 4

1.1. Definition of Problem.. 5

1.2. Motivation for the Project.. 6

2. BACKGROUND AND PREVIOUS WORK.. 7

2.1. Length-Based Approaches... 8

2.1.1 Goal .. 8

2.1.2 Proposed Methods ... 8

2.2. Location-Based Approaches .. 9

2.2.1 Proposed Methods ... 9

2.3. Lexical Approaches..10

2.3.1 Proposed Methods ..10

3. LITERATURE SURVEY ...11

3.1. Gale&Church: A Program for Aligning Sentences in Bilingual Corpora11

3.2.Wu:Aligning a Parallel English-Chinese Corpus Statistically with Lexical Criteria.12

3.3. Moore: Fast and Accurate Sentence Alignment of Bilingual Corpora12

3.4. Melamed: A Geometric Approach to Mapping Bitext Correspondance12

3.5. Sheng: Aligning Bilingual Corpora Using Sentences Location Information..........13

3.5.1 Proposed Methods ..13

4. DATA COLLECTION..15

4.1. Resources ...15

4.2. Organization of Resources..16

5. PROGRAM DESIGN ...19

5.1. Overview..19

5.1.1 Input...19

5.1.2 Output ..19

5.1.3 External Resources ...21

 3

5.2. Algorithm...22

5.2.1 Flowchart ...22

5.2.2 Summary of General Principles ..23

5.2.3 General Principle..24

5.2.3.1 Scoring ..24

5.2.3.2 Initializing Arrays..25

5.2.3.3 Paragraph and Sentence Alignment Procedure ...26

5.2.3.4 Differences in Sentence Alignment Procedure ...28

5.2.3.5 alignings Array..29

5.2.3.6 Calculation of Upper and Down Lengths of All Paragraphs29

5.2.3.7 Showing the Results ..30

5.2.4 Functions, Variables, Classes..30

5.2.4.1 Functions...30

5.2.4.2 Classes ..31

5.2.4.3 Variables ...31

5.2.5 Pseudocode...32

6. EXPERIMENTS...36

7. EVALUATION OF RESULTS AND FUTURE WORK ...38

8.REFERENCES ...39

APPENDIX A: RESOURCES TABLE..40

 4

1. INTRODUCTION

1.1 Definition of Problem

Recently, sentence alignment task in machine translation gained more importance.

Sentence alignment is the task of finding correspondences of sentences in one language and

another. It is a first step before the more ambitious task called word alignment. Basically,

alignment aims to succeed the task of extracting structural information and statistical parameters

from bilingual corpora.

At first sight, this process might seem very easy but it has some important challenges

which make the task difficult:

First of all, most of the time sentences do not align one-to-one. Sometimes a sentence

may be translated in 2-3 sentences in the other language or some part of a text may be deleted or

some additional sentences may be added to the text which has no matches in the corresponding

text. Even the existence of a small amount of such sentences results in remarkable deviations in

the matching of sentence beads.

Secondly, there is the problem of robustness. In real life, most of the texts have great

inconsistencies with their translation such as the layout of texts, format differences, omission of

some part of text and crossovers or inversions in text. The sentence alignment algorithms and

programs must be devised in such a way to deal with such diverse situations and problems.

Finally, the problem of accuracy always exists. It is not easy to achieve perfect, % 100

accurate alignments even if the texts are “clean” and easy. Also the accuracies vary largely

according to the input text. For example an alignment program may give wonderful results when

applied on a scientific text but its success decline dramatically when applied on a novel or

philosophy text.

 For a sentence alignment program to be called “ideal”, it should be fast, highly accurate

and require no special knowledge about the corpus or the two languages. In real world achieving

all of these goals is a difficult task because of the following characteristics of real text:

 5

1) There are no strict aligned paragraph boundaries in real bilingual text. Some texts have

return character at the end of each line. It makes it difficult to determine if a newline

means a new paragraph or not.

2) In many cases it is even difficult to parse the sentences because of the variance in the

ending and starting characters of the sentences. In addition, the text may have many

punctuation errors or symbols, pictures, etc. which make it impossible to determine the

boundaries of sentences without knowing their meanings.

3) Some paragraphs or sentences may be merged into a larger paragraph or

 sentence because of the translator’s individual idea;

4) There are many complex translation patterns in real text. For example, in some texts

there is the problem of crossing dependencies in which the order of sentences are

changed in the translation. In many algoriths for sentence alignment, this situation is

problematic and generally ignored.

5) There exist different styles and themes;

6) Different genres have different inherent characteristics. While an algorithm is perfect

in a special kind of text, it may not be successful in another type of text. So, if the

researcher wants to devise a method suitable for all kinds of texts, researcher must make

several experiments on different kinds of texts to make sure his method is not genre-

specific.

 6

1.2 Motivation for the Project
 The lack of previous work on texts between Turkish and English is the most prominent

motivation for making a research in this field. There is a high similarity between Turkish and

English. (Not in the syntax or morphology of the languages but in the number of cognates due to

the abundance of borrowed and cognate words, i.e. television-televizyon, tactic-taktik, yoghurt-

yo�urt, etc..).

 This similarity makes one to guess intuitively that length-based methods or methods

using cognates will give good results for alignment of Turkish-English texts. But there has to be

done concrete studies to prove or disprove such intuitions. That is first aim of our study: to see

the efficiency of proposed methods for other languages in Turkish texts and make modifications

such that it will give better results for Turkish.

 The second purpose of our study is the collection of reliable and practical bilingual texts

to be used in further studies. It is not difficult to find such texts written on paper. But of course

they are useless in machine translation studies. Thus we concentrated on finding good quality

texts on digital environment and we hope they will save loss of time for collection of data in

future studies.

 7

2. BACKGROUND AND PREVIOUS WORK

In the task of sentence alignment there are many papers proposing different methods but as

far as the methodology they use is considered, we can group these approaches into 3 classes:

2.1) Length-Based Approaches: In these approaches, content of the text in terms of

semantics is not considered. These approaches use statistical methods for the task of

alignment. In other words, they only consider the length of sentences while making the

decision for alignment. Short sentences match with short sentences, long sentences match

with long sentences. Despite their simplicity, these methods have very high accuracy. They

are especially useful between texts in similar languages such as German, English and French.

2.2) Location-Based Approaches: These approaches resemble the length-based approaches

in respect that location-based approaches are based on statistical information. They use the

fact that most of the times, beads of sentences in the two texts have similar positions. For

example, if a sentence in source text is in the middle of the text, its conjugate in the target

text is probably in the middle of text too.

2.3) Lexical Approaches: These methods take into account the lexical information about

texts. For example, in most of them a bilingual corpus is used to match the content words in

one text with their correspondences in the other text and use these matches as anchor points

in the sentence alignment process. In some methods, instead of these content word pairs

cognates (words in language pairs that resemble each other phonetically, ex. doctor-doktor)

are used for determining the beads of sentences.

 8

Below are detailed descriptions of these approaches with some example methods:

2.1) Length-Based Approaches

2.1.1) Goal: Find alignment A with highest probability given the two parallel texts S and T.

maxA P(A, S, T)

S: source text, T: target text, A: alignment

- To estimate the probability above, aligned text is decomposed in a sequence of aligned

sentence beads where each bead is assumed to be independent of others.

- The question is determining the right formula and parameters for estimating the

probability of a certain type of alignment bead such that the sentences in that bead are

given.

2.1.2) Proposed Methods:

• Gale and Church, 1993 : The algorithm uses sentence length (measured in number of

characters) to decide if some sentences in one text is the alignment of some other

sentences in the other text. The algorithm also makes use of Dynamic Programming

technique which allows the system to consider all possible alignments and finding the

minimum cost alignment effectively. The method performs well (at least on related

languages). It gets a 4% error rate. It works best on 1:1 alignments [only 2% error rate]. It

has a high error rate on more difficult alignments. (about 86%)

• Brown et al., 1991: It has the approach as Gale and Church, except that sentence lengths

are compared in terms of words rather than characters. In fact, Gale and Church’s method

is inspired from Brown’s method. Other difference exists in the purposes of the methods:

Brown didn’t want to align entire articles but just a subset of the corpus suitable for

further research.

 9

• Wu, 1994: Wu applies Gale and Church’s method to a corpus of parallel English and

Cantonese (a version of Chinese) Text. The results are not much worse than Gale and

Church’s method which shows that the method can also be used on unrelated languages.

To improve accuracy, Wu uses lexical cues.

2.2) Location-Based Approaches

2.2.1) Proposed Methods:

• Church, 1993: Church argues that length-based methods work well on clean text but

may break down in real-world situations (noisy OCR or unknown markup conventions).

Church’s method is to induce an alignment by using cognates (words that are similar

phonetically across languages) at the level of character sequences.

 The method consists of building a dot-plot, i.e., the source and translated text are

concatenated and then a square graph is made with this text on both axes. A dot is placed at

(x, y) when there is a match. Signal processing methods are then used to compress the

resulting plot.

 The interesting part in a dot-plot is called the bitext maps. These maps show the

correspondence between the two languages. In the bitext maps, undetermined, roughly

straight diagonals corresponding to cognates can be found. A heuristic search along this

diagonal provides an alignment in terms of offsets in the two texts.

• Fung & McKeown, 1994 : Fung and McKeown’s algorithm works:

o Without having found sentence boundaries.

o In only roughly parallel text (with certain sections missing in one language)

o With unrelated language pairs.

 10

 The technique is to infer a small bilingual dictionary that will give points of

alignment. For each word, a signal is produced, as an arrival vector of integer numbers

giving the number of words between each occurrence of the word at hand.

2.3) Lexical Approaches

2.3.1) Proposed Methods:

• Kay & Roscheisen, 1993 : They start their iterations by the assumption that the first and

last sentences of the texts align. These are the initial anchors. Then, until most sentences

are aligned:

1. Form an envelope of possible alignments.

2. Choose pairs of words that tend to co-occur in these potential partial alignments.

3. Find pairs of source and target sentences which contain many possible lexical

correspondences. The most reliable of these pairs are used to induce a set of partial

alignments which will be part of the final result.

• Chen, 1993 : Chen does sentence alignment by constructing a simple word-to-word

translation model as he goes along. The best alignment is the one that maximizes the

likelihood of generating the corpus given the translation model. This best alignment is

found by using dynamic programming.

• Haruno & Yamazaki, 1996 : Their method is a variant of Kay & Roscheisen (1993)

with the following differences:

- For structurally very different languages, function words impede alignment. They

eliminate function words using a POS Tagger.

- If trying to align short texts, there are not enough repeated words for reliable

alignment using Kay & Roscheisen (1993). So they use an online dictionary to find

matching word pairs.

 11

3. LITERATURE SURVEY

In this part of the document we will mention some of these methods and their approaches

for aligning bilingual corpora.

For having a background for the sentence alignment subject we examined many journal

papers related to the subject, most of them proposing a new method for the sentence alignment

task. They all share many common properties in the methods they use but suggest a small

modifications to the earlier approaches.

3.1 Gale&Church: A Program for Aligning Sentences in Bilingual Corpora

 First method we have examined is the method of the Gale and Church[1]. This is maybe

the most popular, well-known alignment algorithm in this literature. It has 3 main properties

which cause this reputation:

* First of all, it is very simple. It simply counts the number of characters in the sentences

and uses the Dynamic Programming Model to find the correct pairs of alignment. Because of this

simplicity, many later researchers integrate this method to their methods. Moreover, it is very

easy to find the source code of this method on Internet.

* Since it does not use any lexical information for the alignment task, it can be used

between any pairs of languages. However, in distant languages in which also letters differ, it is

not so efficient.

* As a result of its simplicity, its time cost is very low. In other words, it is one of the

fastest algorithms for sentence alignment. Thus it is suitable for aligning a very large bilingual

corpora.

When we consider Turkish-English, we see that they are close languages in terms of

length of sentences. Also there is no widely known bilingual dictionary for using in sentence

alignment task. Due to these properties, this method can be applied to Turkish-English alignment

effectively.

 12

3.2 Wu: Aligning a Parallel English-Chinese Corpus Statistically with Lexical Criteria

 After Gale and Church’s method, we examined the method of Wu[2]. This method is

important in two respects: Firstly, by applying the Gale’s method to Chinese and English it

shows that length-based methods give satisfactory results even between unrelated languages

which is a surprising result. Next, it shows the effect of adding lexical cues to a length-based

method. According to his results, using lexical information increases accuracy of alignment from

%86 to %92.

In our case (Turkish-English), using lexical cues can have a similar positive effect since

there are many words in Turkish whose root is an English word. But extracting such an

information base is a time consuming operation for which we did not have enough time.

3.3 Moore: Fast and Accurate Sentence Alignment of Bilingual Corpora

 An example of a more complex sentence alignment algorithm is Moore’s algorithm[3].

In this one Moore tries to solve the problem that using lexical information limits the use of

algorithm only between a pair of languages. He tries to overcome this problem via using a

method similar to IBM translation model for extracting a bilingual corpus with the texts at hand.

This is a very promising method since it is a language-independent and highly accurate

algorithm. The only problem of this method is the slowness of the algorithm. Extracting a

bilingual corpus from the texts at hand is not a straightforward and cheap operation.

It is also possible to use this method for Turkish. Despite the structure of sentences in

Turkish and English are different, existence of cognates (a word and its translation which have

similar sounds) makes the task of extracting bilingual corpora between Turkish and English

easier.

3.4 Melamed: A Geometric Approach to Mapping Bitext Correspondence

 A different approach in sentence alignment is the approach of Melamed[4]. In his

method he uses a bitext map of words for marking the points of correspondances between these

words in a two-dimensional graph. When all posible points are marked he finds the true

correspondance points in graph by following some rules, sentences location information and

boundary of sentences. The weakness of his method is that it needs a good bitext map to have

 13

satisfactory accuracy. The power of the method is that if a good bitext map can be formed, it can

give almost perfect results in alignment.

It is best to use this method between popular languages in which many researchers study

for alignment task and therefore acquiring a good bitext map is possible. For the present, this

method is difficult to use in Turkish.

3.5 Sheng: Aligning Bilingual Corpora Using Sentences Location Information

 The last method I will mention about is the method of Sheng[5]. This method is also in

the group of methods that do not use any lexical information for the main text but only for the

sake of getting higher accuracy. The property of this method is that it uses not only the length of

sentences but also the length of texts, the length of upper and lower part of the candidate

sentences, and some information like that to reinforce the effect of location of sentences in the

text. In this sense it can be said that it is a further step of pure length-based method.

This method is also important in the sense that our method is derived from this method.

Since it is a simple algorithm to implement and since it does not require an additional tool or

data, it is a good candidate for setting up our method on. We have some difference however:

While this method does not use paragraph alignment, we use paragraph alignment too, which we

think will enable us to get more accurate results. Also we made some differences in the

thresholds and formulas it uses for determining the best parameters to be used with Turkish texts.

3.5.1 Detailed Explanation

Below is a detailed explanation of the method of Sheng:

 “In this paper, authors describe a method for aligning bilingual corpora mainly

based on the observation that the location of sentence pairs in two languages are

distributed in the texts similarly. Authors also omit the paragraph boundary informaion

which sometimes when not aligned correctly, bring a problem for alignment process.

 First of all, authors divide the alignment process to two steps. In first step, they

combine all paragraphs into a large one paragraph.After that, they consider the alignment

process as a matching problem in bipartite graph. Then, they do the alignment process by

finding and matching alignment anchors. In their model, all 1-1 sentence beads are

candidate anchors.

 14

 For solving bipartite graph problem and matching 1-1 anchors correctly they

follow 3 rules:

1) vertexes in bipartite graph are ordered.

2) Weight of any edges is smaller than a threshold D, and no cross-match can occur.

3) Last sentences of each text is accepted as an anchor.

 For a sentence pair the alignment value, P[i,j], is calculated by using the lengths

of sentences, total length of texts, the length of the text fragments below and upper part of

the sentences. Aim is to minimize the P[i,j] calculated by using the parameters above.

The sentences whose alignment function values smaller than a selected threshold are used

as alignment anchors.

 For improving the accuracy, also a bilingual dictionary is used to calculate the

similarity of sentence pairs. Also a method for handling partial alignment errors, (location

is correct, but half of the sentence is missing) is used: Again a function is used to check

similarity of context-adjacent sentence pairs.

 There are two main assumptions algorithm does: It does not consider the cases 1-

3, 3-1, 3-2,etc. Since they occur too rarely. In addition, it assumes no sentence in the

upper part of an anchor sentence can match with a sentence in the lower portion of the

corresponding anchor sentence.”

 15

4. DATA COLLECTION

4.1 Resources
In this phase of our senior project, we concentrated on the task of finding bilingual texts.

Since our algorithm takes a bilingual text pair and then makes an alignment between these texts,

we have to provide many input texts to the program so as to calculate its accuracy and make a

detailed comparison in different types of texts with varying properties.

The sources for collecting blingual texts can be summarized as follows:

 Internet: In the contemporary world for every purpose, internet offers abundant

opportunities. Especially in our case, it is an invaluable resource. We found nearly 90% of our

data via Internet. There are 3 kinds of data that we found via Internet:

- e-books of popular books (novels, stories, politics, etc..): Especially “Project Gutenberg”

which transfers old, popular and classical books to digital environment with the purpose

of free access of book readers and some forum sites in which we found the Turkish

translations of these e-books were our main e-book resources.

- articles in some news sites: Some of the newspapers in Turkiye who wants to be read

worldwide, such as Hürriyet and Zaman, keeps an English version of their websites. In

these websites they periodically translate the articles of some authors in newspaper to

English. These texts are very good sources since they are smaller and thus easier to trace

the translation pattern used in the text. In addition, they are also interesting in the sense

that they are Turkish-to-English translations (most of remaining bilingual data we found

is translation from English-to-Turkish)

- small passages and abstracts of master thesis: The passages are some stories or

information texts, advertisements that are generally not more than one pages long. We

expected master thesis to be a great data source but we could find only some master thesis

on webpage of Bogazici University. Still, they are important because they are in the

group of technical data sources and it is difficult to find such data.

- Some religious books: This group consists of books of a Turkish author who publishes

religious books. The main property of this group is that despite they are religious they

 16

cover a wide range of scientific areas such as biology, astronomy, archeology,

psychology. Another property of these books is that they are Turkish-to-English

translations. We did not use them in the testing phase of the project but they are suitable

for such a purpose.

 Bureaus of Translation: Translation bureaus are the formal resources for bilingual

texts. We searched for a good bureau and they agreed to give documents to us. However, these

documents were generally private or official documents containing business contracts. Therefore,

they warned us to use them only after cleaning all private information (company names, person

names, amount of money, etc..) in the documents. Since this is a time-consuming and hard

operation and since it can cause problems we did not use these documents.

 Department of Translation and Interpreting Studies in Bogazici University: In this

department there are many translations which are made by professors, assistants and students.

However, there is not a common database for these translation texts in digital medium. Because

of this, this resource was no beneficial for our project.

4.2 Organization of Resources
Having a big resource pool requires a good classification and ordering of the data for

finding what you are looking for easily. It also makes easier the use of resources by others who

have no relation with the project. For realizing these goals we kept the identities of the bilingual

texts in a table. In Fig. 1, there is a sample entry in the table which reveals the structure of an

entry and below it we explain the purpose of each column. At the end of the document we give

the full table (Table 1) that contains records for all the resources we have found so far.

Fig 1. Names of the fields in the table of found resources.

ID NAME CATEGORY TYPE SUB-TYPE # OF WORDS LENGTH FORMAT QUALITY SOURCE ADDITIONAL INFORMATION

 17

Fig 2. A sample text description entry in the “Resources” table.

• ID: each bilingual pair has a unique ID. The first character shows the type In the name of

the files these IDs are used to make the ordering of files easier. Ex: B022

• Name: This field is the official name of the resource. For example if it is a book, it

contains the name of the book + the name of author of the book.

Ex: Mark Twain - Tom Sawyer

• Category: This field indicates the type of the resource. It can be a book, a short text, a

scientific paper or a news article, etc.. Category of a resource is also indicated in the first

letter of the ID field.

• Type & Sub-type : These 2 fields are used to categorize the resource further. They are

essential fields because “book”is a very wide concept. It matters for the alignment task if

it is a novel, a story, a course book, etc..

 Ex: category -> book, type -> novel, sub_type ->fiction

• # of Words: For determining the length of a resource we need a criterion. Number of

pages does not reveal the real length of a document since the font and format may differ

in different texts. Moreover, some texts have figures and plentiful blank lines which

makes the text seem longer in terms of number of pages. Therefore, we show the length

of a document in terms of the # of words it contains.

• Length: This field shows the length of a document in terms of pages. Initially, we only

used this field to determine the length of a document. But due to its ambiguity, we added

the word count as main criterion for determining the length of a document.

• Format: This field shows the available text formats of a document we have found. It is

essential since some resources have more than 1 available format such as .doc, .pdf, .txt,

etc..

• Quality: In fact it is diificult to determine the translation quality of a text without fully

reading and examining the bilingual document pair. But at least some differentiation is

B022 Mark Twain - Tom Sawyer kitap roman macera 71.000 139 sayfa doc, lit very good www.gutenberg.org 1 lit EN, 1 doc TR

 18

needed. Thus, we shortly examined the resources and made a basic grading on their

quality.

• Source: This field is used to show where we have found the resource from. If it is found

from internet, we give the address of the website. If it is not from internet, we describe

the agent that helped us to find this document.

• Additional Information: In this field we give a detailed information about the formats

of the resources and state if there is a problem with the text that makes its usage more

difficult.

 19

5. PROGRAM DESIGN

5.1 Overview
 In this project our aim is to design a sentence alignment algorithm for using with

bilingual texts in which one of the texts will be Turkish. We used Java programming language to

code this project. We used Java because:

v It is platform independent

v It has efficient and enough String manipulations in it.

v It is in worldwide use so we can take help from internet easily.

v The components (external resources) we used are usually implemented in Java.

5.1.1 Input
 In this project our program will align the sentences of two different languages.That

means the program will get two texts. Our program is taking these inputs from files of texts.

There are two files; source and target. Source and target words are used here to distinguish the

textes. It has to be known that there is no data transportation or any other transportation between

the files.

 The files are read and then the context of the file is splitted to paragraphs, in paragraph

splitting class. The result of the splitting is assigned to an ArrayList. Then the resulting ArrayList

is returned to our main part of the project. The process in the main part will be explained in a

more focus manner later().

 Our only input is source and target files(Turkish and English bilingual text).

5.1.2 Output
 In the project our aim is to show the aligning results. For this purpose there is a class

align_record which holds the data of an aligning. In program there is an array of alignings that

holds all alignings as a result. Program writes the aligning pairs by using this array in the

show_result() function.

 20

The sample output is as follows:

 Source Target

1-1 1-1

2-2 2-2

3-3 3-4

--- 5-5

4-6 6-7

...

This output means:

v The range in the source from 1st sentence to 1st sentence (that means only first sentence) is

aligned to 1st sentence in target.(1-1)

v The 2nd sentence in source is aligned to the 2nd sentence in target.(1-1)

v The third sentence in source is aligned to the range from 3rd sentence to 4th sentence in

target text. That means 3rd and 4th sentences in target.(1-2)

v There is no sentence in source text to align the 5th sentence of target text.(0-1)

v The range in source from 4th to 6th sentences (4th,5th and 6th sentences) is aligned to the

range from 6th to 7th sentences(6th and 7th sentences) in the target text. (3-2)

Also as a result text , there will be an output text.This file contains the sentences in it.Its inside

will be in the following manner.

<pair1’s ranges in the source and target><enter>

<Pair1’s source sentence><enter>

<tab><tab><tab><Pair1’s target sentence><enter><enter><enter>

<pair2’s ranges in the source and target><enter>

<Pair2’s source sentence><enter>

<tab><tab><tab><Pair2’s target sentence><enter><enter><enter>

.....

 21

5.1.3 External Resources
 In the project the main problem was to split the sentences in the texts properly. Also

splititng to paragraphs was a problem but not as big as sentence splitting. In order to achieve the

sentence splitting problem we made research via the Internet.We gained few open source

programs for sentence splitting[9][10][11][12].Also we gained a good performanced program but

we could not arrive the source of it. For the sake of simplicity we choosed the LingPipe’s

algorithm[9].Also in this algorithm there are some problems with splitting. But there is no

perfect algorithm in this area. So we used the algrithm in our program. We modified the class of

SentenceBoundaryDemo . In it we code a split(String) function. Which tkes a String as whole

text to split and return an ArrayList of the result.

 As well as sentence splitting, we decided to use an external resource for paragraph

splitting. But we could not find a ready-to-use tool with source code for paragraph splitting. Thus

we wrote our own algorithm for this process.

 To determine the paragraph boundaries, best criterion is the existence of an “Enter”

character. However, in some texts there are “enter” characters at the end of each line. Thus, we

also checked if the last character before the “Enter” is a stop punctuation mark like ‘!’, ’.’ or ’?’.

We also checked whether the letter following the “Enter” is a capital letter (A-Z). When we did

so, new problems arise. There were various paragraph endings such as incomplete sentences,

punctuation errors, etc...

 As a result, we simply omitted these texts and splitted paragraphs according to only

“Enter” character which gave best correctness in correctly-written texts.

 22

5.2 Algorithm
5.2.1 Flow-Chart

 23

5.2.2 Summary of General Principle

1) Load the bilingual text

2) Take paragraphs in arraylist (for source and target)

3) Split the source paragraphs into sentences in order and create paragraphs array

4) Add the splitted sentences to general source sentence arraylist

5) Do the 3 and 4 for target text.

6) Generate alignings array in type align_record.

7) Generate the sentence array of source text by using general arraylist

8) Do the 7 for target text.

9) Call align paragraph –whole texts at first call-

10) Calculate scores, Find smallest, compare with Threshold

11) If smaller than Threshold 12 else 15

12) Call 16 with anchor point paragraphs’ sentence ranges

13) 9 with above of the anchor(if above is proper region)

14) 9 with down of the anchor(if down is proper region) -return called step-

15) Call 16 with the sentence range of all current working region.-return called step-

16) Sentence alignment starts

17) Calculate scores, Find smallest, compare with Threshold

18) If smaller than Threshold 19 else 22

19) Record the alignment to alignings array

20) 16 with above of the anchor(if above is proper region)

21) 16 with down of the anchor(if down is proper region) -return called step-

22) Record all regions as alignment. –return to called step-

23) Show results.

 24

5.2.3 General Principle

In our method, we first make the paragraph alignment by using the same algorithm as the

paper. We used the scoring technique. We calculate a score between all combinations of

paragraph pairs.

5.2.3.1 Scoring:

 While calculating the scores between paragraph pairs we use the length values as

character count since the number of words between two texts does not give the precise results

especially between Turkish-English texts. So we selected the character numbers as length

parameter.

The following parameters are used while calculating the scores between the paragraph pairs:

Ø Whole text lengths:(Ls (source text) ,Lt (target text))

Ø Length of sentences:(Lsi the i-th sentence of source , Lti i-th sentence of target)

Ø Upper context lengths of sentences: (Usi ,Uti)

Ø Nether context lengths of sentences: (Dsi,Dti)

Ø Whole text length ratio:(P0=Ls/Lt)

Ø Upper context length ratio:(Pu[i,j]=Usi/Utj)

Ø Nether context length ratio: (Pd[i,j]=Dsi/Dtj)

Ø Sentence length ratio: (Pl[i,j]=Lsi/Ltj)

Ø Weight coefficient : (Alpha =(Ls/Lsi+Lt/Ltj)/2)

By using these parameters score is calculated in the following manner:

à P[i,j]=Alpha*(Pu[i,j]-P0)2+(Pl[i,j]-P0)2+Alpha*(Pd[i,j]-P0)2 ß

 25

 Turkish Text English Text

 Figure 3.

If the score is less than a threshold defined by us then by selecting the smallest pair, aligning

will be done. After aligning, the upper and the nether part of the aligned paragraphs will be

considered as whole texts and the same procedure above will be executed for them. If none of the

scores between pairs in the text is smaller than threshold then whole texts will be aligned.

5.2.3.2 Initializing Arrays:

In our method program holds the sentence and paragraph attributes in objects of sentence and

paragraph. Four arrays are generated from the objects of these classes: sentences of source text,

sentences of target text, paragraphs of source text and paragraphs of target text.

In a paragraph object program holds the length of the paragraph. Object holds this value by

calculating it once. Also the number of sentences in the paragraph is hold in the object. This

attribute is not used for now but it may be needed. The most important values that the paragraph

object holds are start_index and end_index values. These are the indexes that hold the place of

the paragraph in the sentence array. For example if these values are start_index=5 and

end_index=11 , that means the paragraphs first sentence is fifth sentence of the text. And the last

sentence of the paragraph is 11th sentence of the text.

In a sentence object, the value of the sentence is hold. Also the lengths of the sentence and

the upper and down lengths of sentence attributes are present.

At first our program reads the files of source and target texts, then the

Paragraph_splitter.split function returns the ArrayList of the splitted paragraphs for both source

and target texts. I added one more free string in front of (0th index) these ArrayLists to study on

 26

the real order of paragraphs. Then program generates new paragraph type arrays (for source and

target) in the size of ArrayLists.

 After that respectively all paragraphs in ArrayList are (in a for loop) called. Before the loop

we define a start and end index values to know the total number of sentences. First we initialize

the start and end index values to 0.

In the loop, first, program sends the value of paragraph to sentence splitter function which

returns an ArrayList of splitted sentences. Then by taking the size of the splitted sentence

ArrayList , program defines the number of sentences in it. And by using number of sentences and

the start and end index values defined before the loop program defines the start_index and

end_index of the paragraph. Then program generates an object of paragraph for this paragraph

by placing it into the paragraph array. Then program adds all sentences captured from the

paragraph to general ArrayList of sentences respectively.

After this loop, program generated an array of paragraph in paragraph type. And program

adds all sentences of the text to a general ArrayList. The same loop procedure runs for both

source and target texts.

After the loops, program generates array of sentences in sentence type in the size of the

general ArrayLists of the sentences. After the arrays are sized , in loops all sentences in the

ArrayList are used to generate objects of sentence and add them to sentence arrays.

After all these procedure now our program has for arrays:

• source_sentence à type :sentence sentences of source text

• source_paragraph à type : paragraph paragraphs of source text

• target_sentence à type :sentence sentences of target text

• target_paragraph à type : paragraph paragraphs of target text

5.2.3.3 Paragraph and Sentence Aligning Procedure:

Program can start to aligning. The aligning functions take four parameters:

• starting point in the source

• end point in the source

• start point in target

• end point in the target

 27

These four points defines the working region of the function. There are two aligning

functions (one for sentence and one for paragraph) and both has same principle. Both work on

recursive strategy.

First of all, function calculates the total lengths of source and target paragraphs in the range.

Then it calculates the upper and down lengths af all paragraphs in the region. For every

paragraph object, the upper_length and down_length values are changes up to the working

region. The calculation of these values for every paragraph will be explained latter in a more

focus manner.

In paragraph alignment function takes the range in source text and the range in target text

(paragraph numbers). Then calculates score between all pairs of source and target paragraphs (In

the double for loop). In this loop also holds the smallest score and the correspondent pair in the

smallest score (holds the indexes of paragraphs which gave the smallest score).

Then function calculates the average number of paragraphs in the working region. Up to the

value of working region program defines a Threshold value. This is made because in our method

smaller the score more precise the aligning of that pair. If working region is very big we assign

the Threshold value very big and we do not want any required exactness. We want the the most

exact even if it is not very exact. So we can escape from some type of aligning (5-5, 4-6 etc…).

But in small working regions such as smaller than 4 paragraphs we want an exact aligning , if it

could not find such an exact score so program aligns whole region(maximum 3-3,4-2,1-5 etc…).

After defining Threshold up to the average number of paragraphs in region (working_region)

program looks whether the smallest value is smaller than the Threshold. If it is smaller than the

threshold so the correspondent pair (for smallest score) is an anchor point. Then program calls

the sentence_alignment function by defining the range of sentences to be aligned as:

• source_start à the start index of the source paragraph of the anchor point

• source_endà the end index of the source paragraph of the anchor point

• target_start à the start index of the target paragraph of the anchor point

• target_endà the end index of the target paragraph of the anchor point

Sentence alignment of the aligned paragraphs is made immediately.

 28

 After calling sentence alignment function calls itself twice but by condition. If there is

one or more paragraphs above the anchor point in both source and target calls itself by new

range:

• source_startà old source_start

• source_endà index of the source_paragraph of anchor point MINUS 1.

• target_startà old target_start

• target_endà index of the target_paragraph of anchor point MINUS 1.

 If there is one or more paragraphs under the anchor point in both source and target calls

itself by new range:

• source_startà index of the source_paragraph of anchor point PLUS 1.

• source_endà old source_end

• target_startà index of the target_paragraph of anchor point PLUS 1.

• target_endà old target_end

 These explained procedure was if we gained a proper smallest value. But if the smallest

value is bigger than threshold, then function calls sentence alignment by these sentence ranges:

• source_start à the start index of the source paragraph of the anchor point

• source_endà the end index of the source paragraph of the anchor point

• target_start à the start index of the target paragraph of the anchor point

• target_endà the end index of the target paragraph of the anchor point

That means , all working region is sent to sentence alignment.

5.2.3.4 Differences in Sentence Aligning Procedure:

 The same procedure is run by the program for sentence alignment. But there are small

changes in the aligning part. In paragraph alignment paragraphs are being aligned (ranges

indexes –source_start, source_end etc...- are related to paragraph array) but in sentence

alignment the sentences are aligned and also the range indexes are related to sentence array

indexes. One more difference between sentence alignment and the paragraph alignment functions

is , the discovered anchor points in paragraph alignment were not recorded. The sentence range

 29

of those paragraphs was sent to sentence_alignment immediately. But in sentence alignment

when an anchor point is discovered or the whole region is decided to be aligned it will be

recorded in the alignings array.

5.2.3.5 alignings Array

 The alignings array is the array of objects of align_rcord class. In one of these objects an

alignment is recorded. It is hold in the following way(with for integers):

alignment x à x (the index of first source sentence of alignment x),

 the index of last source sentence of alignment x,

 the index of first target sentence of alignment x,

 the index of last target sentence of alignment x.

 where x= the index of first source sentence of alignment x.

That means program places the objects in the array up to the index of first source sentence of

alignment. By doing this we loss some space but we gain a sorted alignings array. Since we run

the procedure in recursive way the order of the discovering of alignings is not in order of text.

5.2.3.6 Calculation of Upper and Down Lengths of All Paragraphs

- Upper Length

 Also the calculation of upper and down lengths of every paragraph in the region for every

recursion is very important. To calculate the upper length of all paragraphs in the region there is

a loop. Before the loop the upper length of the first paragraph is assigned 1.(In fact it must be 0

but in calculations there were some divide by 0 problems so we overcome this problem by

assigning 1 to upper length of firs paragraph.) . Then in a loop a paragraph’s upper length is

assigned as the sum of the length of previous paragraph and the upper length of the previous

paragraph. So after loop every paragraph‘s upper length is assigned.

- Down Length

 Same principle is used to calculate the down lengths of paragraphs. Initially the

downlength of the last paragraph is assigned to 1. By going back in the array calculate the down

lengths of paragraphs. The down length of a paragraph is sum of the length of next paragraph

and the down length of the next paragraph.

 30

 Program does these procedures for the part of both source and target arrays which is in

our range.

 In sentence alignings same principle is used to calculate the upper and down lengths of

sentences.

5.2.3.7 Showing the Results

 After alignings the next step is to show the results which are recorded in the alignings

array. Also we record array in sorted way. In a loop we look all the aligning records. But first

there are two variables: source_next , target_next. These values show us the expected sentence to

see next. Since we will start to write from first sentences these variables are initialized to 1

before the loop.

 In the loop, program takes all aligning records respectively. It looks first whether the

present index is null or not. If it is not null then looks at the source and target start indexes of the

record. If both are same as we expected, writes the related sentences to file and writes the

aligning as mentioned above in ‘OUTPUT’ part. Then assigning is made to variables

source_next and target_next. Source_next become the source_end of aligning record plus 1.

Target_next become target_end +1.

 If expected sentence number is not arrived yet in any of source or target part, then

program writes 0-1 sentence beads until arriving the expected sentence. Then by decrementing

the overall index of the loop, program looks the present align_record again.

 After loop, program writes the remaining sentences of source or target if there is sentence

beads like 0-1 or 1-0 .

5.2.4 Functions, Variables, Classes
5.2.4.1 Functions

Initializing arrays(): Splits the text to paragraphs and sentences and record them in arrays to use

in program.

align_paragraph(int int int int): Takes four integers which define the region of activation of

function and calculates score between all pairs in region. Also defining the smallest score and the

correspondent pair that generated smallest score sends this pair to sentence alignment and sends

upper and down parts of the anchor point to paragraph alignment (itself).

 31

align_sentence(int int int int): It works in the same principle with align_paragraph but on

sentences. There is a difference that the discovered anchor points are recorded at alignings array

and sends the upper and down part of the region to itself.

Calculate_paragraph_values(int int int int): Calculates the upper and down lengths of

paragraphs in the range.

Calculate_sentence_values(int int int int): Calculates the upper and down lengths of sentences

in the range.

Show_results(): Regulates the results and prints them to console and writes to resulting file.

ParagraphSplitter.split(String String): Splits the text in the directory given by using String, to

paragraphs and writes them to other file whose directory is also given as a String. Also returns

the splitting results as ArrrayList.

SentenceBoundaryDemo.split(String): Takes the text as input and returns the result of splitting

as an ArrayList.

5.2.4.2 Classes

Sentence:

 It is for sentences of text to hold them in an efficient manner. It holds the length (without

spaces) of sentence, sentence as String, and upper and down lengths of sentence.

Paragraph:

 It is for paragraphs of text to hold them in an efficient manner. It holds the length of

paragraph, the upper and down lengths of paragraph, the start and end indexes of paragraph and

the number of sentences in the paragraph.

 The start_index and end_index attributes of the paragraph object are the orders of the

starting and ending sentence of paragrap in the whole text.

Align_record:

 It holds the alignment records. It holds data with four integers which determine the

ranges in two texts (source and target).

5.2.4.3 Variables

Source_sentence: It is an array of whole sentences in the source text. Its type is sentence.

Target_sentence: It is an array of whole sentences in the target text. Its type is sentence.

 32

Source_paragraph: It is an array of whole paragraphs in the source text. Its type is paragraph.

Target_paragraph: It is an array of whole paragraphs in the target text. Its type is paragraph.

Alignings: It is an array of alignings which are discovered. Its type is align_record.

5.2.5 Pseudocode
main()
begin
 initialize_Arrays()
 align_paragraph(1,length_of_source_paragraph_array
 1,length_of_target_paragraph_array)
 //here the align paragraph function is ignitor of the recursion
 show_results();
end

initialize_Arrays()
begin
 source_paragraph_arraylist=split_paragraph of source ;
 target_paragraph_arraylist=split_paragraph of target ;
 create arrays of paragraphs in paragraph type

 next_start=1,next_end=1.
 for(i=1;i<number_of_paragraphs;i++)
 begin
 temp_list=sentencesplitter(source_paragraph(i))
 next_end=next_start+number_of_sentences(size_of_temp_lisst)
 source_parapgrph[i]=new paragrph(next_start,next_end,source_pargra(i))

 a=0
 for(i=next_start to next_start+number_sentences)
 general_sentence_source(i)=templist(a++)
 end

 next_start=1,next_end=1.
 for(i=1;i<number_of_paragraphs;i++)
 begin
 temp_list=sentencesplitter(target_paragraph(i))
 next_end=next_start+number_of_sentences(size_of_temp_lisst)
 target_parapgrph[i]=new paragrph(next_start,next_end,source_pargra(i))

 a=0
 for(i=next_start to next_start+number_sentences)
 general_sentence_ target(i)=templist(a++)
 end
 for(i=0 to general_sentence_source.length)
 source_sentence[i]=new sentence(general_sentence_source(i))

 for(i=0 to general_sentence_target.length)
 target_sentence[i]=new sentence(general_sentence_target(i))
end

 33

align_paragraph(source_start,source_end,target_start,target_end)
begin
 for(i=source_start to source_end)
 Ls=Ls+ source_paragraph[i].length
 for(i=target_start to target_end)
 Ls=Ls+ target_paragraph[i].length

 calculate_values_paragraphs(source_start, source_end,target_start,target_end)
 for(i=source_start to source_end)
 for(j=target_start to target_end)
 begin
 P[i,j]=Alpha*(Pu[i,j]-P0)2+(Pl[i,j]-P0)2+Alpha*(Pd[i,j]-P0)2

 if(P[i,j] < smallest)
 smallest=P[i,j]. smallest_i=i. smallest_j=j.
 end
 working_region=((source_end-source_start)+(target_end-target_start))/2
 if(working_region > 10)
 Threshold=Infinite.
 else if(working_region >4)
 Threshold=3
 else
 Threshold=1

 if(smallest < Threshold)
 begin
 align_sentences(source_paragraph[small_i].start_index,

 source_paragraph[small_i].end_index,
 target_paragraph[small_i].start_index,

 target_paragraph[small_i].end_index)
if(there is one or more paragraph above the small i'th paragraph at source
and there is one or more pargraph above the small j'th paragraph at target)
begin
 align_paragraph(source_start,small_i-1,target_start,small_j-1)
end
if(there is one or more paragraph under the small i'th paragraph at source
and there is one or more pargraph under the small j'th paragraph at target)
begin
 align_paragraph(small_i+1, source_end,small_j+1,target_end)
end

 end
 else
 begin
 align_sentence(source_paragraph[source_start].start_index,

 source_paragraph[source_end].end_index,
 target_paragraph[target_start].start_index,
 target_paragraph[target_end].end_index)
 end
end

 34

align_sentence(source_start,source_end,target_start,target_end)
begin
 for(i=source_start to source_end)
 Ls=Ls+ source_sentence[i].length
 for(i=target_start to target_end)
 Ls=Ls+ target_sentence[i].length

 calculate_values_sentence(source_start, source_end,target_start,target_end)
 for(i=source_start to source_end)
 for(j=target_start to target_end)
 begin
 P[i,j]=Alpha*(Pu[i,j]-P0)2+(Pl[i,j]-P0)2+Alpha*(Pd[i,j]-P0)2

 if(P[i,j] < smallest)
 smallest=P[i,j]. smallest_i=i. smallest_j=j.
 end
 working_region=((source_end-source_start)+(target_end-target_start))/2
 if(working_region > 10)
 Threshold=Infinite.
 else if(working_region >4)
 Threshold=3
 else
 Threshold=1

 if(smallest < Threshold)
 begin
 alignings[small_i]=new align_record(small_i,small_i,small_j,small_j)

if(there is one or more paragraph above the small i'th paragraph at source
and there is one or more pargraph above the small j'th paragraph at target)
begin
 align_sentence(source_start,small_i-1,target_start,small_j-1)
end
if(there is one or more paragraph under the small i'th paragraph at source
and there is one or more pargraph under the small j'th paragraph at target)
begin
 align_sentence(small_i+1, source_end,small_j+1,target_end)
end

 end
 else
 begin
 alignings[source_start]=new align_record(source_start,source_end,

 target_start,target_end)
 end
end

calculate_values_paragraphs(source_start, source_end,target_start,target_end)
begin
 source_paragraphs[source_start].upper_length = 1
 for(i=source_start+1 to source_end)
 source_paragraphs[i].upper = source_paragraph[i-1].upper+

source_paragraph[i-1].length
target_paragraphs[target_start].upper_length = 1

 for(i=target_start+1 to target_end)
 target_paragraphs[i].upper = target_paragraph[i-1].upper+

target_paragraph[i-1].length

 35

source_paragraphs[source_start].down_length = 1

 for(i=source_end-1 to source_start)
 source_paragraphs[i].down = source_paragraph[i+1].down+

source_paragraph[i+1].length
target_paragraphs[target_start].down_length = 1

 for(i=target_start+1 to target_end)
 target_paragraphs[i].down = target_paragraph[i-1].down+

target_paragraph[i-1].length
end
calculate_values_sentences(source_start, source_end,target_start,target_end)
begin
 source_sentences[source_start].upper_length = 1
 for(i=source_start+1 to source_end)
 source_sentences[i].upper = source_sentences[i-1].upper+

source_ sentences [i-1].length
target_ sentences [target_start].upper_length = 1

 for(i=target_start+1 to target_end)
 target_ sentences [i].upper = target_ sentences [i-1].upper+

target_ sentences [i-1].length

source_ sentences [source_start].down_length = 1
 for(i=source_end-1 to source_start)
 source_ sentences [i].down = source_ sentences [i+1].down+

source_ sentences [i+1].length
target_ sentences [target_start].down_length = 1

 for(i=target_start+1 to target_end)
 target_ sentences [i].down = target_ sentences [i-1].down+

target_ sentences [i-1].length
end
show_results()
begin
 source_next=1,target_next=1 //the expected order of sentence we will have
 for(i=1 to number of sentences)
 begin
 if (alignings[i]!= null)
 begin
 if(starts of aligning in source and target are as we want)
 write the results to console and to file
 set new expected number of sentences as (..._end + 1)
 else if (source is expected but target is not)
 write 0-1 result to console and file until the target order is expected
 set i to i-1 because we want program to scan this aligning
 else if (target is expected but source is not)
 write 1-0 result to console and file until the source order is expected
 set i to i-1 because we want program to scan this aligning
 end
 end
 if (source_next< number of sentences in source)
 write left alignings as 1-0
 if (target_next<number of)sentences in target
 write left alignings as 0-1
end

 36

6. EXPERIMENTS

 In literature survey we have seen that most researchers on sentence alignment, especially

if bilingual texts are French, German, English or Chinese, use hansards of these countries for

a reliable common bilingual database. But no such hansard exist in Turkish-English bilingual

texts. Thus we used other data sources for experiment. This situation makes the comparison

of the accuracy of our method with other alignment methods.

 The proposed method described in Section 5 is tested on 3 different data:

1) The philosophy book of Henry Thoreau called “On the Duty of Civil Disobedience”

2) Combination of some articles from a news site (high paragraph fragmentation)

3) Combination of some articles from a news site (less paragraph fragmentation)

1) Data 1 was a text containing large paragraphs in both languages and having somewhat

similar paragraph counts. But it was a hard text when we consider the sentence alignment

beads. The percentage of 1-1 beads was only 65.2% and the parcentage of 1-2 or 2-1 beads

was 22.3%. The remaining 12.5% alignment pairs consisted of more complex beads even

containing 1-6, 1-5 or 2-5 sentence beads. It also contained a deleted region of 18 sentences

long in English text which is hard to handle.

 Under these situations it did 63% of alignments correctly and 24% were complete errors.

The remaining 13% was partial errors in which alignment is partially correct. For example,

the real bead is a 1-2 bead but our program splits it into two beads: a 1-1 and a 0-1. These are

called partial errors. By changing parameters we can avoid these errors up to some extent.

 Another important point is the question of how much the deleted block affected overall

performance. The 18-sentence long deleted segment was towards the end of the text. For a

short period it caused program to give continuous wrong alignments. But it managed to

overcome this situation after some paragraphs. If we exclude this continuous segment, the

accuracy increases to 73.7% which is very good for such a difficult text.

 37

2) In the experiment on data 2, we had very bad results. Because, the paragraph alignment

phase made many errors since there were a lot of 1-6, 1-5, etc.. paragraph beads. When the

program failed in paragraph alignment, it inevitably made errors in sentence alignment in

large blocks. Due to this problem, it had an accuracy lower than 45% for data 2.

3) Finally, in the experiment on data 3, again we used a data similar to data 2. But this time

the paragraphs aligned mostly 1-1 and also they were long paragraphs. In the sentence level,

again 1-1 bead percentage was high (about 90%). Under these values, it gave a very good

accuracy. The percentage of true alignments was 96.1% and 2.2% was partial alignment

errors. Only 1.7% of all alignments was completely wrong.

 38

7. EVALUATION OF RESULTS AND FUTURE WORK

 The results of the experiments reveal some deficiencies and advantages of our program:

 First of all, the results reveal the importance and effect of paragraph alignment. If

paragraphs are well-arranged in both bilingual texts, paragraph alignment is advantageous and

increase the accuracy of the alignment remarkably. So it is better to use this program for texts

having well-arranged paragraphs. In the future, it can be studied on paragraph alignment to

increase its robustness for using in any text.

 Secondly, there is the problem of deleted blocks. Since our program works location-

based, it takes some period to recover after a deleted segment. If we manage to shorten the length

of this recovery period, deleted segments will not be a problem for us anymore. Lexical

information may be used for solving this problem. In fact, using lexical information is the most

important improvement on our algorithm which can increase the accuracy rates notably.

 Finally, values of the parameters may be modified for determining the best values. This

is the simplest improvement but it requires too much time to check the effects of variations in

parameter values since checking has to be done manually. We could have done this, but lack of

time for doing this prevented us to calculate the best values of parameters.

 39

8. REFERENCES

Reference Papers

 1. Gale, W.A. and Church, K.W.: A program for aligning sentences in bilingual corpora, In Proc.

 of the 29
th

Annual Meeting of the ACL (1991) 177-184.
 2. Wu, D.: Aligning a Parallel English-Chinese Corpus Statistically with Lexical Criteria.
 In Proceedings of the 32nd Annual Meeting of the Association for Computational
 Linguistics, Las Cruces, New Mexico (1994) 80–87
 3. Robert C. Moore. 2002. Fast and accurate sentence alignment of bilingual corpora. In S.
 Richardson (ed.), Machine Translation: From Research to Real Users (Proceedings, 5th
 Conference of the Association for Machine Translation in the Americas, Tiburon,
 California), pp. 135–244, Springer-Verlag, Heidelberg, Germany.
 4. Melamed, I.D.: A Geometric Approach to Mapping Bitext Correspondence. IRCS
 Technical Report 96-22, University of Pennsylvania (1996)
 5. Weigang Li, Ting Liu, Zhen Wang and Sheng Li: Aligning Bilingual Corpora Using Sentences
 Location Information, Proceedings of 3rd ACL SIGHAN Workshop, 141-147, (1994)
 6. Chen, S.F.: Aligning Sentences in Bilingual Corpora Using Lexical Information, In Proc. of
 30

th
Annual Meeting of ACL (1993) 9-16.

 7. Kay, M. and Röscheisen, M: Text-Translation Alignment, Computational Linguistics 19:1
 (1994) 121-142.

 8. Simard, M., Plamondon, P.: Bilingual Sentence Alignment: Balancing Robustness
 and Accuracy. Machine Translation 13(1) (1998) 59–80

Online References

9) LingPipe Sentence Splitter
 http://www.alias-i.com/lingpipe/demos/tutorial/sentences/read-me.html

10) GATE Framework
 http://gate.ac.uk/

11) BALIE splitter
 http://balie.sourceforge.net/
12) LTG software

 http://www.ltg.ed.ac.uk/software/pos/
13) Project Gutenberg

 http://www.gutenberg.org/
14) Scientific Paper Search Engine

 http://www.scirus.com/srsapp/

 40

APPENDIX A: RESOURCES TABLE

ID NAME CATEGORY TYPE SUB-TYPE
OF
WORDS LENGTH FORMAT QUALITY SOURCE

ADDITIONAL
INFORMATION

B001 harry potter-felsefe ta�ı kitap roman fantastik 56,000 170 sayfa txt,doc,pdf good http://www.altkitap.com/arsiv.asp
1 pdf EN, pdf+txt+doc
TR

B002 harry potter-sırlar odası kitap roman fantastik 67,000 189 sayfa txt,doc,pdf good http://www.altkitap.com/arsiv.asp
1 pdf EN, pdf+txt+doc
TR

B003 harry potter-azkaban tutsa�ı kitap roman fantastik 84,600 178 sayfa txt,doc,pdf good http://www.altkitap.com/arsiv.asp
1 pdf EN, pdf+txt+doc
TR

B004 harry potter-ate� kadehi kitap roman fantastik 150,000 302 sayfa txt,doc,pdf good http://www.altkitap.com/arsiv.asp
1 pdf EN, pdf+txt+doc
TR

B005 harry potter-zümrüdüanka yolda�lı�ı kitap roman fantastik 200,000 418 sayfa doc, pdf good http://www.altkitap.com/arsiv.asp
1 pdf EN, pdf+doc TR--
sayfa nolari var

B006 yüzüklerin efendisi-yüzük karde�li�i kitap roman fantastik 142,000 450 sayfa
txt,doc,pdf
, lit good http://www.e-kutuphane.net/ 1 pdf EN, txt+doc+lit TR

B007 yüzüklerin efendisi-iki kule kitap roman fantastik 119,000 380 sayfa
txt,doc,pdf
, lit good http://www.e-kutuphane.net/

1 pdf EN, txt+doc+lit
TR--bazı yerde bölümler
yarim

B008 yüzüklerin efendisi-kralın dönü�ü kitap roman fantastik 106,000 310 sayfa
txt,doc,pdf
, lit good http://www.e-kutuphane.net/ 1 pdf EN, txt+doc+lit TR

B009 1984 by George Orwell kitap roman bilimkurgu 65,000 220 sayfa txt good http://ekitap.kolayweb.com/ 1 txt EN, 1 txt TR

B010 Macbeth by Shakespeare kitap oyun trajedi 18,200 32 sayfa
txt, html,
pdf adequate http://ekitap.kolayweb.com/

1 pdf EN, html+txt TR --
--D�YALOG
SEKL�NDE..

B011 Pet sematary by Stephen King kitap roman korku 87,000 142 sayfa txt, pdf good http://www.kitap.perisi.com/ 1 txt EN, 1 txt+pdf TR
B012 Da vinci �ifresi kitap roman polisiye 77,200 295 sayfa pdf good http://www.kitap.perisi.com/ 1 pdf EN, 1 pdf TR
B013 Descartes- Discourse on method kitap felsefe 24,700 47 sayfa lit, txt good http://www.e-kutuphane.net/ 1 lit EN, 2 txt TR
B014 Bacon - New Atlantis kitap felsefe politik 13,000 33 sayfa lit, txt good http://www.e-kutuphane.net/ 1 lit EN, 2 txt TR

B015 Plato - Statesman kitap felsefe politik 18,700 108 sayfa lit, txt good http://www.kitap.perisi.com/
1 lit EN, 2 txt TR -------
diyalog seklinde...

B016 Tommaso Campanells - City of Sun kitap felsefe politik 23,700 40 sayfa lit, txt good http://www.kitap.perisi.com/ 1 lit EN, 2 txt TR felsefe
B017 Dostoyevski - Yeraltindan Notlar kitap roman felsefik 30,000 98 sayfa lit, txt good www.freeELiterature.com 1 lit EN, 1 txt TR
B018 Thoreau- Haksız Yonetime Karsi kitap felsefe politik 8,300 21 sayfa lit, doc good www.freeELiterature.com 1 lit EN, 1 doc TR

B019 Tolstoy - Anna Karenina kitap roman dram 351,000 883 sayfa lit good www.freeELiterature.com
1 lit EN, 2 lit TR(cilt1-
cilt2 seklinde)

B020 Aristoteles - Atinalilarin Devleti kitap felsefe politik 24,400 43 sayfa doc, txt good http://www.kitap.perisi.com/ 1 doc EN, 1 txt TR
B021 Plato - Republic kitap felsefe politik 43,400 349 sayfa html, lit, txt good www.freeELiterature.com 1 lit EN, 1 txt 1 doc TR
B022 Mark Twain - Tom Sawyer kitap roman macera 71,000 139 sayfa doc, lit very good www.insanizm.com 1 lit EN, 1 doc TR
B023 Voltaire - Candide kitap roman dram 36,600 80 sayfa doc, txt good http://www.kitap.perisi.com/ 1 doc EN, 1 txt TR

B024 Clausewitz - Savas kitap inceleme savas 98,000 105 sayfa doc, html adequate http://www.kitap.perisi.com/
1 html EN, 4 cilt olarak
doc TR

B025 Lenin - Devlet ve �htilal kitap inceleme 28,900 90 sayfa lit, doc good www.insanizm.com
1 lit TR, 7 doc
TR(herbiri 1 chapter)

B026 Plato - Apology kitap sosyal politik 11,600 42 sayfa lit, html, txt good http://www.kitap.perisi.com/
1 lit TR, 1 txt+ 1 html
EN

B027 Cicero -Yaslilik ve Dostluk kitap felsefe 22,000 65 sayfa lit, html good http://www.kitap.perisi.com/ 1 lit EN, 1 html TR
B028 Stephen King - Green Mile kitap roman duygusal 134,000 443 sayfa lit, pdf, txt good www.freeELiterature.com 1 lit TR, 1 txt+ 1 pdf EN

B029 Carus - On the nature of Things kitap felsefe 74,000 175 sayfa doc,txt adequate www.freeELiterature.com
1 doc EN, 1 txt TR ----
siir seklinde yazilmis

B030 Tolstoy - Master and Man kitap roman dram 19,200 64 sayfa doc, txt good http://www.kitap.perisi.com/ 1 pdf TR, 1 txt EN
B031 Tolstoy - Ivan Ilic kitap roman dram 15,800 32 sayfa doc, txt good http://www.kitap.perisi.com/ 1 doc TR, 1 txt EN
B032 belgariad-1kehanetin oyuncagi kitap roman fantastik 79,540 157 sayfa htm,pdf adequate http://www.gutenberg.org/ 1 pdf TR. 1 htm EN
B033 belgariad-2buyuculer kralicesi kitap roman fantastik 106,000 195 sayfa htm,pdf adequate http://www.gutenberg.org/ 1 pdf TR. 1 htm EN
B034 belgariad-3sihirbazin tuzagi kitap roman fantastik 97,000 180 sayfa htm,pdf adequate http://www.gutenberg.org/ 1 pdf TR. 1 htm EN
B035 belgariad-4buyulu sato kitap roman fantastik 120,000 206 sayfa htm,pdf adequate http://www.gutenberg.org/ 1 pdf TR. 1 htm EN
B036 belgariad-5efsuncunun son oyunu kitap roman fantastik 116,580 197 sayfa htm,pdf adequate http://www.gutenberg.org/ 1 pdf TR. 1 htm EN

B037 Arthur Clarke-2001A Space Odyssey kitap roman bilimkurgu 61,850 138 sayfa doc,pdf good http://www.gutenberg.org/
1 doc TR. 1 pdf+1 doc
EN

B038 Arthur_C_Clarke-Rama_2 kitap roman bilimkurgu 114,470 245 sayfa txt,txt good http://www.gutenberg.org/ 1 txt TR, 1 txt EN
B039 Arthur Clarke - rendezvous with rama kitap roman bilimkurgu 72,000 193 sayfa doc,doc good http://www.gutenberg.org/ 1 doc TR, 1 doc EN
B040 bernard shaw - Sezar ve Kleopatra kitap oyun drama 39,000 102 sayfa html, txt good http://www.kitap.perisi.com/ 1 txt EN, 1 html TR
B041 kafka - Metamorphosis kitap hikaye 15,700 28 sayfa doc,txt adequate www.insanizm.com 1 doc EN, 1 txt TR
B042 goethe - faust kitap �iir 12,700 40 sayfa doc,txt adequate www.insanizm.com 1 doc EN, 1 txt TR
B043 gogol- Taras Bulba kitap roman kurgu 51,760 94 sayfa pdf,txt good http://www.kitap.perisi.com/ 1 pdf TR, 1 txt EN
B044 Eleanor_H_Porter-Pollyanna kitap roman iyimserlik 95,000 301 sayfa txt,txt very good http://www.gutenberg.org/ 1 txt TR, 1 txt EN
B045 Anatole France - Thais kitap roman ask macera 36,600 69 sayfa txt,doc good http://www.kitap.perisi.com/ 1 txt EN, 1 doc TR

B046 Dostoevsky - Karamazov Karde�ler kitap roman dram 350,000 562 sayfa txt,doc good http://www.kitap.perisi.com/
1 txt EN, 2 doc TR(iki
cilt seklinde)

B047 Turgenev - rudin kitap roman 53,460 118 sayfa txt,lit good http://www.gutenberg.org/ 1 txt EN, 1 lit TR
B048 Stevenson - Markheim kitap hikaye 5,600 11 sayfa txt,doc good http://www.gutenberg.org/ 1 txt EN, 1 doc TR
B049 Dostoyevski-KUMARBAZ kitap roman dram 62,850 126 sayfa txt,lit good http://www.gutenberg.org/ 1 txt EN, 1 lit TR
B050 Goethe - Iphigenia in Tauris kitap oyun drama 19,630 45 sayfa txt,lit very good http://www.gutenberg.org/ 1 txt EN, 1 lit TR

B051 Lermontov - A Hero of Our Time kitap roman
dram,
macera 37,000 68 sayfa txt,doc good http://www.gutenberg.org/ 1 txt EN, 1 doc TR

B052 Moliere - The Imaginary Invalid kitap oyun ele�tiri 14,900 61 sayfa txt,doc adequate http://www.gutenberg.org/ 1 txt EN, 1 doc TR
B053 G. Leroux -Mystery of Yellow Room kitap roman polisiye 47,250 85 sayfa txt,doc good www.freeELiterature.com 1 txt EN, 1 doc TR
B054 Jack London - The Call of the Wild kitap roman 33,600 63 sayfa txt,lit good www.freeELiterature.com 1 txt EN, 1 lit TR

 41

B055 Dostoyevski - Devils kitap roman siyasal 260,000 440 sayfa html,lit adequate http://www.kitap.perisi.com/

1 html EN, 1 lit
TR(turkce karakterler
bozuk...)

B056 Balzac - Eugenie Grandet kitap roman 55,750 93 sayfa txt,doc good www.freeELiterature.com 1 txt EN, 1 doc TR
B057 Balzac - Hidden Masterpiece kitap hikaye 13,300 27 sayfa txt,lit good www.insanizm.com 1 txt EN, 1 lit TR
B058 Anatole France - Penguin Island kitap roman 52,800 91 sayfa txt,doc very good http://www.kitap.perisi.com/ 1 txt EN, 1 doc TR
B059 Chamisso - Peter Schlemihl kitap roman psikoloji 38,360 75 sayfa txt,lit good http://www.kitap.perisi.com/ 1 txt EN, 1 lit TR
B060 Oscar Wilde-The Happy Prince,Tales kitap hikaye cocuk 10,700 18 sayfa txt,doc very good www.insanizm.com 1 txt EN, 1 doc TR

B061 Dostoevsky - Crime and Punishment kitap roman psikoloji 203,000 330 sayfa
txt,doc,lit,p
df good http://www.kitap.perisi.com/

1 txt+pdf+doc EN, 2
lit+2 pdf TR(2 cilt
halinde..)

 SHORT TEXTS

ID NAME
OF
WORDS LENGTH FORMAT QUALITY SOURCE

ADDITIONAL
INFORMATION

T001 bilkent yonetmelik kısa metin yonetmelik 2,800 7 sayfa .doc adequate www.bilkent.edu.tr
atlamalar, farkli cumle
yapilari var.

T002 erhan sigorta kısa metin poliçe 3,300 9 sayfa .doc very good ceviribilim bolumu
ba�ı doldurulacak form
sonrası normal text

T003 ileri eng boun kısa metin tanıtım 2,440 7 sayfa .doc adequate www.boun.edu.tr
atlamalar, farkli cumle
yapilari

T004 record 2006 kısa metin mail 345 1 sayfa .doc good mail informal, kısa
T005 web ornek kısa metin 499 2 sayfa .doc very good tercuman burosu formal, kalitesi yuksek

T006 working caapital kısa metin rehber 3,200 10 sayfa .doc very good tercuman burosu
i�letme sermayesi
rehber el kitabı

T007 yorum kısa metin
kose
yazisi 61,880 125 sayfa .doc adequate hurriyet.com, zaman.com

91 adet yorum, daha
artacak..

T008 hotelybakkal kısa metin reklam 432 2 sayfa .doc adequate http://www.kitap.perisi.com/ otel reklam afi�i
T009 mar� kısa metin �iir 101 1 sayfa .doc adequate istiklal mar�ı cevirisi
T010 ninni kısa metin hikaye 485 2 sayfa .doc good http://www.kitap.perisi.com/ hikaye
T011 �eftali kısa metin hikaye 358 2 sayfa .doc good http://www.kitap.perisi.com/ hikaye
T012 yazılıkaya kısa metin tanitim 1 sayfa .doc good http://www.kitap.perisi.com/ düzyazi ceviri
T013 sava� dansları kısa metin siir 1 sayfa .doc adequate siir
T014 sen suclu degilsin kısa metin siir 1 sayfa .doc adequate siir
T015 sevin birbirinizi kısa metin siir 1 sayfa .doc adequate siir
T016 unutma kısa metin siir 1 sayfa .doc adequate siir
T017 varolus ucgeni kısa metin siir 1 sayfa .doc adequate siir

 OTHER RESOURCES

ID NAME QUANTITY FORMAT QUALITY SOURCE
ADDITIONAL
INFORMATION

XOO1 altyazilar 6 adet
srt, txt,
sub adequate www.divxaltyazi.com

süre satırlarını silmek
gerrekiyor,bol
atlamalı,zor ceviri

X002 tezler 13 adet doc, pdf very good www.cmpe.boun.edu.tr
kısa özetler sadece,
PDF handing sorunu..

