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Summary  

Word sense disambiguation (WSD) is the task of assigning a meaning to an ambiguous 

word given the context in which it occurs. WSD serves as an intermediate step for many 

computer science applications such as machine translation, information retrieval, hypertext 

navigation, content and thematic analysis, speech processing. Therefore, it has been a central 

problem since the earliest days of computational studies of natural language. WSD algorithms 

can be classified into three general categories [1]: (i) AI-based methods, (ii) Knowledge-based 

methods, (iii) Corpus-based methods which gather knowledge from corpora—collection of 

edited and published texts used for linguistics purposes. Supervised learning requires manually 

disambiguated words, whereas unsupervised learning does not. Difficulties involved in hand-

tagging training corpora bring about the infamous roadblock known as knowledge acquisition 

bottleneck.  

 This project draws on ‘decision lists’ introduced by Rivest [2]. Decision lists are 

particularly useful for a set of non-independent evidences as in the case of word sense 

disambiguation and performs comparable to or better than other approaches such as N-gram 

taggers or Bayesian classifiers [3]. Pseudowords were employed to experiment with both 

supervised and unsupervised methods. Yarowsky algorithm [14] was implemented and its 

behavior was analyzed with respect to program parameters. The algorithm proceeds in an 

iterative bootstrapping fashion in the training phase. It starts with a manually-specified seed 

collocation for each sense of the target word. At each step, new collocations are discovered and 

then used to disambiguate other occurrences in the training corpus. The training continues until 

the convergence condition when no more occurrences can be added into sense classes.   



                                                       
                                                               

1.  LITERATURE SURVEY 
 
 

 
1.1.  Introduction 

 

 

 Word sense disambiguation (WSD) is the task of assigning a meaning to an ambiguous 

word given the context in which it occurs. WSD serves as an intermediate step for many 

computer science applications such as machine translation, information retrieval, hypertext 

navigation, content and thematic analysis, speech processing. Therefore, it has been a central 

problem since the earliest days of computational studies of natural language.  

 WSD requires a set of meanings for each word to be disambiguated and a means to choose 

the correct one from that set. It is a common practice to use the word sense distinctions of a 

machine readable dictionary; particularly, the use of WordNet for this purpose has become a 

standard. Consequently, WSD algorithms almost always deal only with the latter task. 

WSD methods utilize external knowledge sources such as machine readable dictionaries 

(MRD), thesauri, tagged or untagged corpora. Longman Dictionary of Contemporary English 

(LDOCE) has been the most widely used MRD. LDOCE is a highly structured dictionary that 

allows for building taxonomies easily. It has fine sense distinctions which are ordered by 

frequency. The first machine implemented knowledge base was Roget’s Thesaurus in 1957.  

Merriam Webster Seventh Collegiate Dictionary, prepared between 1966—68, was the first 

machine-readable MRD. Other MRDs exist such as Collins English Dictionary. 

 WordNet [4] is a freely available lexical database. It specifies hierarchical relations between 

word senses. The relations include synonymy, antonymy, is-a, and part-of. Related concepts are 

grouped into synonym sets. A dedicated class of algorithms has been developed to exploit the 

WordNet structure.  

 A major classification of WSD methods is based on whether human assistance is required. 

Supervised algorithms are trained on correctly sense tagged examples. However, hand tagged 

corpora are rather limited due to the general problem of knowledge acquisition bottleneck which 

states that human undertaking can only provide a small portion of the vast volume of examples 

required for computational studies of language. SemCor, developed by the same team of 

WordNet, is a popular sense tagged corpus. On the other hand, unsupervised WSD algorithms do 



 
 2

not require human assistance. Therefore they are more feasible and scalable despite their own 

idiosyncratic problems. 

As noted by eminent scholars, the field of word sense disambiguation—and computational 

linguistics in general—has seen much repetition in 60 years of research. Although this may, in 

part, be attributed to surprising achievements of early researchers in spite of primitive hardware 

and software resources of the time; the main cause seems to be unfamiliarity with other 

researchers’ work—especially those of previous generations. Few number of qualified surveys 

attests to this problem. My humble desire is that this survey—though very limited in scope—

serves as an introduction to many brilliant ideas developed over years in the field of word sense 

disambiguation and invites anyone to make her contribution. 

 
 
 
 

1.2.  Word Sense Disambiguation Methods 

 
 
 

1.2.1.  Methods Based on the Context Window of the Target Word 
 
 

 

 These methods constitute the earliest WSD examples. The set of words to the left and right 

of the target word in the context, called window, is used for disambiguation. Several researchers 

recognized the importance of window and carried out experiments to determine the optimal 

window size [1]. In bag-of-words method other features such as distances, syntactic 

relationships, etc. are not considered. 

 
 
 
1.2.2.  AI-based Methods 

 
 
 
 AI-based methods rose to popularity in 1960’s following the advances in theoretical 

linguistics; namely, the discovery of formal rules and transformational theories. The distinctive 

feature of this class of algorithms is the claim to model human language understanding. 

However, there is no set of objective criteria to verify these claims and the proposed methods are 
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not supported by empirical evidence. Given the arbitrariness in choosing human cognition 

model, it should come as no surprise that methods themselves vary greatly.   

 A notable case is the Word Expert Parser (WEP) developed by Adriaens & Small [5] until 

early 1980’s but discontinued since then. WEP methodology is a radical departure from 

conventional parsing models in that it is a semantic parsing program with a strong emphasis on 

disambiguation mechanisms. No central decision mechanism is assumed; program control is 

carried out by words which are considered as active agents running in parallel. These agents—or 

experts—interact with the following knowledge sources: the words in its immediate context, the 

concepts processed so far or expected locally, knowledge of the overall process state, knowledge 

of the discourse, and real world knowledge. Eventually, the experts are expected to agree on the 

meaning of the text fragment. WEP faced serious implementation problems; nevertheless, it 

marks a unique approach in the history of WSD research.  

 In striking contrast to WEP’s parallelism, Milne [6] carries out lexical ambiguity resolution 

by a strictly deterministic parser without backtracking. He tries to avoid special mechanisms as 

much as possible to be compatible with human understanding processes. However, terms such as 

elegance and simplicity are not open to scientific inquiry and therefore the connection with 

human cognition models is loosely defined. The parser is implemented in Prolog. All parts of 

speech which a word can take on in a sentence are listed in the corresponding entry for that word 

in the dictionary. A three-word look-ahead window is used. The restricted window size causes a 

commonly encountered problem with some sentences. For example, “I told the girl (that) (the) 

(boy) hit the story” and “I told the (that) (the) (boy) will kiss her” are indistinguishable from the 

point of view of the program.  

 Yuret [7] proposes the method of ‘lexical attraction’ which can be defined as the likelihood 

of two words being related. The model has an intuitive appeal for explaining language 

acquisition of children where they learn the relations between words before forming 

grammatically error-free sentences. Neither grammar nor a lexicon with parts of speech is 

provided. The training is based on a bootstrapping procedure. Sentence relations are represented 

as ‘dependency structures’, an example of which is figure 1.1, as opposed to the more 

conventional ‘phrase structures’. The program analyzes the relation  between content words, 

based on the idea that that the lexical attraction betweeen content words directly determines the 

meaning of the sentence. The likelihood of syntactic relation is parallelled by a decrease in 

entropy from an information theory perspective. The probabilities are estimated by counting the 

occurences of each pair in the same relative position. The program consists of the processor and 
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the memory. The goal of the processor is to find the dependency structure that assigns a given 

sentence a high probability. In return, memory element stores the frequency of pairs. The two 

aspects of the program are intertwined. Test results indicate 60% precision and 50% recall on a 

200 sentence test which is said to be better than the previous work in unsupervised language 

acquisition when no initial knowledge is given. 

 
 
 

 
Figure 1.1. A dependency structure 

 
 
 
1.2.3.  Knowledge-based Methods 

 
 
 
 Knowledge-based methods utilize lexical and semantic knowledge bases such as machine-

readable dictionaries (MRDs), thesauri, computational lexicons. Despite the efforts to 

automatically create knowledge bases, WordNet, the most widely used one, was created by hand. 

A brief introduction of WordNet is in order since almost all recent work on WSD has used 

WordNet in some way or another. WordNet was developed by Princeton University. Like an 

ordinary dictionary it contains definitions—glosses—of words; however, its distinctive feature is 

semantic relationships which form hierarchical structures of words. One such basic structure is 

synset—i.e. synonym set—which represents a single concept. Nouns, verbs, adjectives, and 

adverbs are classified separately in WordNet; with nouns constituting the richest and the most 

useful part. Hypernymy/hyponymy relation between nouns forms a hierarchical tree structure. A 

hyponym (subname) is a kind of its hypernym (supername). Meronymy (part-name) and 

holonymy (whole-name) are “part of” relations.  Verbal hierarchy is based on troponymy which 

shows a “a manner of’ relation; like stroll/walk. Attributive adjectives are organized according to 

the antonymy relation, whereas relational adjectives point to nouns. Adverbs are organized 

according to synonymy and antonymy relations.  

 Given the types of information contained in lexical knowledge bases, there have been two 

traditions differing in the way they utilize these resources. One focuses on glosses of word 
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meanings while another focuses on hierarchical structure as that of WordNet described above. 

However, this classification by no means is intended to imply a dichotomy since the two 

approaches are complementary and recent research usually combines them.   

 Lesk’s algorithm [8] compares context of the target word with the gloss of each sense. The 

context words are treated in a bag-of-words approach. The decision is based on the maximum 

amount of overlap. The method achieves 50-70% accuracy with fine sense distinctions. The 

performance is highly sensitive to the choice of particular words in glosses. Despite its 

shortcomings, Lesk’s algorithm has opened up the path for subsequent work.  

 Pedersen et al. [9] generalizes Lesk-style methods into the concept of “semantic 

relatedness”. All nine methods taken as a measure of semantic relatedness in this article makes 

use of the observation that words that occur together in a sentence should be related to some 

degree. Rada defines the conceptual distance between any two concepts as the shortest path 

through a semantic network. Leacock and Chodorow scales this edge distance by the length of 

the longest path from a leaf node to the root node of the hierarchy. Wu and Palmer use the 

distance from a concept to the root node. Resnik refines their measure by introducing the concept 

of lowest common subsumer—the most specific node that intersects the path of the two concepts 

in the is–a hierarchy. Hirst and St. Onge consider relations other than is-a relation as well and 

have four levels for the strength of the relation. Resnik measures semantic relatedness using 

information content of the noun concept in the hypernymy/hyponymy hieararcy. Information 

content indicates the amount of specificity; for example, sheep dog has a higher information 

content than animal. Jiang and Conrath define a similar measure to that of Resnik but they 

subtract the information content of the lowest common subsumer from the sum of information 

contents of individual concepts. Lin divides the information content of the lowest common 

subsumer by the sum of information contents of individual concepts. The extended gloss overlap 

measure developed by the authors extends Lesk’s algorithm by including the WordNet relatives 

in the comparison. In gloss vectors measure devoped by the authors, word vectors are created 

from gloss co-occurrence data and a gloss vector is created as the average of vectors of words 

appearing in the gloss. The disambiguation algorithm runs independently of the relatedness 

measure which is a function that takes as input two input senses and outputs a number. The 

algorithm is expressed concisely in figure 1.2.  
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Figure 1.2. Formula for the disambiguation algorithm based on maximum semantic relatedness 

 
 
 

Rigau et al. [10] correctly state that most WSD algorithms have been developed as stand-

alone and investigate the possibility of combining them. The methods in the study include those 

used by Pedersen et al. and some baseline methods such as using the most frequent sense. The 

contribution of each method to the final decision is normalized according to its weight in the 

interval of 0 and 1. Test results indicate approximately 8 % increase in precision for the 

combination of disambiguation methods.  

  
 
 

1.2.4.  Corpus-based methods 

 
 
 
 Corpus-based methods grew in importance after the public availability of large-scale digital 

corpora. A corpus is a collection of—preferably published—texts used for linguistics purposes.  

Texts should be selected across a variety of domains to cover different word senses since domain 

usually restricts words to one sense only; for example, in a paper on economics, the word 

“interest” may be used exclusively for the economics-related sense. Corpora provide vast volume 

of information regarding language usage; therefore they are especially well-suited for statistical 

or empirical methods.   

 The way disambiguation methods utilize corpora forms a classification. Supervised learning 

requires manually disambiguated words, whereas unsupervised learning does not. Since there is 

no equivalent of Moore’s law for human workforce, hand-tagging training corpora creates the 

infamous roadblock known as knowledge acquisition bottleneck. Several researchers have tried 

to circumvent this problem. Agirre and Martinez [11] try to derive automatically trained data 

from the web. They use monosemous synonyms and glosses in WordNet to construct queries for 

search engines. A fixed number (100) of documents for each sense of the word are retained.  

Then the target words are substituted for synonyms. However, their results are disappointing 

with test results being close to random baseline. Leacock et al. [12] used WordNet relations such 
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as hypernymy, hyponymy, and part-of to find monosemeous relatives near the target word in the 

sentence. They report the performance of the unsupervised training only marginally behind 

supervised training. Other work-around solutions for building sense-tagged data for unsupervised 

training include using aligned bilingual corpora, creating pseudowords by combining two words 

like “escorted/abused”, using homophones like “seller/cellar”.   

 Word sense diambiguation can be thought as consisting of two successive stages. First step 

is sense discrimination where the occurrences of a word are mapped into a number of classes 

depending on the sense they belong to. The second step, sense labelling, then assigns a sense to 

each class, hence to each word in that class. Schutze’s [13] method is interesting in that it deals 

solely with the first step, eliminating the need to refer to any outside knowledge base such as 

MRD’s. Thus it can be considered as a purely corpus-based method. The method relies on 

“second-order co-occurence” derived from the words that the context words of the target word 

co-occur with in the training corpus. The underlying assumption is that humans make use of 

context similarity information for the disambiguation task. There are three types of entities in the 

program: word vectors, context vectors, and sense vectors. A vector for word w is derived from 

the words that co-occur with w in the context of w in the corpus. The entry for word v in a word 

vector denotes the number of times that word v occurs close to w in the corpus. A context vector 

(see figure 1.3)  is the centroid (or sum) of the vectors of the context words. The final abstraction 

is the sense vectors which are derived in turn from context vectors via EM clustering algorithm. 

Results indicate that performance varies according to word types where words that are relatively 

independent of context are discriminated worst.  

 
 
 

 
Figure 1.3. (from Schutze, 1998) An example context vector for the word suit 
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A notably successful unsupervised method is Yarowsky’s [14]. His work builds upon two 

regularities observed in natural languages: (1) words tend to have one sense in a given discourse, 

and (2) one sense per collocation. The algorithm proceeds according to a bootstrapping 

procedure starting from seed collocations arriving at a convergence condition where each word 

in the corpus is assigned a sense. For each sense of the word, either a small number of training 

examples or some collocations are given to the program to populate the sets corresponding to 

different senses. Iteratively, the most probable collocation in each set is selected based on 

decision lists and other occurences with the new collocations are added into sense sets until they 

cover all the corpus. An accuracy of 95.5 % is achieved on a test corpus consisting of 460 

million words.  

 
 
 
 

1.3.  Problems in WSD 

 
 
 

 Since its very first inception, WSD efforts have been plagued by deep-rooted problems. 

Consequently, a major portion of research has revolved around developing solutions for these 

problems. In fact, most of the work referenced above address the same issues in their own way. 

Data sparseness problem is related with corpus-based methods. Some senses of a word are used 

very rarely as stated by Zipf’s law; therefore a corpus may contain few, or worse, no examples 

regarding the infrequent sense. A system trained on that corpus cannot produce meaningful 

answers for that sense of the word. Inter-annotator agreement problem is not related with 

methods but the nature of the problem itself. Put succinctly, it states that: Which of the human 

informants should the computer agree with, if the humans cannot agree among themselves? 

Murray et al. [15] have come up with surprising results that contradict the common practice. 

Their findings show that level of agreement cannot be used as an indicator of correctness 

because subjects who performed badly in verbal tests gave rather similar, but not necessarily 

correct,  answers. Other cross-annotator studies indicate agreement levels as low as 60% which 

shed further doubts on the formulation of the problem and granularity of sense divisions.  
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 2.  ALGORITHM 
 
 

 
2.1.  Pseudowords 

 

 

 Pseudowords have been used in various natural language processing applications since its 

introduction by Schütze in 1992 [16]. In WSD, we make use of pseudowords in the following 

way. Two arbitrary words are selected and merged to create a hypothetical word, or a 

pseudoword, which is nonexistent previously. This pseudoword has two meanings corresponding 

to two original words. In the corpus, the occurrences of the original words are replaced by the 

pseudoword. The correct meaning of the pseudoword is the original word in the sentence. Below 

are example sentences for the ‘banana_sky’ which is made up of separate words ‘banana’ and 

‘sky’. It should be noted that a natural ambiguous word has typically more than two senses 

which are semantically more related. Therefore pseudowords provide coarse-level sense 

distinctions with more optimistic test results.  

 
 
 

Corpus sentence:                                   The sky is blue. 
Creating the pseudoword:                     The banana_sky is blue.  
Correct sense:                                        sky 
 
Corpus sentence:                                   I love eating bananas.  
Creating the pseudoword:                     I love eating banana_skys. 
Correct sense:                                        banana 

 
Figure 2.1. Example corpus occurrences for the pseudoword ‘banana_sky’. 

  

 

2.2. Creating the Decision List 

  

 Decision lists are formed as a collection of evidences ordered according to their logarithmic 

likelihood values. Each evidence has a sense tag to be assigned to the ambiguous word. Three 

evidence types were used: (i) the surface and lemma forms of words immediately to the right or 

left of the target word, (ii) the surface and lemma forms of two words immediately to the right of 
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left of the target word or one to the left and one to the right. (iii) the surface and lemma forms of 

any other word in the sentence. The sum of occurrences of an evidence type on a set of sentences 

where the target word indicates the most frequent sense are divided by the sum obtained over the 

other sense set. The logarithm of this number is calculated to give the logarithmic likelihood. 

The evidence is then inserted into decision list together with the logarithmic likelihood value and 

the sense tag. Larger logarithmic likelihood values indicate that the evidence is observed more 

frequently on sentences where the target word is used with the chosen sense while it is observed 

less frequently on sentences where other senses are intended. In this respect, evidences with 

large logarithmic values have better discerning capacity. Similarly, in the disambiguation step, 

evidences are extracted from the sentence containing the target word. Starting from the topmost 

rule in the decision list, it is checked whether a match occurs. If this is the case, the sense 

indicated in the matching rule is returned as the answer. A separate decision list is created for 

each target word.  

 

 

logarithmic-probability  Log ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
setsenseothertheoversoccurrenceofnumber

setsensetheoversoccurrenceofnumber
_______

______
 

 

Figure 2.2. Logarithmic probability calculation 

 

 

2.3. Supervised Learning 

 

 

 Supervised and unsupervised learning methods differ based on whether the correct senses of 

the target words in the training corpus are given or not. In supervised learning, training sentences 

are partitioned according to the given sense tags. These sets are then used to create the decision 

list as explained in the previous section.  
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2.4. Unsupervised Learning 

 

 Supervised learning requires many training sentences for each word. Bearing in mind that 

even in English, for which the most extensive research has been carried out historically, the 

sense tagged corpora are rather limited. It is a crying necessity to make better use of untagged 

corpora to be able to perform word sense disambiguation for any word in a running text. The 

proposed iterative algorithm relies on the paradigm “one sense per collocation” first discovered 

by philosophers and linguists. This paradigm—as expressed in Wittgenstein’s words “the 

meaning of a word is its use in the language” and in Wirth’s words “You shall know a word by 

the company it keeps”—has been shown to reach 96 percent validity [17]. A collocation is 

specified for each sense of the target word. Collocation is not defined in the strict sense as used 

by linguists, which entails being adjacent in a sentence or forming an idiom; but as being 

together in a sentence with a probability higher than expected. First, the training sentences are 

partitioned into sense sets based on the given collocations. For example, the collocation fruit is 

given for the banana sense of the pseudoword banana_sky and blue for the sky sense. Based on 

these sense sets, an initial decision list is created. Iteratively, training sentences are partitioned 

into sense sets using the decision list and the decision list is created anew using these sense sets. 

After each iteration, we expect a larger set and a more accurate decision list. The redundancy 

property of natural languages and the iterative nature of the algorithm allows for avoiding 

classification errors rising from using a single collocation, and an accuracy level close to that of 

supervised learning.  

 

 
Figure 2.3.  The sense_divisions subroutine partitions the occurrences in the corpus 
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2.5. Post-Pruning 

 

 Post-pruning is applied after the decision list has been created in supervised learning and 

after each iteration in unsupervised learning. The post-pruning step consists of removing those 

rules which cause more wrong answers than correct ones as evaluated on the held-out set. Post-

pruning provides a more concise decision list besides a small improvement in accuracy.  
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3. EVALUATION 
 

 

3.1. Setup 

 

Lower and upper bounds help us put the WSD results into perspective and give a crude idea 

of what to expect. Choosing the most common sense is a simple method to obtain a lower bound. 

In this project, test sets include equal number of instances for each of the two senses of 

pseudowords; therefore the lower bound is 50 %. Inter-annotator agreement is accepted as the 

upper bound. For fine-grained sense distinctions, inter-annotator agreement is 75—80 %, and for 

coarse-grained sense distinctions it is 85—90 %. Accuracy is measured with precision and recall.  
 

 
 

 Precision = 
dbeen tagge have which instances ofnumber 

taggedcorrectly been  have which instances ofnumber  

 

 Recall = 
instancestest ofnumber 

taggedcorrectly been  have which instances ofnumber  

 
 

 

Figure 3.1. Accuracy Parameters 

 

The sentences in the corpus containing the target word were partitioned into training, 

validation, held-out and test sets; numbers being 2000/500/500/500 respectively. Parameters 

were tuned on the validation set. Post-pruning was carried out on the held-out set.  

 

 

3.2. The Effect of Logarithmic-Likelihood Threshold 

 

 This parameter indicates the threshold while inserting new rules into the decision list. For 

example, a new rule with a log-likelihood value of 1.5 is not admitted when the threshold is 2. 

The figure 3.2 was obtained for the pseudoword of banana_sky using supervised learning and 

threshold values varying between 1 and 4.  
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Figure 3.2. Decision list size in relation to the threshold 

 

 A considerable reduction in the decision list size was obtained by using larger threshold 

values. The run-time and space complexity diminish as the decision list gets smaller. Post-

pruning caused a further 5 % decrease.  
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 Figure 3.3. Accuracy in relation to the threshold 

 

 With a larger threshold, recall dropped and precision slightly improved. These results can 

be interpreted as follows. In the case of a larger threshold, new rules are scrutinized more; 
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therefore only better ones qualify to be inserted into the list. The ratio of correct answers out of 

all answers, thus precision, increases. However, the number of cases where the system does not 

return an answer increases, resulting in a drop in recall. Taking both graphs into consideration, 

we see a tradeoff between complexity/precision/recall. 

 

 

3.3. The Effect of Number of Iterations in Unsupervised Learning 

 

To evaluate the accuracy of unsupervised learning, the method described previously was 

applied for the pseudoword banana_sky using collocations fruit and blue. With a threshold value 

of 2, the following plot was obtained.  
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Figure 3.4. Accuracy of the Iterative Algorithm 

 

 

Unsupervised learning reached 74% recall rate on the test set. The result, close to 77.7% 

value obtained by supervised learning, demonstrates the applicability and robustness of the 

iterative approach. Recall rate on the  training set shows the portion that has been used for 

creating the decision list. This number is 100% for the case of supervised learning. Although the 

initial decision list of the  unsupervised algorithm constructed  based solely on collocation words 

used 7.22% of the training set, with successive steps using as high as 40%; high accuracy values  

were obtained. Post-pruning provided 2% improvement.  
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The iterative algorithm based on pseudowords is a standardized method for contructing and 

evaluating a word sense disambiguator, thus seems independent of  chosen words’ 

characteristics. For example, a recall rate of 74.70% was obtained for the pseudoword 

lecture_lesson consisting of two semantically related words lecture and lesson.  
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4. PROGRAM SPECIFICATIONS 
 

 

4.1. Overview 

 

 The program and the data are organized under their corresponding directories. Since the 

algorithm accesses the data files at runtime to read and write back intermediate results, it is 

important to maintain the directory structure as seen in figure 4.1. for proper execution. 

 

 
 

Package 

WSD Code 

init.pm 

growlist.pm 

disambiguate.pl 

Data 

Heldout 

Iterations 

Output 

Results 

Test 

TestSetup 

Train 

Validation 

Figure 4.1. Directory Structure 
 
 The functions are packaged in two Perl modules: init.pm and growlist.pm. The init.pm 

module contains the functions sense_divisions and sense_divisions_supervised for creating the 

initial sense sets, using unsupervised and supervised methods respectively. The growlist.pm 

module contains functions to construct the final decision list, either iteratively for the 
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unsupervised method or in a single step for the supervised case, and the post-pruning function. It 

also contains functions for measuring accuracy on training, test, and heldout sets. The call graph 

is given in figure 4.2.  

 

 

Disambiguate 

Sense_Divisions 

 
Figure 4.2. Call Graph

Converge 

Extract_Features 

Create_List Prune 

Print_Log Training Accuracy 
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Print_Result 

Best_Match 
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Print_Result         
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Search_Untagged         

Create_List         

   

Figure 4.3. List of Directories Accessed by each Function 

 

 

 

4.2. Init.pm Module 

 
 
function Sense_Divisions_Supervised(target_word)  
 inputs: target_word 
 local variables:  
  senses, an array storing the words that constitute the pseudoword 
  sense_id, a hash storing a numerical id for each sense   
  

senses  split the target word around the underscore 
 remove all the existing files under the folder Data\Iterations  
 sense_id  starting with ‘1’, assign numerical values to senses 
 for each sentence in the occurrences file Data\Train\target_word do 

label  extract the initial word which indicates the correct sense of the  target word in the     
                           following sentence 

id  look up label in the sense_id hash 
append the sentence to the file Data\Iterations\target_word_sen_id 

 
Figure 4.3. Pseudocode of Sense_Divisions_Supervised  
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function Sense_Divisions(target_word) 
 inputs: target_word 
 local variables:  
  senses, an array storing the words that constitute the pseudoword 
  sense_id, a hash storing a numerical id for each sense 
  collocations, an array storing one collocation for each sense 
 

senses  split the target word around the underscore 
 remove all the existing files under the folder Data\Iterations  
 collocations  read collocations from the file Data\TestSetup\setup 
 for each line in the occurrences file Data\Train\target_word do 

target_index, sentence  first token is the position of the target word the rest of the line is 
the         sentence containing the target word.  

remove non-content words in the sentence 
for each token in the sentence do 

   calculate the distance to the target_index 
   if surface form or lemma matches one of the collocations then 
    if distance is smallest among the tokens seen so far then 

matching_sense  the sense to which the collocation belongs 
id  look up matching_sense in the sense_id hash   

if a match has occurred then  
   append the sentence to the file Data\Iterations\target_word_sen_id 
  else 

append the sentence to the file Data\Iterations\target_word_untagged 
Figure 4.4. Pseudocode of Sense_Divisions  

 

4.3. Growlist.pm Module 
 
// Returns precision and recall on the training set 
function Training_Accuracy(training_word, iteration_number)   

inputs:  
target_word, iteration_number as input arguments 
senses, an array imported from the init.pm module storing the constituting words of the 

pseudoword  
 local variables:  

hits, misses, no_answers, counter variables used in calculating precision and recall  
  

for each sense file such as target_word_sen_1, etc under Data\Iterations  do  
 for each line in the file do  
  correct_sense  extract the first word in the line  

chosen_sense  senses[file_number] where file_number is one less than the filename 
suffix; e.g. 0 for target_word_1 

if correct_sense and chosen_sense are equal then  
increment hits by 1 

else 
increment misses by 1 

for each sentence in the file target_word_untagged under Data\Iterations do  
  increment no_answers by 1 
  

precision  100 * hits / (hits + misses) 
 recall  100 * hits / (hits + misses + no_answers) 
 if iteration is 0 i.e. the first iteration then  
  reset the global arrays tr_precision and tr_recall  
 tr_precision[iteration]  precision 
 tr_recall[iteration]  recall  
  

return precision and recall 
Figure 4.5. Pseudocode of Training_Accuracy  
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//Performs post-pruning 
function Prune(target_word)  

inputs: 
  target_word 
 local variables: 

hits, misses, arrays showing number of hits and misses respectively for the corresponding 
the rules in the decision list 

 
 for each line in the file Data\Heldout\target_word do  

correct_sense, target_index, sentence  extract the first token, second token and the rest 
of the line 

context_features  populate the array by calling function extract_features 
for each rule in the decision list starting from the topmost one do  

   for each feature in the context_features do  
    if feature and rule match then 

found_sense  as indicated by the current rule in the decision list  
   match_found  true 
   break out of the inner loop 
if match_found then 

    if found_sense is equal to correct_sense then   
     increment hits[rule_id] 

else 
     increment misses[rule_id] 
 for each rule in the decision list do  
  if misses[rule_id] > hits[rule_id] then 
   delete the rule 
 

Figure 4.6. Pseudocode of Prune  
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//Returns precision and recall on either validation or test set 
function Accuracy(target_word, iteration_number, option) 
 inputs:  
  target_word 
  iteration_number 
  option, string with the value “validation” or “test” 
 local variables: 
  hits, misses, no_answers 
  
 if option is “validation” then  
  open the file Data\Validation\target_word  
 else if option is “test” then  
  open the file Data\Test\target_word 
  

for each line in the file do  
 correct_sense  extract the first token in the line  

best_sense  call the function best_match(target_word, whole_line) 
  if best_sense is defined    

if correct_sense and best_sense are equal then  
increment hits by 1 

else 
increment misses by 1 

  else 
   increment no_answers by 1 
  

precision  100 * hits / (hits + misses) 
recall  100 * hits / (hits + misses + no_answers) 

 if option is “validation” then  
  if iteration is 0 i.e. the first iteration then  
   reset the global arrays vl_precision and vl_recall  
  vl_precision[iteration]  precision 
  vl_recall[iteration]  recall  
  

return precision and recall 
 
 

function Validation_Accuracy(input_arguments)  
 append the string “validation” to the list of input_arguments and call accuracy 
 
function Test_Accuracy(input_arguments) 
 append the string “test” to the list of input_arguments and call accuracy 
 
 

Figure 4.7. Pseudocode of Accuracy 
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//Creates the decision list iteratively 
function Converge(target_word, threshold, enable_pruning) 
 inputs: 
  target_word    
  threshold, indicates the threshold for the decision list 
  enable_pruning, whether pruning is enabled or not 
  
 iteration  0  

create_list(target_word, iteration, threshold, enable_pruning) 
 print out the iteration information into the log file  
 until Convergence_Condition do 
  increment iteration by 1 
  correct_tagged_sets(target_word) 
  search_untagged(target_word) 
  create_list(target_word, iteration, threshold, enable_pruning) 
 print out the final iteration information and the decision list  
 

Figure 4.8. Pseudocode of Converge 
 
 
 
 
function Converge_Supervised(target_word, threshold, enable_pruning) 
 inputs: 
  target_word 
  threshold, indicates the threshold for the decision list 
  enable_pruning, whether pruning is enabled or not 
 iteration  0 
 create_list(target_word, iteration, threshold, enable_pruning) 
 print out the final iteration information and the decision list 
 

Figure 4.9. Pseudocode of Converge_Supervised 
 
 
 
 
 
//Returns true if convergence condition is satisfied 
function Convergence_Condition 
 global variables: 
  vl_recall, array of validation recall values for successive iterations  
 

number_of_iterations  size of the vl_recall array 
 if number_of_iterations > 14 then  
  condition  true 
 else if number_of_iterations > 4 then  
  if vl_recall  did not improve more than 1% in any of last 3 iterations then 
   condition  true 
 else 
  condition  false 

return condition 
 

Figure 4.10. Pseudocode of Convergence_Condition 
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//Examines occurrences and relocate them to different sense files if necessary  
function Correct_Tagged_Sets(target_word) 
 inputs: 
  target_word 
  

for each sense file such as target_word_sen_1, etc under Data\Iterations  do  
for each line in the file do 

  best_sense  best_match(target_word, line) 
  if best_sense is defined then  
   write the line to the file target_word_sen_best_sense_bak 
  else  
   write the line to the file target_word_untagged 

 
rename *_bak files as original files  

 
Figure 4.11. Pseudocode of Correct_Tagged_Sets 

 
 
 
 
//Disambiguates occurrences in the untagged set 
function Search_Untagged(target_word) 
 inputs: 
  target_word 
 
 for each line in the file Data\Iterations\target_word_untagged do 
  best_sense  best_match(target_word, line) 
  if best_sense is defined then  
   write the line to the file target_word_sen_best_sense 
  else 
   write the line to the file target_word_untagged_bak 
 
 rename the file target_word_untagged_bak as target_word_untagged 
 

Figure 4.12. Pseudocode of Search_Untagged 
 
 
 
 
//Returns the best matching sense for the given target word and the its context 
function Best_Match(target_word, line) 
 inputs: 
  target_word 
  line 
  
 target_index, sentence  extract the first token and the rest of the line 

context_features  populate the array by calling the function extract_features 
 

for each rule in the decision list starting from the topmost one do  
  for each feature in the context_features do  
   if feature and rule match then 
    best_sense  the sense indicated by the matching rule 
    break out of the outer loop 
 
 return best_sense 
 

Figure 4.13. Pseudocode of Best_Match 
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//Creates a decision list based on the current sense sets 
function Create_List(target_word, iteration, threshold, pruning) 
 inputs: 
  target_word 
  iteration, the current iteration number as used in iterative learning 
  threshold, indicates the threshold for the decision list 
  pruning, whether post-pruning is enabled or not 
 local variables: 

evidences, a hash whose keys are formed from concatenation of a context feature and the 
chosen sense of the target word along with a delimiter character in the 
middle. The values of the hash are simply the counts of the their keys.   

 global variables: 
  decision list, a hash where keys are features and values are log-likelihoods 

sorted_decision_keys, an array for decision list rules ordered according to     
log-likelihood values 

 
for each sense file such as target_word_sen_1, etc under Data\Iterations  do  

for each line in the file do 
   target_index, sentence  extract the first token and rest of the line 

  context_features  as returned by the function extract_features 
   for each feature in context_features do 
    key  concatenate feature, “\0”, sense_file_number 
    increment evidences{key} by 1 
   
 sorted_keys  sort keys of the evidences hash in descending order into an array 
 for each key  in sorted_keys do 

feature, most_frequent_sense  split the key string by the delimiter 
in_score  evidences{key}  

  for each sense other than the most_frequent_sense do 
   out_score  out_score + evidences{feature . sense} 
  if out_score is 0 then  
   out_score  0.1  
  log_likelihood  log(in_score / out_score) 
  if log_likelihood > threshold then  
   decision_list{key}  log_likelihood 
  

sorted_decision_keys  sort the keys of the decision_list hash 
 if pruning is enabled then  
  prune(target_word) 
  

training_accuracy(target_word, iteration) 
validation_accuracy(target_word, iteration) 

 
 

Figure 4.14. Pseudocode of Create_List
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//Returns either one of four coarse-level POS tags or the undefined value 
function Pos_Type(argument) 
 inputs: 
  argument, a Penn treebank POS tag such as NN, VB, etc.  
 
 if argument is either NN, NNS, NNP, NNPS or FW then  
  pos  noun 
 else if argument is either VB, VBD, VBN, VBZ, VBG or VBP then  
  pos  verb 
 else if argument is either JJ, CD, JJR or JJS then  
  pos  adjective 
 else if argument is either RB, RBR, RBS then  
  pos  adverb 
 else 
  pos  undef 
 return pos 
 

Figure 4.15. Pseudocode of Pos_Type  
 
 
 
//Extracts all the features in the given context 
function Extract_Features(target_word, target_index, context_tokens) 
 inputs: 
  target_word 
  target_index, the position of the target word in the context 

context_tokens, an array for all the words in the context including non-content words. Each 
element of the array is a triplet made up of the concatenation of the 
word, its POS, and its lemma form.  

 global variables: 
features, a hash whose keys are feature types such as “k_word”, “left_lemma” etc. each 

having distinct numerical values 
local variables: 

  context_features, an array holding all the extracted features 
   
 remove non-content words from context_tokens using the function pos_type 
 for each token in context_tokens do  
  index  position of the token  
  word, pos, lemma  split the token by the delimiter  
  distance  index – target_index 
  context_features  push the k_word and the k_lemma features 
  if distance is -1 then  
   context_features  push the left_word and the left_lemma features 
   if there is at least one word to the left then 

context_features  push the left_left_word and the left_left_lemma features 
using the words at positions at (-2) and (-1) 

  else if distance is 1 then 
   context_features  push the right_word and right_lemma features 
   if there is at least one word to the left of the target word then  

context_features  push the left_right_word and the left_right_lemma features 
using the words at positions (-1) and (+1) 

  else if distance is 2 then 
context_features  push the right_right_word and right_right_lemma features using 

the  words at positions (+1) and (+2) 
 

return context_tokens 
 

Figure 4.16. Pseudocode of Extract_Features
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 APPENDIX A. USER GUIDE 
 

 

A.1. Using Auxilliary Funtions to Prepare Data 

 

 The Misc directory contains two functions to collect occurrences from the corpus and 

partition those occurrences into training, validation, heldout and test sets. The function 

corpus_collect searches the corpus files recursively starting from the root directory. The words 

to be searched and the root directory are specified by assigning appropriate values to their 

corresponding variables at the top of the file. The occurrences—i.e. the sentences in which a 

given word occurs—are then written to the Data\Initial\{target_word}_occ file. The corpus is 

presumed to be preprocessed with MontyLingua package [18]. The corpus sentences are in the 

following format:  

 

    The/DT/The first/JJ/first election/NN/election in/IN/in 

the/DT/the reunified/VBN/reunify Germany/NNP/Germany was/VBD/be 

in/IN/in 1990/CD/1990 ././. 

Figure A.1. Preprocessed Sentence Format in the Corpus 

 

After occurrences for two words are collected, a pseudoword can be built out of these words 

and training, validation, test and heldout sets can be created by the function create_sets. This 

program accepts the pseudoword to be created as the command line argument, e.g. call 

create_sets with banana_sky argument.  

 

A.2. An Example Disambiguation Program 

 Creating and evaluating a decision list for a pseudoword is straightforward. The two 

modules are imported in the beginning of the file. The functions are called with the required set 

of parameters. A simple program is listed in figure A.2.  
 
use init qw/ &sense_divisions/; 
use growlist qw/ &converge /; 
&sense_divisions(‘banana_sky’); 
my($threshold, $pruning)=(2, 1); 
&converge(‘banana_sky’, $threshold, $pruning); 
 

Figure A.2. An Example Disambiguation Program 
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