
1

CMPE 492

Turkish Preprocessing Operations Using Deep

Learning Approaches

Umut Deniz Şener

Koray Tekin

Advisor:

Tunga Güngör

i

TABLE OF CONTENTS

1

1. INTRODUCTION

1.1. Broad Impact

One of this project’s broad impacts is contributing to the Turkish language NLP

operations, even if on a smaller scale. Preprocessing operations such as tokenization,

sentence splitting, and normalization are essential for NLP and the project aims to

implement these operations by using deep learning approaches. Hence, the project has

indirect beneficial impacts on the development of the practical applications of NLP

applications for the Turkish language such as sentiment analysis, and text classification.

Consequently, there exists a potential for the project to have effects on industries like

business analytics, educational applications, content moderation, customer support,

etc.

Also, considering that Turkish is an underrepresented language, the project has

the potential to increase awareness about developing NLP tools for this kind of lan-

guage.

In addition, since Turkish like any other language has some unique features, the

development of preprocessing operations creates the further possibility of penetrating

the language’s features such as the head-final structure of it.

To summarize, this project’s broad impacts may include enhancing NLP tools for

the Turkish language to raise awareness, providing linguistic insights, and serving as a

foundation for potential future applications.

1.2. Ethical Considerations

This project involves the usage of large datasets of Turkish text from different

sources. Considering, the secure storage and anonymity of these texts has high impor-

2

tance to protect the privacy of individuals whose text might be included in the dataset.

Also, It is crucial to ensure that the dataset should be designed in a way that includes

text instances from various concepts in order to maintain an unbiased approach; be-

cause the preprocessing methods represent different aspects of the Turkish language

and cultural domain. Moreover, it has possible negative effects on society by abusing

the developed tools such as disinformation campaigns, or harmful content generation.

It is important to consider these effects and restrict users to prevent undesirable con-

sequences.

3

2. PROJECT DEFINITION AND PLANNING

2.1. Project Definition

This project’s aim is to develop and implement preprocessing operations for the

Turkish language using deep learning approaches. The preprocessing operations include

tokenization (segmenting the text into tokens), sentence splitting (dividing the text into

sentences), deasciifier (the process of converting “English versions” (c, g, i, o, s, u, C,

G, I, O, S, U) of Turkish letters (ç, ğ, ı, ö, ş, ü, Ç, Ğ, İ, Ö, Ş, Ü, respectively) within

the words into their correct forms). The project will start with a literature review to

analyze similar systems for English, such as UDPipe and Stanza. Then, for the different

steps of preprocessing, deep learning models will be built and trained with the Turkish

corpus, taking into account the unique characteristics of the language. Finally, the

system will be tested again on Turkish corpora within the Universal Dependencies

framework.

2.2. Project Planning

2.2.1. Project Time and Resource Estimation

The project is estimated to take approximately four months to complete, with

the following:

• Literature review and analysis of similar systems: 2 weeks

• Developing deep learning models for preprocessing operations and adapting mod-

els to the Turkish language: 2 months

• Testing and evaluation on Turkish corpora: 1 month

• Documentation and finalizing the project: 2 weeks

Resources required for the project include:

4

• Access to relevant research articles and publications

• Computing resources for training and testing deep learning models

• Access to Turkish corpora and datasets

• NLP and deep learning libraries and frameworks (e.g., TensorFlow, PyTorch,

NLTK, etc.)

2.2.2. Success Criteria

The success of the project can be evaluated based on the following criteria:

• Completion of a literature review and analysis of similar systems

• Successful development and adaptation of deep learning models for preprocessing

Turkish text

• Performance of the developed system on Turkish corpora, compared to existing

benchmarks

• Clear documentation and presentation of the project, including methodology,

results, and potential applications

2.2.3. Risk Analysis

Potential risks for this project include:

(i) Insufficient access to relevant research articles and publications

(ii) Limited availability and performance of cooperative computing resources such as

Google Colaboratory

(iii) Long training times of the neural network models

(iv) Difficulties in adapting deep learning models to complex Turkish language char-

acteristics

(v) Incomplete or biased Turkish corpora and datasets

5

2.2.4. Team Work (if applicable)

The following tasks can be divided among team members but in our case, we

proceeded collaboratively:

• Literature review and analysis of similar systems

• Developing deep learning models for preprocessing operations

• Adapting models to Turkish language characteristics

• Testing and evaluation on Turkish corpora

• Documentation and presentation of the project

Regular meetings are scheduled among team members and the project advisor

for effective communication and collaboration.

6

3. RELATED WORK

During our exploration of the literature, we examined various universal prepro-

cessing operations implemented using deep learning approaches, such as UDPipe and

Stanza. In addition, we analyzed different approaches for individual operations, in-

cluding tokenization and sentence splitting. Furthermore, we researched libraries and

model functionalities that could be utilized for our project.

3.1. Universal Preprocessing Tools

• UDPipe: Straka et al. (2016) introduced a trainable pipeline for processing

CoNLL-U files, performing tokenization, morphological analysis, POS tagging,

and parsing [1].

• Stanza: Qi et al. (2020) presented a Python NLP toolkit for multiple human

languages, offering various preprocessing functionalities [2].

3.2. Individual Preprocessing Operations

• Tokenization: Doyle et al. (2019) developed a character-level LSTM network

model for tokenizing Old Irish text in the Würzburg Glosses on the Pauline

Epistles [3].

• Sentence Splitting: Sheik et al. (2022) proposed an efficient deep learning

approach for sentence boundary detection in legal texts, which was presented at

the Natural Legal Language Processing Workshop [4].

3.3. Resources and Frameworks

• Preprocessing Techniques in NLP: A comprehensive guide to preprocess-

ing techniques in NLP can be found at https://exchange.scale.com/public/

blogs/preprocessing-techniques-in-nlp-a-guide.

https://exchange.scale.com/public/blogs/preprocessing-techniques-in-nlp-a-guide
https://exchange.scale.com/public/blogs/preprocessing-techniques-in-nlp-a-guide

7

• Universal Dependencies: The Universal Dependencies framework provides a

platform for cross-linguistic, consistent grammatical annotation and is available

at https://universaldependencies.org/.

https://universaldependencies.org/

8

REFERENCES

1. Straka, M., Hajic, J., Strakova, J. (2016) UDPipe: Trainable Pipeline for Processing

CoNLL-U Files Performing Tokenization, Morphological Analysis, POS Tagging and

Parsing, In Proc. of the Tenth International Conference on Language Resources and

Evaluation (LREC), p.4290-4297.

2. Qi, P., Zhang, Y., Zhang, Y., Bolton, J., Manning, C.D. (2020) Stanza: A Python

Natural Language Processing Toolkit for Many Human Languages, In. Proc. of the

58th Annual Meeting of the Association for Computational Linguistics, p.101-108.

3. Doyle, A., McCrae, J. P., & Downey, C. (2019). A Character-Level LSTM Network

Model for Tokenizing the Old Irish Text of the Würzburg Glosses on the Pauline

Epistles. In Proceedings of the Celtic Language Technology Workshop 2019 Dublin,

19–23 Aug. 2019 (pp. 70-79).

4. Sheik, R., Adethya, G.T., & Nirmala, S.J. (2022). Efficient Deep Learning-based

Sentence Boundary Detection in Legal Text. In Proceedings of the Natural Legal

Language Processing Workshop 2022 (pp. 208-217). Association for Computational

Linguistics.

9

4. METHODOLOGY

4.1. Tokenizer

We have designed and implemented a deep learning-based tokenizer for Turkish

text. The process is divided into several steps:

4.1.1. Data Loading and Preprocessing

(i) Load the ConLL-U formatted data, extract sentences and corresponding tok-

enized sentences from it.

(ii) Use a character-level tokenizer to convert the sentences into sequences of charac-

ters.

(iii) Determine the vocabulary size and the maximum sequence length in the training

data.

(iv) Pad the sequences to the maximum sequence length.

4.1.2. Label Creation

(i) For each sentence, identify the boundaries of the tokens in the corresponding

tokenized sentence.

(ii) Create binary labels for the characters in the sentence, where a ’1’ indicates the

start of a token and ’0’ otherwise.

(iii) Pad the binary labels to match the sequence length.

4.1.3. Model Creation and Training

(i) Split the padded sequences and corresponding labels into training and testing

sets.

(ii) Define a bidirectional LSTM model with two LSTM layers and an output dense

10

layer for token boundary predictions.

(iii) Compile the model using the Adam optimizer and binary cross-entropy loss.

(iv) Train the model using the training data and validate it with the testing data.

4.1.4. Tokenization of New Sentences

(i) Convert the input sentence into a sequence of characters using the same character-

level tokenizer used during training.

(ii) Pad the sequence to match the maximum sequence length.

(iii) Use the trained model to predict token boundaries for the input sentence.

(iv) Extract tokens from the input sentence based on the predicted token boundaries.

4.2. Sentence Splitting

We have designed a sentence splitting system for Turkish text, using the deep

learning approaches. This process consists of several steps:

4.2.1. Data Loading and Generation of Shuffled Texts

(i) Load the ConLL-U formatted data and extract sentences from it.

(ii) Generate shuffled texts and corresponding sentence lists using a sentence shuffling

function that takes a list of sentences, group size, number of texts, and batch size

as parameters.

4.2.2. Sentence Boundary Identification and Label Creation

(i) Identify sentence boundaries in the shuffled texts.

(ii) Create binary labels indicating whether a character marks the beginning of a

sentence.

11

4.2.3. Data Preprocessing

(i) Convert the shuffled texts to sequences of characters using a character-level tok-

enizer.

(ii) Pad the sequences to the maximum length found in the training data.

(iii) Pad the binary labels to match the sequence length.

4.2.4. Model Creation and Training

(i) Split the sequences and labels into training and testing sets.

(ii) Define a bidirectional LSTM model with two LSTM layers and an output dense

layer for sentence boundary predictions.

(iii) Compile the model using the Adam optimizer and binary cross-entropy loss.

(iv) Train the model using the training data and validate it with the testing data.

4.2.5. Sentence Splitting of New Texts

(i) Convert the input text into a sequence of characters using the same tokenizer as

before.

(ii) Pad the sequence to the maximum length.

(iii) Use the trained model to predict sentence boundaries for the input text.

(iv) Split the text into sentences based on the predicted sentence boundaries.

4.3. Deasciifier Model

We have designed a deep learning model for correcting de-asciified Turkish sen-

tences. The process involves the following steps:

12

4.3.1. Data Loading and Preprocessing

(i) Load the ConLL-U formatted data, extract original sentences, and convert them

to the ASCII form.

(ii) Save these original and de-asciified sentence pairs in a JSON file for easy access

in the future.

(iii) Define the character sets for Turkish characters and their corresponding ASCII

forms.

(iv) Create a combined character set including all characters appearing in both the

original and de-asciified sentences.

(v) Map all characters to unique indices and vice-versa to facilitate numerical com-

putation.

4.3.2. Data Preparation

(i) Convert original and de-asciified sentences to sequences of corresponding charac-

ter indices.

(ii) Ensure that each target character index corresponds to a Turkish character if it

is altered in the de-asciified form, else it should correspond to the same ASCII

character.

(iii) Pad the sequences to have the same length as the longest sentence.

(iv) Convert the target sequences to one-hot encoded form.

4.3.3. Model Creation and Training

(i) Define a Sequential model consisting of an Embedding layer, a Bidirectional

LSTM layer, and a TimeDistributed Dense layer.

(ii) Compile the model using categorical cross-entropy loss and the Adam optimizer.

(iii) Train the model with a validation split of 0.1 and for a specified number of epochs.

13

4.3.4. Deasciification of New Sentences

(i) Convert the input sentence into a sequence of character indices using the same

mapping as before.

(ii) Pad the sequence to match the maximum sequence length.

(iii) Use the trained model to predict the character indices for the input sentence.

(iv) Convert the predicted indices back to characters.

(v) Replace the de-asciified characters in the input sentence with the predicted Turk-

ish characters.

14

5. REQUIREMENTS SPECIFICATION

5.0.1. Functional Requirements

(i) Conduct a literature review on existing systems for English, such as UDPipe and

Stanza.

(ii) Develop deep learning models for each preprocessing operation (tokenization,

sentence splitting, deasciifier).

(iii) Adapt models to Turkish language characteristics, e.g., using embeddings for

suffixes.

(iv) Test the system on Turkish corpora, preferably on Turkish treebanks in the Uni-

versal Dependencies (UD) framework.

5.0.2. System Features

• Tokenization

• Sentence splitting

• Deasciifier

5.0.3. Algorithms

(i) Tokenization

• Bi-directional LSTM (Bi-LSTM) model

(ii) Sentence Splitting

• Bi-directional LSTM (Bi-LSTM) model

(iii) Deasciifier

• Bi-directional LSTM (Bi-LSTM) model

15

6. DESIGN

6.1. Information Structure

Not applicable

6.2. Information Flow

Not applicable

6.3. System Design

Not applicable

6.4. User Interface Design (if applicable)

Not applicable

16

7. IMPLEMENTATION AND TESTING

7.1. Implementation

7.1.1. Tokenizer Implementation

We have implemented a deep learning-based approach for tokenization using a

Bi-LSTM model. The code snippet below explains the implementation process step by

step.

(i) Import necessary libraries: numpy, tensorflow, re, and sklearn.

(ii) Define a function to load and preprocess the conllu data.

(iii) Load sentences from the conllu file and preprocess them for the Bi-LSTM model.

(iv) Create a character-level tokenizer, fit it on the preprocessed sentences, and create

sequences.

(v) Determine the maximum sequence length and pad the sequences to ensure uni-

form length.

(vi) Generate labels for the sequences based on punctuation marks(will be improved

by using train data to determine the token boundaries) and spaces.

(vii) Split the data into training and test sets using an 80-20 split.

(viii) Define a function to create the Bi-LSTM model with appropriate layers and con-

figurations.

(ix) Create and summarize the model.

(x) Train the model using the training data and validate it on the test data.

The Bi-LSTM model we implemented is capable of identifying token boundaries

using punctuation marks and spaces, making it a suitable approach for tokenization

tasks. The model can be further improved by fine-tuning its architecture and training

parameters.

17

Related python code

import numpy as np

import tensorflow as tf

import re

from tensorflow.keras.models import Model

from tensorflow.keras.layers import Input , Embedding , Bidirectional ,

LSTM , Dense

from tensorflow.keras.preprocessing.sequence import pad_sequences

from tensorflow.keras.preprocessing.text import Tokenizer

from sklearn.model_selection import train_test_split

Load conllu data and preprocess

def load_conllu_data(file_path):

with open(file_path , "r", encoding="utf -8") as f:

data = f.read()

sentences = data.split("\n\n")

sentences = [s.split("\n") for s in sentences if len(s) > 0]

return [" ".join([word.split("\t")[1] for word in s if not word.

startswith("#")]) for s in

sentences]

file_path = "tr_boun -ud -dev.conllu"

sentences = load_conllu_data(file_path)

Preprocess data for Bi-LSTM model with punctuation as token

boundaries

def preprocess_sentences(sentences):

punctuations = r’[,.;:!?]’

processed_sentences = []

for s in sentences:

s = re.sub(r’([’ + punctuations + r’])’, r’ \1 ’, s)

processed_sentences.append(s)

return processed_sentences

processed_sentences = preprocess_sentences(sentences)

tokenizer = Tokenizer(filters="", lower=False , char_level=True)

tokenizer.fit_on_texts(processed_sentences)

18

sequences = tokenizer.texts_to_sequences(processed_sentences)

vocab_size = len(tokenizer.word_index) + 1

max_length = max([len(seq) for seq in sequences])

padded_sequences = pad_sequences(sequences , maxlen=max_length , padding

="post")

punctuations = r’[,.;:!?]’

labels = []

for s in processed_sentences:

label = [0]

for i, c in enumerate(s[:-1]):

if c in punctuations or s[i + 1] in punctuations or s[i + 1] =

= ’ ’:

label.append(1)

else:

label.append(0)

labels.append(label)

padded_labels = pad_sequences(labels , maxlen=max_length , padding="post

")

Split data into train and test sets

X_train , X_test , y_train , y_test = train_test_split(padded_sequences ,

padded_labels , test_size=0.2,

random_state=42)

Define a more complex Bi-LSTM model

def create_bilstm_model(vocab_size , max_length):

inputs = Input(shape=(max_length ,))

x = Embedding(vocab_size , 128 , input_length=max_length)(inputs)

x = Bidirectional(LSTM(128 , return_sequences=True))(x)

x = Bidirectional(LSTM(64 , return_sequences=True))(x)

outputs = Dense(1, activation="sigmoid")(x)

model = Model(inputs=inputs , outputs=outputs)

model.compile(optimizer="adam", loss="binary_crossentropy",

metrics=["accuracy"])

19

return model

model = create_bilstm_model(vocab_size , max_length)

model.summary ()

Train the model

model.fit(X_train , y_train , batch_size=32, epochs=5, verbose=1,

validation_data=(X_test , y_test))

7.1.2. Sentence Splitter Implementation

We implemented a deep learning-based sentence splitter using a Bi-LSTM model.

Below, we provide a step-by-step walkthrough of the implementation process:

(i) Imported the necessary libraries: conllu, numpy, tensorflow, and sklearn.

(ii) Defined a function to load and preprocess data from the conllu file.

(iii) Loaded and preprocessed sentences from the conllu file.

(iv) Developed a function that generates shuffled texts and their corresponding groups

of sentences.

(v) Generated shuffled texts and their associated groups of sentences.

(vi) Identified sentence boundaries for each shuffled text.

(vii) Created binary labels to denote the start of each sentence in the shuffled text.

(viii) Set up a character-level tokenizer and fit it on the original sentences. Also, padded

all sequences to the same length.

(ix) Split the data into training and testing sets, maintaining an 80-20 split.

(x) Defined a function to create a Bi-LSTM model with the appropriate layers and

configurations.

(xi) Created and summarized the model.

(xii) Trained the model on the training data and validated it using the test data.

(xiii) Saved the trained model for future use.

(xiv) Implemented a function to tokenize a given sentence using the trained model.

20

Related python code

!pip install conllu

import numpy as np

import tensorflow as tf

import re

import conllu

from tensorflow.keras.models import Model

from tensorflow.keras.layers import Input , Embedding , Bidirectional ,

LSTM , Dense

from tensorflow.keras.preprocessing.sequence import pad_sequences

from tensorflow.keras.preprocessing.text import Tokenizer

from sklearn.model_selection import train_test_split

from tensorflow.keras.optimizers import Adam

from sklearn.utils import class_weight

import random

def load_conllu_data(file_path):

with open(file_path , "r", encoding="utf -8") as f:

data = f.read().strip ()

all_sentences = []

for item in conllu.parse(data):

all_sentences.append(item.metadata[’text’])

return all_sentences

def shuffled_text_generator(sentences , group_size=5, num_texts=2000 ,

batch_size=1000):

if num_texts is None:

num_texts = len(sentences) // group_size

num_batches = num_texts // batch_size

for _ in range(num_batches):

random.shuffle(sentences)

grouped_sentences = [sentences[i:i+group_size] for i in range(

0, len(sentences),

group_size)]

21

texts_and_groups = [(group , " ".join(group)) for group in

grouped_sentences]

Yield a batch of shuffled texts and groups

for text , group in texts_and_groups[:batch_size]:

yield text , group

file_path = "tr_boun -ud -train.conllu"

all_sentences = load_conllu_data(file_path)

shuffled_texts_gen = shuffled_text_generator(all_sentences)

shuffled_texts = []

splitted_sentences_list = []

for splitted_sentences , shuffled_text in shuffled_texts_gen:

shuffled_texts.append(shuffled_text)

splitted_sentences_list.append(splitted_sentences)

print(len(shuffled_texts))

print(len(splitted_sentences_list))

def find_sentence_boundaries(text , splitted_sentences):

boundaries = []

start = 0

for sentence in splitted_sentences:

start = text.find(sentence , start)

end = start + len(sentence) - 1

boundaries.append ((start , end))

start = end

return boundaries

def create_binary_labels(text , boundaries):

binary_labels = [0] * len(text)

for start , end in boundaries:

binary_labels[start] = 1

return binary_labels

tokenizer = Tokenizer(filters="", lower=False , char_level=True)

tokenizer.fit_on_texts(all_sentences)

vocab_size = len(tokenizer.word_index) + 1

22

sequences = tokenizer.texts_to_sequences(shuffled_texts)

max_length = max([len(seq) for seq in sequences])

padded_sequences = pad_sequences(sequences , maxlen=max_length , padding

="post")

labels = []

for i, s in enumerate(shuffled_texts):

boundaries = find_sentence_boundaries(s, splitted_sentences_list[i

])

label = create_binary_labels(s, boundaries)

labels.append(label)

padded_labels = pad_sequences(labels , maxlen=max_length , padding="post

")

Split data into train and test sets

X_train , X_test , y_train , y_test = train_test_split(padded_sequences ,

padded_labels , test_size=0.2,

random_state=42)

Define a more complex Bi-LSTM model

def create_bilstm_model(vocab_size , max_length):

inputs = Input(shape=(max_length ,))

x = Embedding(vocab_size , 128 , input_length=max_length)(inputs)

x = Bidirectional(LSTM(128 , return_sequences=True))(x)

x = Bidirectional(LSTM(64 , return_sequences=True))(x)

outputs = Dense(1, activation="sigmoid")(x)

model = Model(inputs=inputs , outputs=outputs)

model.compile(optimizer="adam", loss="binary_crossentropy",

metrics=["accuracy"])

return model

model = create_bilstm_model(vocab_size , max_length)

model.summary ()

model.fit(X_train , y_train , batch_size=32, epochs=6, verbose=1,

validation_data=(X_test , y_test))

model.save("sentence_splitter.h5")

23

def tokenize_sentence(sentence , model , tokenizer , max_length):

seq = tokenizer.texts_to_sequences([sentence])[0]

padded_seq = pad_sequences([seq], maxlen=max_length , padding="post

")

predictions = model.predict(padded_seq)[0]

predictions = predictions[:len(sentence)]

print(len(predictions), len(sentence))

for i, pred in enumerate(predictions[:len(sentence)]):

print(sentence[i], pred)

#predictions = np.round(predictions [:len(sentence)]).flatten ()

tokens = []

current_token = ""

for i, c in enumerate(sentence):

if predictions[i] > 0.5:

tokens.append(current_token)

current_token = c

else:

current_token += c

if i == len(sentence)-1:

tokens.append(current_token)

return [s.strip() for s in tokens]

input_sentence = "Umut su al. Neden Ahmet kahve almak gibi bir eylemde

bulundun? Kahve almaya gidelim.

Nereye gidiyorsun?"

tokens = tokenize_sentence(input_sentence , model , tokenizer ,

max_length)

print("Tokens:", tokens)

7.1.3. Deasciifier Implementation

We implemented a deasciifier using another Bi-LSTM model. Below is a step-by-

step walkthrough of the implementation:

24

(i) Imported necessary libraries: conllu, numpy, and keras.

(ii) Defined a function to convert Turkish characters to ASCII characters.

(iii) Loaded data from the conllu file, converted each sentence to its ASCII form, and

saved the original and ASCII versions as pairs in a JSON file.

(iv) Defined the character set and created dictionaries for character-to-index and

index-to-character mappings.

(v) Prepared the input and target data for the model. For each pair of original and

ASCII sentences, the ASCII sentence was used as input, and the target was the

original sentence.

(vi) Padded all input and target sequences to the same length and one-hot encoded

the target data.

(vii) Defined and compiled a Bi-LSTM model suitable for the task.

(viii) Trained the model using the input and target data.

(ix) For prediction, preprocessed the input sentence and fed it to the model. The

model predicted the probability distribution for each character in the sentence.

(x) Converted these probabilities back into characters, and replaced the ASCII char-

acters in the input sentence with the predicted characters to get the deasciified

sentence.

Through this implementation, the deasciifier can transform text containing ASCII

characters into its original Turkish form, and the sentence splitter can correctly identify

the boundaries of sentences within a text. Both models can be improved by fine-tuning

and by using more diverse training data.

Related python code

!pip install conllu

import conllu

import json

import numpy as np

from keras.utils import to_categorical

from keras.utils import pad_sequences

from keras.models import Sequential

25

from keras.layers import LSTM , Dense ,TimeDistributed , Bidirectional ,

Embedding

def turkish_to_ascii(text):

turkish_chars = "" # Can’t include in the Project report , Latex

format causes error.

ascii_chars = "gGuUsSiIoOcC"

translation_table = str.maketrans(turkish_chars , ascii_chars)

return text.translate(translation_table)

file_path = "tr_boun -ud -train.conllu"

with open(file_path , "r", encoding="utf -8") as f:

data = f.read().strip ()

all_sentences = []

deasciified_sentences = []

for i, item in enumerate(conllu.parse(data)):

original_sentence = item.metadata[’text’]

all_sentences.append(original_sentence)

deasciified_sentence = turkish_to_ascii(original_sentence)

deasciified_sentences.append(deasciified_sentence)

Save the original and deasciified sentences to a JSON file

sentence_pairs = [{"original": orig , "deasciified": deasc} for orig ,

deasc in zip(all_sentences ,

deasciified_sentences)]

with open("tr_boun -ud-train -deasciified.json", "w", encoding="utf -8")

as f:

json.dump(sentence_pairs , f, ensure_ascii=False , indent=2)

Load sentence pairs from the JSON file

with open("tr_boun -ud-train -deasciified.json", "r", encoding="utf -8")

as f:

sentence_pairs = json.load(f)

Define character set and create dictionaries for character -to-index

and index -to-character mappings

target_chars = ""

26

input_chars = "gGuUsSiIoOcC"

#target_char_to_idx = {c: i for i, c in enumerate(target_chars)}

Define character set and create dictionaries for character -to-index

and index -to-character mappings

all_chars = sorted(set("".join(target_chars) + "".join(input_chars) +

"".join(all_sentences) + "".join(

deasciified_sentences)))

char_to_idx = {c: i for i, c in enumerate(all_chars)}

idx_to_char = {i: c for i, c in enumerate(all_chars)}

Prepare input (X) and target (y) data

X_data = []

y_data = []

for pair in sentence_pairs:

orig = pair["original"]

deasc = pair["deasciified"]

X_sentence = [char_to_idx[c] for c in deasc]

y_sentence = []

for orig_char , deasc_char in zip(orig , deasc):

if deasc_char in input_chars:

if orig_char in target_chars:

y_sentence.append(char_to_idx[orig_char])

else:

y_sentence.append(char_to_idx[deasc_char])

else:

y_sentence.append(char_to_idx[orig_char])

X_data.append(X_sentence)

y_data.append(y_sentence)

print(sentence_pairs[1])

print(X_data[1], y_data[1])

Pad sequences to the same length

max_length = max([len(s) for s in X_data])

27

X_data = pad_sequences(X_data , maxlen=max_length , padding="post")

y_data = pad_sequences(y_data , maxlen=max_length , padding="post")

One -hot encode the target data

y_data = np.array([to_categorical(y, num_classes=len(all_chars)) for y

in y_data])

Define and compile the bi-LSTM model

model = Sequential ()

model.add(Embedding(len(all_chars), 64, input_length=max_length))

model.add(Bidirectional(LSTM(128 , return_sequences=True)))

model.add(TimeDistributed(Dense(len(all_chars), activation="softmax"))

)

model.compile(loss="categorical_crossentropy", optimizer="adam",

metrics=["accuracy"])

Train the model

history = model.fit(X_data , y_data , epochs=5, batch_size=32,

validation_split=0.1)

model.summary ()

Preprocess the input sentence

input_sentence = "Kahvaltiya kadar 2 saat cografya calisirim."

X_test = [char_to_idx[c] for c in input_sentence]

input_length = len(X_test)

X_test = pad_sequences([X_test], maxlen=max_length , padding="post")

Make predictions

y_pred = model.predict(X_test)

predicted_chars = []

for p in y_pred[0][:input_length]:

idx = np.argmax(p)

char = idx_to_char[idx]

predicted_chars.append(char)

sorted_indices = np.argsort(p)[::-1]

sorted_probs = sorted(p, reverse=True)

28

sorted_chars = [idx_to_char[i] for i in sorted_indices]

print(f"Char: {char}, Probabilities: {sorted_probs [:5]}, Chars: {

sorted_chars [:5]}")

print(predicted_chars)

Convert predictions to characters

predicted_chars = [idx_to_char[np.argmax(p)] for p in y_pred[0][:

input_length]]

Replace the original characters in the input sentence with the

predicted characters

output_sentence = []

i = 0

while i < len(input_sentence):

c = input_sentence[i]

if c in input_chars:

output_sentence.append(predicted_chars[i])

else:

output_sentence.append(c)

i += 1

output_sentence = "".join(output_sentence)

print("Input sentence:", input_sentence)

print("Output sentence:", output_sentence)

7.2. Testing

7.2.1. Tokenizer

In order to evaluate the effectiveness of the tokenization model, we have conducted

several tests using the test data set. We assess the performance of the model by

comparing its predictions with the ground truth and calculating the F-measure. We

29

present two methods for calculating the F-measure: average F-measure and cumulative

F-measure. The testing and evaluation process is outlined below:

(i) Implement the tokenize_sentence function, which tokenizes the input sentence

using the trained model. This function converts the input sentence into a sequence

of characters, pads the sequence to the maximum sequence length, and feeds it

into the trained model for prediction. The predicted boundaries are then used to

split the sentence into tokens.

(ii) Implement the f_measure function to calculate the F-measure score given the

true and predicted tokens of a sentence. This function computes the precision

and recall of the predictions, and then calculates the F-measure score as the

harmonic mean of precision and recall.

(iii) Implement the average_f_measure function, which computes the F-measure for

each sentence in the test data and returns their average. This function provides

a global measure of how well the model is performing across all sentences.

(iv) Implement the cumulative_f_measure function, which computes the cumulative

F-measure across all sentences in the test data. This function provides an alterna-

tive measure of the model’s performance which is less sensitive to the variability

in the number of tokens per sentence.

(v) Use the tokenize_sentence function to tokenize all sentences in the test data.

(vi) Evaluate the performance of the model using both the average_f_measure and

cumulative_f_measure functions.

def tokenize_sentence(sentence , model , tokenizer , max_length):

seq = tokenizer.texts_to_sequences([sentence])[0]

padded_seq = pad_sequences([seq], maxlen=max_length , padding="post

")

predictions = model.predict(padded_seq)[0]

predictions = np.round(predictions[:len(sentence)]).flatten ()

tokens = []

current_token = ""

for i, c in enumerate(sentence):

30

if predictions[i] == 1:

tokens.append(current_token)

current_token = c

else:

current_token += c

if i == len(sentence)-1:

tokens.append(current_token)

return [s.strip() for s in tokens]

def f_measure(true_tokens , predicted_tokens):

true_positives = len(set(true_tokens) & set(predicted_tokens))

false_positives = len(predicted_tokens) - true_positives

false_negatives = len(true_tokens) - true_positives

if true_positives == 0:

return 0

precision = true_positives / (true_positives + false_positives)

recall = true_positives / (true_positives + false_negatives)

f_measure_score = 2 * precision * recall / (precision + recall)

return f_measure_score

def average_f_measure(ground_truth , predicted):

f_measures = [f_measure(true_tokens , pred_tokens) for true_tokens ,

pred_tokens in zip(

ground_truth , predicted)]

return sum(f_measures) / len(f_measures)

Tokenize test sentences

predicted_tokenization = [tokenize_sentence(sentence , model , tokenizer

, max_length) for sentence in

original_sentences]

Calculate F-measure

f_measure_score = average_f_measure(tokenized_sentences ,

31

predicted_tokenization)

print(f"F-measure: {f_measure_score :.4f}")

def cumulative_f_measure(ground_truth , predicted):

total_true_positives = 0

total_false_positives = 0

total_false_negatives = 0

for true_tokens , pred_tokens in zip(ground_truth , predicted):

true_positives = len(set(true_tokens) & set(pred_tokens))

false_positives = len(pred_tokens) - true_positives

false_negatives = len(true_tokens) - true_positives

total_true_positives += true_positives

total_false_positives += false_positives

total_false_negatives += false_negatives

if total_true_positives == 0:

return 0

precision = total_true_positives / (total_true_positives +

total_false_positives)

recall = total_true_positives / (total_true_positives +

total_false_negatives)

f_measure_score = 2 * precision * recall / (precision + recall)

return f_measure_score

Calculate cumulative F-measure

cumulative_f_measure_score = cumulative_f_measure(tokenized_sentences ,

predicted_tokenization)

print(f"Cumulative F-measure: {cumulative_f_measure_score :.4f}")

32

7.2.2. Sentence Splitter

For a more granular analysis, a sentence splitter function has been implemented

and tested. This function aims to identify sentence boundaries in a paragraph of text.

The testing process is as follows:

(i) Define a function, get_predicted_splits, that predicts sentence splits in a para-

graph of text. It utilizes the trained model to tokenize the paragraph and returns

the predicted sentence boundaries.

(ii) Define a function, calculate_confusion_matrix, to calculate the True Positives

(TP), False Positives (FP), False Negatives (FN), and True Negatives (TN) based

on the comparison between the predicted and the true sentence boundaries.

(iii) Define a function, f_measure_single_paragraph, that calculates the F-measure

for a single paragraph. It gets the predicted splits for the paragraph, calculates

the confusion matrix, and uses these values to calculate the precision, recall, and

accuracy, which are then used to calculate the F-measure.

(iv) Define a function, f_measure_multiple_paragraphs, that calculates the F-measure

for multiple paragraphs. It sums up the TP, FP, FN, and TN for all the para-

graphs and calculates the overall precision, recall, and accuracy. These values are

used to calculate the F-measure for all paragraphs.

The F-measure gives us an understanding of the accuracy of the sentence splitter

model. It considers both precision (how many selected sentences are relevant) and

recall (how many relevant sentences are selected), providing a balanced measure of its

performance.

def get_predicted_splits(paragraph , model , tokenizer , max_length):

predicted_splits = tokenize_sentence(paragraph , model , tokenizer ,

max_length)

return predicted_splits

def calculate_confusion_matrix(true_splits , predicted_splits):

33

TP = 0

FP = 0

FN = 0

TN = 0

for true_boundary in true_splits:

if true_boundary in predicted_splits:

TP += 1

else:

FN += 1

for predicted_boundary in predicted_splits:

if predicted_boundary not in true_splits:

FP += 1

TN is the total number of non -split characters that are

correctly non -split

TN = len(predicted_splits[0]) - (FN + FP + TP)

print(TN)

return TP, FP , FN, TN

def f_measure_single_paragraph(paragraph , true_splits , model ,

tokenizer , max_length):

predicted_splits = get_predicted_splits(paragraph , model ,

tokenizer , max_length)

print(predicted_splits)

print(true_splits)

tp , fp , fn, tn = calculate_confusion_matrix(true_splits ,

predicted_splits)

precision = tp / (tp + fp)

recall = tp / (tp + fn)

Modified to include TN in the denominator

accuracy = (tp + tn) / (tp + fp + fn + tn)

print("TP: ", tp,"FP: ", fp,"TN: ", tn ,"FN: ", fn)

34

Beta is considered to be 1 in this case

f_measure = (2 * precision * recall) / (precision + recall)

Modified to include accuracy

#f_measure = (2 * precision * recall * accuracy) / (precision +

recall + accuracy)

print(accuracy)

print(recall)

print(precision)

return f_measure

def f_measure_multiple_paragraphs(paragraphs , true_splits_list , model ,

tokenizer , max_length):

tp_total , fp_total , fn_total , tn_total = 0, 0, 0, 0

for paragraph , true_splits in zip(paragraphs , true_splits_list):

predicted_splits = get_predicted_splits(paragraph , model ,

tokenizer , max_length)

tp, fp , fn, tn = calculate_confusion_matrix(true_splits ,

predicted_splits , paragraph

)

tp_total += tp

fp_total += fp

fn_total += fn

tn_total += tn

precision = tp_total / (tp_total + fp_total)

recall = tp_total / (tp_total + fn_total)

accuracy = (tp_total + tn_total) / (tp_total + fp_total + fn_total

+ tn_total)

Beta is considered to be 1 in this case

f_measure = (2 * precision * recall) / (precision + recall)

Modified to include accuracy

f_measure = (2 * precision * recall * accuracy) / (precision +

recall + accuracy)

return f_measure

35

print(f_measure_multiple_paragraphs(all_test_paragraphs ,

true_splits_list , model , tokenizer ,

max_length))

7.2.3. Deasciifier

To evaluate the performance of the deasciifier, an F-measure is calculated for all

sentences in the dataset. The process is as follows:

(i) For each pair of sentences in the dataset (an original sentence and its deasciified

version), a prediction is made based on the deasciified sentence.

(ii) The counts of True Positives (TP), False Positives (FP), False Negatives (FN),

and True Negatives (TN) are calculated for each pair.

(iii) These counts are summed across all sentence pairs to obtain total counts.

(iv) The precision, recall, and F-measure are then calculated using these total counts.

The F-measure provides a comprehensive measure of the performance of the

deasciifier, considering both its precision and recall.

def calculate_f_measure_for_all_sentences(sentence_pairs , model ,

max_length , char_to_idx ,

idx_to_char):

true_positives = 0

false_positives = 0

false_negatives = 0

true_negatives = 0

for pair in sentence_pairs:

original_sentence = pair["original"]

deasciified_sentence = pair["deasciified"]

X_test = [char_to_idx[c] for c in deasciified_sentence]

input_length = len(X_test)

X_test = pad_sequences([X_test], maxlen=max_length , padding="post")

y_pred = model.predict(X_test)

36

predicted_chars = [idx_to_char[np.argmax(p)] for p in y_pred[0][:

input_length]]

output_sentence = []

i = 0

while i < len(deasciified_sentence):

c = deasciified_sentence[i]

if c in input_chars:

output_sentence.append(predicted_chars[i])

else:

output_sentence.append(c)

i += 1

output_sentence = "".join(output_sentence)

tp , fp , fn, tn = calculate_counts(original_sentence ,

deasciified_sentence ,

output_sentence)

true_positives += tp

false_positives += fp

false_negatives += fn

true_negatives += tn

precision = true_positives / (true_positives + false_positives) if

true_positives + false_positives >

0 else 0

recall = true_positives / (true_positives + false_negatives) if

true_positives + false_negatives >

0 else 0

f_measure = 2 * precision * recall / (precision + recall) if precision

+ recall > 0 else 0

return f_measure

f_measure = calculate_f_measure_for_all_sentences(sentence_pairs ,

model , max_length , char_to_idx ,

idx_to_char)

print("F-measure for all sentences:", f_measure)

37

7.3. Deployment

7.3.1. Google Colab Deployment

The project is hosted on Google Colab, which provides an easy-to-use environ-

ment with pre-installed necessary libraries, such as TensorFlow. To run the project,

follow these steps:

(i) Open the Google Colab notebook in your browser using the provided links below

for each model.

- For the tokenizer:

https://colab.research.google.com/drive/1rqWBmh1uhbQ1_gKlOr3BUvdr42vrFmxr?

usp=sharing

- For the sentence splitter:

https://colab.research.google.com/drive/1etDGKxNfJY2uGg-pLk-_938BecDYhpqv?

usp=sharing

- For the deasciifier:

https://colab.research.google.com/drive/1SDs4zGDApAMfct0zAkocfaEVXK01hCvO?

usp=sharing

(ii) Sign in to your Google account if prompted.

(iii) Upload the training data and the test data named "tr_boun-ud-dev.conllu",

"tr_boun-ud-test.conllu" files to the Google Colab environment by using the

file upload feature in the left-hand panel. Make sure to adjust the file paths in

the code accordingly.

(iv) Run the cells in the notebook sequentially to train the corresponding model and

test it with a sample instance.

https://colab.research.google.com/drive/1rqWBmh1uhbQ1_gKlOr3BUvdr42vrFmxr?usp=sharing
https://colab.research.google.com/drive/1rqWBmh1uhbQ1_gKlOr3BUvdr42vrFmxr?usp=sharing
https://colab.research.google.com/drive/1etDGKxNfJY2uGg-pLk-_938BecDYhpqv?usp=sharing
https://colab.research.google.com/drive/1etDGKxNfJY2uGg-pLk-_938BecDYhpqv?usp=sharing
https://colab.research.google.com/drive/1SDs4zGDApAMfct0zAkocfaEVXK01hCvO?usp=sharing
https://colab.research.google.com/drive/1SDs4zGDApAMfct0zAkocfaEVXK01hCvO?usp=sharing

38

8. RESULTS

8.1. Example Inputs and Outputs

8.1.1. Tokenization Example

8.1.1.1. Example Inputs. We present three sample Turkish texts for tokenization:

(i) input1: Yurt dışında çalışmak hedeflerim içerisinde umarım da gerçekleşir; ulus-

lar arası öğretmenlik diploması almak istiyorum bu yüzden de.

(ii) input2: - Çocuklar, gördüğünüz gibi dinleneceğimiz, oynayacağımız, yemekler-

imizi yiyip, yarışmalar yapacağımız yere geldik.

(iii) input3: Ancak bu bir teferruat gayet tabii ki.

8.1.2. Example Outputs

Using the implemented Bi-LSTM tokenizer, the sample texts are tokenized as

follows:

(i) output1: ["Yurt", "dışında", "çalışmak", "hedeflerim", "içerisinde", "umarım",

"da", "gerçekleşir", ";", "uluslar", "arası", "öğretmenlik", "diploması", "almak",

"istiyorum", "bu", "yüzden", "de", "."]

(ii) output2: ["Çocuklar", ",", "gördüğünüz", "gibi", "dinleneceğimiz", ",", "oy-

nayacağımız", ",", "yemeklerimizi", "yiyip", ",", "yarışmalar", "yapacağımız",

"yere", "geldik", "."]

(iii) output3: ["Ancak", "bu", "bir", "teferruat", "gayet", "tabii", "ki", "."]

8.1.3. Sentence Splitter Example

8.1.3.1. Input. The following is a sample input to the sentence splitter:

39

Meğerse ne kadar yanılmışız. Ïnsanların ve toplulukların birbirine üstünlüğü ve

egemenliği o zaman söz konusu olmaya başlar. .Ïstanbul Arena’da yapılacak kon-

sere Kıraç, Haluk Levent, Bulutsuzluk Özlemi, Pentagram, Okan Karacan ve Nejat

Yavaşoğulları ile birçok sanatçı katılacak. Benjamin dramından yaklaşık yirmi beş yıl

sonra. Tamam, deyip görüşmeye gider.

8.1.3.2. Output. After the sentence splitting process, the sentences obtained from the

above input are as follows:

(i) "Meğerse ne kadar yanılmışız."

(ii) "Ïnsanların ve toplulukların birbirine üstünlüğü ve egemenliği o zaman söz konusu

olmaya başlar."

(iii) "Ïstanbul Arena’da yapılacak konsere Kıraç, Haluk Levent, Bulutsuzluk Özlemi,

Pentagram, Okan Karacan ve Nejat Yavaşoğulları ile birçok sanatçı katılacak."

(iv) "Benjamin dramından yaklaşık yirmi beş yıl sonra."

(v) " Tamam, deyip görüşmeye gider."

8.1.4. Deasciifier Example

8.1.4.1. Example Inputs and Outputs. Below are some examples of deasciified Turkish

sentences and their original versions:

(i) Example 1:

• input: "Eseklerin sirtlarina yuklenmis sepetlerle tasinirdi uzumler."

• output: "Eşeklerin sırtlarına yüklenmiş sepetlerle taşınırdı üzümler."

(ii) Example 2:

• input: "Benjamin dramindan yaklasik yirmi bes yil sonra."

• output: "Benjamin dramından yaklaşık yirmi beş yıl sonra."

(iii) Example 3:

• input: "Istanbul Arena’da yapilacak konserlere cok sanatci katilacak."

• output: "Ïstanbul Arena’da yapılacak konserlere çok sanatçı katılacak."

40

(iv) Example 4:

• input: "Cocuklar, gordugunuz gibi dinlenecegimiz, oynayacagimiz, yemek-

lerimizi yiyip, yarismalar yapacagimiz yere geldik."

• output: "Çocuklar, gördüğünüz gibi dinleneceğimiz, oynayacağımız, yemek-

lerimizi yiyip, yarışmalar yapacağımız yere geldik."

(v) Example 5:

• input: "Ancak bu bir teferruat gayet tabii ki."

• output: "Ancak bu bir teferruat gayet tabii ki."

41

9. CONCLUSION

9.1. Implementation

9.1.1. Tokenizer Implementation

We have implemented a tokenizer using a bi-directional LSTM (Bi-LSTM) model.

The model has been trained on the Turkish treebanks in the Universal Dependencies

(UD) framework. The tokenizer utilizes a character-level tokenization approach, con-

sidering punctuation as token boundaries.

9.1.2. Sentence Splitter Implementation

We have implemented a Sentence Splitter using a Bi-LSTM model, which has

been trained on Turkish treebanks in the Universal Dependencies (UD) framework.

The sentence splitter is designed to identify the boundaries of sentences in a text. It

utilizes shuffled texts and their corresponding sentence groupings to generate binary

labels to denote the start of each sentence in a shuffled text. The model uses a character-

level tokenization approach and is capable of accurately identifying sentence boundaries

even in complex, shuffled texts.

9.1.3. Deasciifier Implementation

We have implemented a Deasciifier using a Bi-LSTM model. The model is de-

signed to convert Turkish text written in ASCII characters back into its original Turkish

form. This model has been trained on paired datasets consisting of original Turkish

sentences and their ASCII form, learning to replace ASCII characters with their Turk-

ish counterparts. The deasciifier model is beneficial for processing texts that have

been affected by keyboard layout issues, typographical errors, or other forms of text

corruption, allowing for more accurate natural language processing in Turkish.

42

9.2. Model Architecture

The Bi-LSTM model that was used for the training of the models consists of the

following layers:

• Input layer

• Embedding layer

• Bi-directional LSTM layer (128 units)

• Bi-directional LSTM layer (64 units)

• Dense layer (1 unit, sigmoid activation)

9.3. Training and Evaluation

The models were trained on a training set and evaluated on a test set, with an

80% to 20% split for validation of sentence splitter and tokenizer; with an 90% to 10%

split for validation of deasciifier. The training was performed for five epochs with a

batch size of 32 for tokenizer and deasciifier; for six epochs with a batch size of 32 for

sentence splitter. The performance metrics were binary cross-entropy loss and accuracy

for all of the models.

9.4. Results

Results show that the Bi-LSTM based tokenizer, sentence splitter, and deasciifier

perform well on the test set which has been adjusted for various evaluations. Results

of measurement for the models are as follows:

9.4.1. Results for Tokenizer

• Aggregate f-measure of the Tokenizer is calculated as: 95% Overall consideration

for the accuracy of the Tokenizer can be summarized as follows; since our train-

ing data can be considered to be adequate in terms of various unbiased context

43

based words, the model could be trained in an un-biased manner with the right

adjustment of the hyperparameters.

9.4.2. Results for Sentence Splitter

• Aggregate f-measure of the sentence splitter is calculated as: 98% Overall consid-

eration for the accuracy of the Sentence Splitter can be summarized as follows;

The task of sentence splitting is easier compared to the other two, and we were

able to create the almost optimal training data for the sentence splitter via shuf-

fling the sentences for creating paragraphs. Also since our training data can be

considered to be adequate in terms of various unbiased context based sentences,

the model could be trained in an un-biased manner after hyperparameter adjust-

ments via grid search.

9.4.3. Results for Deasciifier

• Aggregate f-measure of the deasciifier is calculated as: 84% Considering the over-

all accuracy for the deasciifier, we can say that; This task was the most cumber-

some one among the three. Since we didn’t have specific data for this purpose we

had to create the data set ourselves, even though this creation resulted successful,

the pseudo data still wasn’t sufficient for the enough training of deasciifier for all

replacement types.

