COMPARISION OF METHODOLOGIES IN
AUTOMATED THEOREM PROVING
ON THEOREMS FROM GROUP THEORY
by

Emin Serkan Baykal

Submitted to the Department of Computer Engineering

in partial fulfilment of the requirements

for the degree of

Bachelor of Science

in

Computer Engineering

Boğaziçi University

June 2005
1. Foreword

Mathematics is a clear indicator of mystery of human intelligence. For an educated mind, chunks of symbols sleeping in a math book may provoke great respect to the author; especially creative and elegant proofs for hard theorems. Deeper analysis of mathematical reasoning and automation of theorem proving activity has attracted attention of scientists long before the invention of computers, like Russell’s attempt to reduce mathematics to logic. Those attempts aimed to formalize mathematics, which can be seen as the early era for automated theorem proving.1 Automated theorem provers are coded in even early computers2. There have been significant achievements since then. Using enormous computation capacity, even some problems that puzzled mathematicians for more than 60 years, were solved by automated theorem provers.
“One of the most exciting success in mathematics has been the settling of the Robbins problem by the ATP system EQP. In 1933 Herbert Robbins conjectured that a particular group of axioms form a basis for Boolean algebra, but neither he nor anyone else (until the solution by EQP) could prove this. The proof that confirms that Robbins' axioms are a basis for Boolean algebra was found October 10, 1996, after about 8 days of search by EQP, on an RS/6000 processor.”3
Apart from mathematics, theorem provers are also used in software generation4, software verification5 and hardware verification.
“It is a very thin line between the mechanical and the creative, and it may disappear.”2
2. Abstract
Project Name
: Automated Processing and Proval of Group Theory problems
Term

: 2004/2005 2. Semester.

Keywords
: Automated Theorem Proving, Lock Resolution, Ordered Linear Resolution, Group Theory.

Summary
: This paper mentions about the automated theorem prover (ATP) developed in Cmpe492 course. The ATP works on theorems expressed in first order predicate logic. It is full automatic; it does not require any directives during operation, but some parameters can be adjusted before execution. It employs binary resolution with factoring. By negating the conclusion, it tries to reach a contradiction, i.e. the empty clause, by successive application of resolution. It has different modes of operations: Unit resolution, Linear input resolution, Lock Resolution, ANL loop, Ordered linear resolution. Mode of operation is set before execution and it is applied throughout the program. Main motivation of the project is to compare these modes with respect to their performance on theorems about group theory. Also these methods are supported with other strategies, like set of support, tautology detection, and subsumption removal. Implementation language is SWI-Prolog 5.4.5.
Table of Contents:
21.
Foreword

32.
Abstract

63.
INTRODUCTION

63.1.
HISTORY

63.2.
TERMINOLOGY

123.3.
WHY GROUP THEORY?

134.
STRATEGIES AND REFINEMENTS

134.1.
GENERAL ISSUES COMMON TO ALL METHODS

164.2.
ANL LOOP

194.3.
INPUT RESOLUTION

234.4.
UNIT RESOLUTION

244.5.
ORDERED LINEAR RESOLUTION

284.6.
LOCK RESOLUTION

305.
COMPARISION OF STRATEGIES

32REMARKS

33CONCLUSION

346.
REFERENCES

347.
UNCITED REFERENCES

358.
APPENDIX: Lıstıng of the Program

Table of Figures

10Figure 1: Resolution

17Figure 2: Infinite loop example

18Figure 3: Example theorem

19Figure 4: ANL loop output for figure 3

19Figure 5: Linear deduction

20Figure 6: Example theorem

21Figure 7: Input refutation output for theorem in figure 6

22Figure 8: ANL loop output of theorem in figure 6

24Figure 9: Unit resolution output of theorem in figure 6

26Figure 10: Sample ordered linear refutation

27Figure 11: Ordered Linear output for theorem in figure 6

29Figure 12: Sample lock resolution

29Figure 13: Indexed version of theorem in figure 6

30Figure 14: Lock resolution output for theorem in figure 13

31Figure 15: Performance summary

3. INTRODUCTION
3.1. HISTORY
In 1930, Herbrand proved an important theorem: A set S of clauses is unsatisfiable if and only if there is a finite unsatisfiable set S' of ground instances of clauses of S. These ground instances can be in any domain and unsatisfiability could be with respect to any interpretation. The important contribution of Herbrand is that he developed a special domain,namely herbrand universe and proved that any domain can be replaced by this universe.
Although we have only one domain instead of infinitely many, Herbrand’s method requires exponentially many ground instances to be generated. It was implemented by Gilmore on a digital computer at 1960, fallowed by more efficient procedures of Davis and Putnam. The major breaktrough was simple but very efficient: The resolution principle by Robinson. Since then, altough there are many refinements and heuristics implemented on top, resolution is the main method in automated theorem proving.

The method we will employ will also be resolution.
3.2. TERMINOLOGY
We will try to settle down the meanings of some general technical terms that will be frequently used throughout the text. Further term definitions will be in appropriate sections.
Definition 3.2.1: Atoms are composed of
i. variables; donated by uppercase letters, or uppercase beginning words. Variables can take any values from the domain. They are universally quantified.

Example: X, Element, Man.
ii. constants; donated by words beginning with lowercase letter. They refer to one (and only one) entity in the domain.
Example: a, identity, socrates.

iii. n-place predicates; which is an operator or a boolean function. It represents a relation between n arguments, The truth value it takes under the interpretation indicates whether this relation exists between this n things.
Example: “mortal(Man)” is a 1-place predicate that can be interpreted as every man being mortal. It is true if and only if every thing that can be a “Man” is mortal.

Example: “father(ziya,buket) is a 2-place predicate that can be interpreted as “ziya is the father of buket”. It is true if and only if ziya is a father of buket.
iv. n-place functions; which is a function that takes n arguments from the domain and returns a value from the domain.
Example: product(3,X) refers to the product of 3 and 5.
Example: father(father(buket)) refers to the father of the father of buket

If P is a n-place predicate symbol and each a1 … an is a constant, variable or a function, then P(a1,…,an) is called an atom. Propositional logic is composed only of 0-place predicate symbols, whereas first order logic includes predicates with arbitrary number of arguments.
Definition 3.2.2: A literal is an atom or negation of an atom. Negation is symbolized
by ~.
Definition 3.2.3: A clause is disjunction of literals.
Truth value of a clause is determined after truth value of every literal it is composed of is known, by the well known disjunction rule of logic. The truth value of a literal is well defined under an interpretation, i.e. a mapping between a predicate and a truth value.
Definition 3.2.4: A clause set is unsatisfiable iff there does not exist an interpretation that every clause is true.
Definition 3.2.5: Let A,B,R be clauses from propositional logic. Resolution is an inference method which states that if A ∨ R and B ∨ ~R are both true, than A ∨ B must be true. A ∨ B is called the resolvent, A ∨ R and B ∨ ~R are resolved upon R. Resolution-refutation is deducing the empty clause by doing resolutions. A set of clauses is said to be unsatisfiable if empty clause can be deduced by resolutions.
Example: Consider these two sentences:
· If it is hot and humid, it rains.
· It is not raining now.
A quick result that can be deduced is: “It is either not hot or not humid now”. What actually takes place here is the resolution method we have described. Let’s define predicates that have the same meaning as above statements.
· ~hot ∨ ~humid ∨ rain.
· ~rain.

Resolution is sound, which states that given two true clause, the resolvent will also be true, under the defined interpretation. But the converse is not necessarily true, namely, truthness of the resolvent is not enough to determine the truth value of the clauses that are resolved. Consider the fallowing counter-intuitive example:
· Pythagoras is a sheep.
· A sheep is good at geometry.
· Pythagoras is good at geometry.
It is seen that 3rd sentence is the resolvent of the first two. Note that under an interpretation, one can assume that “Pythagoras is a sheep” and “A sheep is good at geometry” is true, the aim of the example here is to give an insight of the one-way soundness of resolution inference.
Propositional logic has very limited expressive power, since it lacks variables. See for example:
· Every man is mortal.

· Socrates is a man.

From these two sentence, we may want to deduce that “Socrates is mortal”, but this is not a valid inference in prepositional logic. We need more definitions to extend the idea of resolution into first order logic.
Definition 3.2.6: A substitution is a set of rules of the form {t1/v1 … tn/vn} where each vi is a variable, ti is any term different from vi, and vi do not occur twice in the set. A substitution is an operation, by which occurrences of vi in a clause is replaced by ti. If every ti is a constant, than the substitution is called ground substitution and the resulting clause is called ground clause.
Example: Let C = p(X) ∨ q(f(X,Y)) and s = {f(a)/X , Z/Y}. Then C*s = p(f(a)) ∨ q(f(f(a),Z)). C*s donates the application of substitution s to clause C.
Definition 3.2.7: A set of atoms {A1, … , An} are said to be unifiable if there exists a substitution s such that all A1*s = A2*s= … = An*s.
Example: The set {p(X,Y), p(a,f(Z), p(Z,Y))} is unifiable since the substitution {a/X , a/Z , f(a)/Y} makes the literals equal to p(a,f(a)).
Example: The set {p(Y,Y),p(f(a),a)} is not unifiable, since no substitution can make these literals equal.
It is clear that having the same predicate name is a prerequisite for being unifiable. Now we can extend resolution to first order logic: Consider two clauses C1 = A1 ∨…∨ An ,
C2 = B1 ∨…∨ Bm. Suppose variables of C1 and C2 are distinct. If there exists two literals Ai and Bj such that ~Bj and Ai are unifiable by a substitution s, then C1 and C2 can be resolved, and the resolvent is

(C1 – Ai)*s ∨ (C2 – Bj)*s ,
where C – L donates all literals of C except L. There might be some literals in the resulting clause that may be duplicated due to substitutions. It is safe to remove all but one of these duplicated literals.

Example: Let
C1 = p(X,Y) ∨ p(Y,a) ∨ ~p(a,b)

C2 = p(a,X) ∨ p(X,b)

Figure 1: Resolution

We will express resolutions with such diagrams. The clauses are resolved upon the underlined literals, under the substitution {a/Y}. Notice that the variables in C2 are renamed to ensure the condition in the definition of resolution that variables in the clauses are different. We will fallow this convention and add a prime (‘) to rename the variables that were common. The resulting clause includes a duplicate p(a,a) and one of it is removed. Hence, the resolvent is p(X,a) ∨ p(a,a).
A set of clauses can be seen as one big formula, which is the conjunction of all of the clauses. Such sets are said to be in disjunctive normal form. Indeed, any set of predicates joint with conjunctions and disjunctions can be put in disjunctive normal form. Our program will expect theorems expressed in this form, skipping this normalization phase.

Armed with resolution in first order logic, we can start to investigate how we approach theorems.

Definition 3.2.8: A theorem is valid with respect to an axiom set if and only if it is a logical consequence of the axioms. Logical consequence is defined in terms of inference rules of logict.
Theorem 3.2.1: Suppose we have an axiom set {A1 … An} and a theorem T expressed in first order logic. T is a logical consequence of the axiom set iff starting with the set {A1 ... An , ~T} , empty clause is obtained by doing successive resolutions, i.e. each resolvent is added to the set and can be used in further resolutions.

Lemma: Starting with the set {C,~C}, empty clause can be reached by successive resolutions.

Proof: Suppose C = A1 ∨… ∨An. Then ~C = ~A1 ∧… ∧An, or as a clause set, {~A1, … An}. Let C0=C and Ci+1 be resolvent of Ci and Ai. Cn+1 is the empty clause.
Proof (of the theorem 3.2.1): We will only give a general sketch of the proof. Refer to7 for details. Before proceeding, it is proved by Church and Turing that determining weather a theorem is a logical consequence of an axiom set is undecidable. Translated into the language of our theorem; a procedure can reach empty clause (hence it is proved that T is a logical consequence), but one can never be sure that empty clause will not be reached in any instant. In another words, for invalid theorems, the process of successive resolutions will run forever.
Suppose empty clause can be deduced by doing resolution, and suppose that given clause set is satisfiable, i.e. it is true under some interpretation. Since resolution is sound, empty clause should be true under the same interpretation, which is not possible.
Suppose T is a logical consequence of the axioms {A1 … An}, and assume that empty clause is not a logical consequence of the axiom set. Then, under an interpretation, all Ai are true, and under the same interpretation, T is also true. Hence with successive resolutions, one can reach T from {A1 … An}. But, if we start with {A1, … ,An ,~T}, then we reach {T,~T}, According to lemma, empty clause can be reached. ▅
Literally, this method is so called proof by contradiction. We negate the theorem, try to reach empty clause by doing resolutions which would imply that given theorem is a logical consequence of the axiom set. The set of resolutions that leads to empty clause constitutes the proof of the theorem.
Definition 3.2.9: A strategy is called complete iff given a theorem that is logical consequence of the axiom set, it will eventually stop, i.e. reach the empty clause. An incomplete strategy may or may not stop.

Since resolution is a very simple inference method, there are usually so many resolutions that could be committed. This means there is a very big search space. This project aims to deal with this big search space by several methods. Incomplete methods can usually reach empty clause much earlier than complete ones, if they are able to. Performance of these methods will be compared on sample theorems.

3.3. WHY GROUP THEORY?
Group theory is very rich and compact. Even with a small set of propositions, there exists very big search space, which is mostly because of the associative group operator. Below are the group theory axioms:

Let G be a group under operation +.
· x,y ∈ G (x+y ∈ G

;Groups are closed under the group operation.

· e+x = x

;There exists a left identity
· x+e = x

;There exists a right identity
· x + x--1 = e

;There exists a left inverse
· x--1 + x = e

;There exists a right inverse
· (x+y)+z = x+(y+z)

;Group operator is right associative.
· x+(y+z) = (x+y)+z

;Group operator is left associative.
Expressed in the syntax of first order logic, these axioms become like the fallowing:
· p(X,Y,prod(X,Y))

· p(e,X,X)

· p(X,e,X)

· p(X,inverse(X),e)

· p(inverse(X),X,e)

· ~p(X,Y,U) ∨ ~p(Y,Z,V) ∨ ~p(U,Z,W) ∨ p(X,V,W)

· ~p(X,Y,U) ∨ ~p(Y,Z,V) ∨ ~p(X,V,W) ∨ p(U,Z,W)

For theorems concerning subgroups, set theory axioms may also be needed.

Initially, the project aimed at automated formalization of group theory theorems that is written in formal mathematical language. More specifically, the program would read a theorem in its natural mathematical form; transform it to first order propositions and than try to refute it. At first glance, the formalization task seems to be easy. All in all, we deal with a very special sub-language of English, which seems already very formal. But the investigation showed that there are very different kinds of formalization of the same theorem, some of which are much harder to prove. Moreover, it is more likely that automated formalization would add redundant propositions. This kind of deficiencies would have fatal effects to the proving phase.
The main motivation of the research is to come up with a group-theory specific refinement and heuristic.

4. STRATEGIES AND REFINEMENTS
4.1. GENERAL ISSUES COMMON TO ALL METHODS
All of the methods mentioned use subsumption checks, tautology removal, and duplicate detection.
Definition 4.1.1: A clause B subsumes a clause A iff there is a substitution s such that the literals of B*s is also a literal of A.
Example: Let B = p(X) and A = p(a) ∨ q(a) . Then for s = {a/X}, B*s = p(a), which is a subset of B.
Informally, A clause B subsumes clause A if B already has the information content A has. A is nothing but a special case of B, hence, it is safe to remove A from the clause set. Consider the two sentences, “all women are selfish” and “ayşe is selfish or ayşe is kind”. Indeed, these are natural language version of the clauses in the above example. If we assume that first sentence is true, than the second is also trivially true. Hence these two statements together does not say more than the first statement alone.

After every resolution, the resolvent is ignored (i.e. not added to clause set) if it is subsumed by any existing clause (forward subsumption). Also, any existing clause which is subsumed by the new resolvent is removed from the set. (backward subsumption). Actually, they are not removed, but only made passive not to be used in further resolutions. The program has to demonstrate the proof if it can reach the empty clause. A clause could be used needed in this demonstration although further subsumed by any clause.
Definition 4.1.2: A clause is a tautology if it includes complementary literals.

A tautology has no effect on the validity of the theorem; hence it can be safely removed from the clause set. If a clause contains two ground literals that are negation of each other then it is a tautology. It is easy to detect complementary ground literals, but special care is needed for non-ground literals.
Definition 4.1.3: A variable in a literal is called singletone if it occurs in one and only one literal.
Example: The singletone variables of p(X) , q(Y,X,f(X)) , r(a,Z) are Y and Z.

The following theorem establishes a way to detect non-ground tautology clauses:
Theorem 4.1.1: A clause is a tautology if there exists two literals with complementary signs L1 and L2 such that there exists a substitution s that acts only on singletone variables and L1*s = ~L2*s
Proof idea: This result fallow from a fundamental fact of the first order logic. From the definition of a variable in an atom, we know that variables can take any value from the domain, hence they are universally quantified.
∀x P(x) ∨ ∀y P(y) ≡ ∀x (P(x) ∨ P(x)) ≡ ∀x P(x) .
Duplicate removal is another naming convention we deployed for factoring. During resolutions, when necessary substitutions are done to clauses, some atoms may become identical. Removing them will help decrease the clause length. In fact, without factoring, resolution method would not be complete.
Example: Consider the clause p(A,B)
[image: image1.wmf]Ú

 p(C,D). This clause should be factored to p(A,B), since all variables in the clause are singular. But, p(A,B)
[image: image2.wmf]Ú

 p(B,A) should not be factored to p(A,B), since variables are not singular.
Finding weather a clause contains duplicates has exponential complexity. Long clauses with repeated literals causes decrease in performance.
These general refinements decreases the number of resolvents generated. This is very important since an ATP should be very efficient and should not generate too many redundant clauses. Without these techniques, it would not be possible to reach results by doing resolution in reasonable time. Time needed for subsumption checks is proportional to the number of clauses in the set; hence they require increasing amount of CPU as the time progresses.
In the light of these definitions a rough sketch of the process is as fallows:

S0: Read the set of clauses C = {A1… An} from a file.
S1: Choose An from C and a literal Ln,i in An.
S2: For each Am from C and for each literal Lm,j in Am , such that there is a substitution s which satisfies ~Ln,i*s = Lm,i*s. If no s exists for any Lm,j, backtrack to S1.
S3: Resolve An*s and Am*s on Lm,i*s. Call the resolvent R. If R is the empty clause, stop.
S4: Remove duplicated literals in R, if exists.

S5: If R is a tautology, go to S2.
S6: If R is forward subsumed by a clause in C, go to S2.

S7: Remove all clauses that are backward subsumed by R.

S8: Add R to C and go to S2.

The most important part in this procedure is that which clause is chosen in S1. Different modes of operation mostly deal with this choice. In theory, if the choice is made randomly, empty clause will eventually be reached and algorithm will stop. We want our strategy to work better than random. However, a careless strategy will loop forever although given set of clauses are unsatisfiable.
4.2. ANL LOOP
This is one of the first methods that is used in theorem proving, developed in Argonne National University Laboratory. Below is the pseudocode of the ANL loop.
S0: Read the set of clauses C = {A1… An} from a file.

Set NewList = C, OldList = {} , TempList = {}

S1: Remove a clause C from NewList.

S2: Resolve C with every possible clause in OldList, accumulate the resolvents in TempList.

S3: Put C into OldList, add TempList to NewList, empty TempList, go to S1.

There are three lists of clauses, namely new, old and temp. Initially every clause is in new set. At each step, a clause from new set is chosen, all possible resolvents of this clause and the clauses in old set is accumulated in temp list. Temp list is added to the new list. This iteration continues until empty clause is reached.
The crucial thing here is which clause in new list is chosen. Always choosing the first clause and appending the temp clauses to the end is the breadth first approach. This is a complete method but the performance is very poor. Choosing one of the newly added clauses from temp list is depth first search approach. This method can lead to an infinite loop, which will be illustrated in an example.
ANL loop obviously needs refinements. There is a big degree of freedom in choosing a new clause. Since we are trying to reach empty clause, we need to reduce the length of the clauses. Resolutions with smaller size clauses will help in this reduction. Shorter size clauses are preferred first in the ANL loop algorithm. But this method has a side effect which distorts the completeness of the algorithm. Consider the case:

Figure 2: Infinite loop example
Since the shortest new clause is the one that is just created, such resolutions fallow one another. It is highly probable that this path does not lead to the empty clause.
To prevent such conditions, we impose two more restrictions on the depth of clause chosen.
Definition 4.2.1: Depth of a clause is defined recursively as:

· Clauses in axiom set have depth 0.

· Every resolvent has depth 1 + maximum of the depth of the clauses that it is resolved.
Definition 4.2.2: Parameter depth of a clause is the maximum number of nested function calls in a predicate argument.
Example: p(f(x)) has parameter depth 1 and p(f(x),g(f(y))) ∨ p(z) has parameter depth 2.

Among all of the clauses in new list, we seek for the clause that has the least depth. Among those, we seek for the shortest clause. Also, there is a parameter depth limit, which prevents the resolution of clauses that has the limit parameter depth. This prevents generation of resolutions like in figure 2.
4.2.1. Set of support strategy

Theorem: Given an axiom set and a theorem that logically fallows from the axioms, there exists a subset of clauses, which doesn’t have resolution–refutation. This subset is called set of support.
Proof: A single clause can not trivially have a resolution–refutation. Moreover, if we trust that given axiom set is a valid axiomatisation of a well-defined theory, than, empty clause should not be deduced from the axiom set. Otherwise, since everything is a logical consequence of the empty clause, this axiom set can not define a well-defined theory. Hence, the axiom set is the desired set of support.
Given a clause set, we fix the axiom set as the set of support. Then we make sure that two clauses in this set is not resolved with each other.

ANL loop with set of support is complete.
Example: For every closed associative system with right and left solutions, there is a right identity. Figure 3 shows the first order logic formalization:

Figure 3 Example theorem

Figure 4: ANL loop output for figure 3

4.3. INPUT RESOLUTION
Definition 4.3.1: Given a set of clauses C, we say that there is a linear deduction to clause Cn iff there exists a resolution tree shown as below:

Figure 5: Linear deduction
C0 is called the top clause, each Ci is called a center clause and each Bi is called a side clause. Ci+1 is a resolvent of Ci and Bi.
Definition 4.3.2: A linear deduction is called input deduction iff every side clause is from the input clause set C. Input refutation is reaching empty clause by input deduction.
Input refutation is an incomplete strategy. Obviously, if all deductions to the empty clause include resolution of two non-input clauses, then this method fails to deduce the empty clause. Furthermore, it is complete on only horn clauses; the clauses that has at most one positive literal. Some theorems are proved easily by input refutation. Special case is needed not to repeatedly resolve with the same input clause. This is handled by considering the depth of the clauses; smaller depth clauses are preferred first.
Example: Inverse of every element in a subgroup is inside the subgroup. Below figure shows the first order formalization of the axioms and negated theorem

Figure 6: Example theorem
Figure 7: Input refutation output for theorem in figure 6
Notice the linear structure of the deduction.

Below is the output of ANL loop for the same clause set:

Figure 8: ANL loop output for theorem in figure 6
Although the performed resolutions are similar, input resolution stops in 0.53 seconds, but ANL loop runs for 7.02 seconds. ANL loop generates a lot more redundant resolutions,
4.4. UNIT RESOLUTION
Definition 4.4.1: Unit resolution is the method in which at least one of the resolved clauses is an unit clause, i.e. a single literal. Unit refutation refers to deduction of empty clause by doing unit resolution only.
Definition 4.4.2: Length of a clause is the number of literals in it.

This strategy assumes that there exists a refutation that can be reached only by unit resolution. It is incomplete. This can be seen easily from the below axiom set S.

S = {
P(X) ∨Q(X),

P(X) ∨~Q(X),

~P(X) ∨Q(X),

~P(X) ∨~Q(X)

}

There is no unit clause in S, hence unit resolution strategy can not produce even one resolvent. However, one can reach empty clause by doing successive resolutions.
Indeed, unit resolution and input resolution are of equivalent power. Starting with a clause set S, there is a unit refutation if and only if there is an input refutation.

Suppose R is the resolvent of C1 and C2. Then,

Length of R ≤ length of C1 + length of C2 – 2.
The inequality becomes equality if there is no duplicate removal. If C2 is a unit clause, then we see that length of R ≤ length of C1 – 1. Hence, the resolution operation reduces the length of clauses. Performance is significantly better than the performance of the other methods. The reason behind this is that all other operations (subsumption, factoring, tautology checks etc.) takes less time for shorter clauses.
Below is the output of unit resolution loop for the same clause set. Notice the non-linear structure of the diagram. Unit resolution responds in 1.5 seconds.

Figure 9: Unit resolution output of theorem in figure 6
4.5. ORDERED LINEAR RESOLUTION
Linear deduction is similar to how we approach proofs. We often start with an identity, apply an inference rule to get a new one, and again apply an inference rule to the new identity until we reach what we desire to do. The idea of linear resolution is also this kind of chain reasoning; starting with a clause, resolve it against a clause to obtain a resolvent (center clause), and then resolve this resolvent with another clause (side clause), until empty clause is obtained.

Linear resolution is complete. Unfortunately, it doesn’t reduce the search space much. Restricting the side clauses to be input clause only reduces the search space significantly, but this strategy is incomplete. (Refer to input resolution section for details). If we can determine the necessary and the sufficient conditions when we need non-input clause as a side clause, then input resolution with such conditions will become complete. Ordered linear resolution deals with this issue.
Definition 4.5.1: An ordered clause is a sequence of distinct literals. Order of the literals in an ordered clause is specified, although order of literals in an unordered clause is immaterial.

Definition 4.5.2: A literal L1 is greater than a literal L2 in an ordered clause if and only if L1 fallows L2 in the order specified by the ordered clause. Being smaller is defined similarly.
Order of the literals can be imposed by indexing each literal with a unique integer. We will prefer indexing from left to right, hence, leftmost literal is smallest and rightmost is greatest.

Whenever there are duplicate clauses in an ordered clause, the leftmost duplicate remain, and the rest is removed.
Definition 4.5.3: Let C1 and C2 be two ordered clauses. Let L be the greatest clause in C1 and L2 be any clause in C2 such that L1*s = ~L2*s. Then,

(C1 – Ai)*s ∨ Ai*s ∨ (C2 – Bj)*s
is called the ordered resolvent of C1 and C2. Ai is called a framed literal, and denoted by a rectangle around.
A framed literal can not be used in further resolution. In fact, it is not a literal of the ordered clause. The content and the position of the framed literals give the sufficient and necessary condition that will make input resolution complete.

Remark 1: Any rightmost framed literal can be removed from the clause.

Remark 2: If the last literal of a clause C is unifiable with the negation of a framed literal in C, then it can be removed.

Remark 2 two corresponds to the condition when a non-input clause is needed as a side clause. All of these concepts will be clearer with an example: Consider clause set S that doesn’t include any unit literals:

S = {P(X) ∨Q(X) , P(X) ∨~Q(X) , ~P(X) ∨Q(X) , ~P(X) ∨~Q(X) }

There is a refutation of S, but this is not found by input resolution, as we had already stated. However, by using ordered clauses, input resolution can find a refutation.

Figure 10: Sample ordered linear refutation

Notice how duplicates are removed, how framed literals are deleted and how last literal complementary to any unit literal is removed.

Figure 11: Ordered Linear output for theorem in figure 6
Ordered linear resolution stops in 2.5 seconds.
Ordered linear resolution is a technique that is complete and enjoys the benefits of linear resolution6. But it has some redundant operations considering the order of the clauses that slows down the process. Prolog is not very suitable for ordered structures.
4.6. LOCK RESOLUTION
Like ordered linear resolution, lock resolution strategy also works on ordered clauses. We

use indexing with integers to order literals. A unique integer is attached to each literal at the beginning of the program.

Definition 4.6.1: Let C1 and C2 be two ordered clauses, with no variables in common. Let every literal of C1 and C2 be indexed with unique integers. Let L1, L2 be two literals such that they have the highest index among the literals in C1,C2 respectively, and that there exists a substitution s which satisfies L1*s = ~L2*s. Then
(C1 – L1)*s ∨ (C2 – L2)*s ,

is the lock resolvent of C1 and C2. Index of each literal is inherited from the parent. If there exists more than one index for the same literal, greatest index is assigned.
Resolution is permitted only on literals with highest index in each clause. Notice that there is no such restriction in other strategies. Once a clause is chosen from clause set, we used to generate every possible resolvent for each literal in the chosen clause. Lock resolution imposes a priority scheme for the literals; literals with small index is “locked”, but after bigger indexed literals are resolved upon, the locked literals will eventually have the greatest index in the resolvent, hence the lock will be “broken”. Only then, this literal can be used in a resolution.
 If there exist duplicate literals, all but the highest indexed literal is removed, which is merely the same thing as assigning the greatest index. We will donate indexes as subscripts on the predicate name.

Example:

Figure 12: Sample lock resolution
Notice that the literals resolved upon have the greatest index among the literals in each clause and lower indexed duplicate is removed. If predicate Q were to have bigger index in any of the clause, than, there would not exist any lock resolvent of the two clauses.
This strategy is complete for arbitrary indexing of the literals. For any indexing of literals, empty clause will be deduced by successive lock resolutions. We just assigned consecutive integers in the order of the literals read from the source. For future work, one can experiment on different indexing (like giving higher indexes for less/more frequent literals) and may find that some indexing scheme could be better than others.

Figure 13: Indexed version of theorem in figure 6

Figure 14: Lock resolution output for theorem in figure 13

Lock resolution stops in 5,52 seconds.

Above proofs for theorem in figure 6 shows how different modes of operation generate different proofs for the same theorem. A fully automated theorem prover must chose one method, or give some time shares for each mode. We preffered to use one mode at each run to be able to compare methods easily.
5. COMPARISION OF STRATEGIES
Theoretical talk about the completeness and complexity of the methods doesn’t give enough insight about the actual power of the methods. Since the axiom set has a very big degree of freedom, (namely number of clauses , variables, functions, clause lengths, etc..) one can only say that a method works well with axiom sets that has some properties. Example theorems are taken from7 and thousand problems for theorem provers library in Miami University. Namely: grp001-5, grp020-1, grp019-1, grp017-1, grp013-1, grp012-1,

grp023-2, grp023-1, grp028-1, grp030-1, grp031-1, grp031-2, grp032-3, grp033-4, grp038-3 from tptp library ; chang1 chang3 chang4 chang5 chang6 chang7 chang8
chang9 from7.
	Method
	Completed
	Best Time
	Best inference count

	ANL
	9
	-
	-

	Unit
	22
	10
	11

	Linear Input
	11
	4
	3

	Lock
	17
	6
	5

	Ordered linear
	9
	3
	4

Figure 15: Performance summary

Unit resolution and lock resolution perform better than other methods. Although unit resolution and linear input resolution has the same computational power, unit resolution is faster. It is continuously reducing the average number of literals in a clause, hence all other operations (tautology, subsumption checks, duplicate removal) take less time.
Lock resolution performs better when the theorem has clauses with many literals, especially repeated literals. Other strategies commit all the resolutions that can be made with another clause consecutively. Most of these resolved clauses are not needed in the refutation. Lock resolution suspends all but one resolution, the one with biggest index.
There are some common problems that these methods face. Subsumption checks reduces the number of resolutions, but after some large number of clause(>1000) is generated, subsumption checks takes too much time, since for every new clause, it is checked weather it subsumes every other clause.
For some big sized theorems, unit resolution can reach empty clause, while other methods do not stop in 2 hours. Even their refutation tree is so big to include here. One can find two verbose outputs for a refutation in this url’s:
http://www.cmpe.boun.edu.tr/~baykals/atp/th1dump.txt
http://www.cmpe.boun.edu.tr/~baykals/atp/th2dump.txt
REMARKS
· Unit resolution performs better, in theorems where the unit clauses are abundant, This strategy has no data structure overhead, and performs quite fast. It is superior to all other strategies for big size theorems.
· Lock resolution performs better for moderate sized theorems where there are so many different literals in the theorem. Altough there might be many candidates for a resolution, locking some literals and postponing their resolution boosts performance. Especially, if there are many candidates to be resolved in one instant of the program, other strategies will probably try to resolve all of them.
· Altough there are some refinements made to ANL, its main purpose is to draw a lower bound for running times. Other strategies should perform better than ANL. It has experimental value, since small refinements in program is easily noticed in ANL mode.

· Ordered resolution performs better if the refutation has an inherent linear nature. It has a data structure overhead and keeping clauses ordered is inefficient in singly linled lists of prolog. (Appends to the end rather to the head).

· Performance of ANL loop increases significantly with set of support strategy. Without set of support, 1027 resolvants are generated. With set of support this number reduces to 68. The reason of this huge difference comes from the fruithfullness of group theory. The core axioms of group theory allows many resolutions, hence have a very big “search space”.

CONCLUSION
Experiments done are not acqurate enough to draw a fine conclusion.Apart from a couple of theorems, running times are close to each other. Altough there are many refinements, ANL loop should be seen as a lower bound for the other methods must pass.

It is seems that unit resolution is superior to the others , but it lacks completeness. Similar to the framed literals in ordered linear resolution, if minimum amount of supporting strategy is added to unit resolution, resulting procedure would be very efficient. In some middle-sized theorems, methods other than unit-resolution method could not find a refutation in reasonable time. Some improvements in the implementation or some other refinements / restrictions could help these methods.
It is interesting to note that for most theorems unit resolution was able to stop. Those theorems must be composed of horn clauses, since unit resolution is complete only for horn clauses. Although there were no special care to choose such theorems, it can be argued that most of the
Lock resolution is both efficient and complete. It would be wise to try different indexing and see which has better performance.
Prolog implementation is easier; it has built in unification (with occurs-check) But it suffers from performance penalty. It is not feasible to implement a powerful ATP in prolog, However, it is a good medium for comparision between strategies.
6. REFERENCES
1
Whitehead, A. N. and Russell, B. (1910) Principia Mathematica (3 vols).
Cambridge University Press.

2
Margaret A. Boden. ,The philosophy of artificial intelligence, Oxford University Press, 1990.
3 Dr. Stanley Burris, University of Waterloo , NewYork Times , December 10 1996,.

4 http://www.kestrel.edu/HTML/prototypes/kids.html
 http://ase.arc.nasa.gov/docs/amphion.html

5 PVS : http://www.csl.sri.com/sri-csl-pvs.html
 Karlsruhe Interactive Verifier http://i11www.ira.uka.de/~kiv/KIV-KA.html
6 http://www.cs.miami.edu/~tptp/OverviewOfATP.html.

7
Chin-liang Chang ,Richard Char-Tung Lee, Symbolic logic and mechanical theorem proving, New York Academic Press, 1973.
7. UNCITED REFERENCES
http://www.rbjones.com/rbjpub/logic/jrh0107.htm
www.miami.edu/tptp
http://www.ags.uni-sb.de/~chris/lectures/fol-hol-tp/
http://www.algebra.com/algebra/about/history/Automated-theorem-proving.wikipedia

APPENDIX: Listing of the Program
:-dynamic clses/4 , cls_num/1, new_clauses/1, old_clauses/1,

 just_clauses/1, concRooted_clauses/1, cncs/1,

 max_clause_length/1,depth/1,input_ref/1,

 litnames/3, max_length/1, mode/1,

 max_asserted_clause_length/1,ol_depth/1,

 number_of_resolutions/1.

increase_resolutions:-

retract(number_of_resolutions(A)),B is A+1,

assert(number_of_resolutions(B)).

set_ol_depth(A):-

retractall(ol_depth(_)),assert(ol_depth(A)).

check_parameter_depth(C,D):-

C \=(_,_),term_to_atom(C,A),atom_codes(A,Co),
append(_,[40|Co2],Co),parameter_depth(Co2,D),!.
check_parameter_depth((A,R),D):-

term_to_atom(A,B),atom_codes(B,C), append(_,[40|Co2],Co),

parameter_depth(Co2,D1), check_parameter_depth(R,D2),max(D1,D2,D).

parameter_depth([],0):-!.

parameter_depth(C,M):- count_paranthesis(C,R,X),parameter_depth(R,Y),max(X,Y,M).

concat_lists:-

retract(new_clauses([H|T])),retract(old_clauses(OC)),

retract(just_clauses(JC)),append(T,JC,NC),

assert(new_clauses(NC)),assert(old_clauses([H|OC])),
assert(just_clauses([])).
count_paranthesis([],[],0):-!.

count_paranthesis([41|T],T,0):-!.

count_paranthesis([40|T],R,X):-
count_paranthesis(T,R,Y), X is Y +1,!.

count_paranthesis([_|T],R,X):-
count_paranthesis(T,R,X).

set_max_clause_length(M):-
retractall(max_clause_length(_)),
assert(max_clause_length(M)).

update_max_depth(D):-
depth(MD),D>MD,retract(depth(_)),assert(depth(D)).

update_max_depth(_).

update_max_length:-

retract(max_length(M)),N is M+1,assert(max_length(N)).

update_lists(J,C1,C2):-
retract(just_clauses(L)),assert(just_clauses([J|L])),
concRooted_clauses(CR),!,

((member(C1,CR),retract(concRooted_clauses(CR)),

 assert(concRooted_clauses([J|CR])));

(member(C2,CR),retract(concRooted_clauses(CR)),

 assert(concRooted_clauses([J|CR])))),!,fail.

%trivial list manipulating predicates

cls(C,N):-

var(C),between(1,10,A),clses(C,N,_,a),c_length(C,A).

cls(C,N):-

not(var(C)),clses(C1,N,_,a),unify_with_occurs_check(C,C1).

literal_name(C,F):-

((C = -_,negate(C,NC)) ; NC=C) ,!,functor(NC,F,_).

literal_names(C,[F]):-
C \=(_,_), ((C = -_,negate(C,NC)) ; NC=C) ,!,functor(NC,F,_).

literal_names((L,R),[H|T]):-
literal_name(L,H),literal_names(R,T).

del(X,[X|T],T).

del(X,[H|T],[H|N]):-

del(X,T,N).

max(A,B,A):-

A>B,!.

max(_,A,A).

%dump the complete log to dump.txt

dump:-

tell('dump.txt'),cls_num(LCN),X is LCN+2,between(1,X,N),

clses(C,N,[C1,C2],A),litnames(N,_,D),
write(C1),write(+),write(C2),

write(->),write(N),write(:),write(C),write(' :'),write(A),

write(' depth: '),write(D),nl,fail.

dump:-

printRefutationRoute(verbose),printRefutationRoute,printRefutationRoute(tree),

told.

tail([T],T,[]).

tail([H|T],NT,[H|R]):-

tail(T,NT,R).

c_length(C,1):-

C \= (_,_);(var(C),C=_).

c_length((_,T),X):-

c_length(T,Y), X is Y + 1,!.

do_sublist([],_).

do_sublist(_,[]):-

fail,!.

do_sublist([H|L],[H|SL]):-
do_sublist(L,SL).

append_cls(C1,C2,(C1,C2)):-C1 \= (_,_).

append_cls((H1,C1),C2,A):-
append_cls(C1,(H1,C2),A).

append_cls2([],C2,C2):-!.

append_cls2(C2,[],C2):-!.

append_cls2(C1,C2,(C1,C2)) :-C1 \= (_,_),!.

append_cls2(C1,C2,A):-
last_literal_from_clause(L,C1,R), append_cls2(R,(L,C2),A),!.

negate(X,NX):-

X = -_, -NX = X,!.

negate(X,NX):-

NX = -X.

groundise(_,[],_):-!.

groundise(C2,[H|R],N):-
 H=N,N1 is N + 1 ,groundise(C2,R,N1).

forward_subsumed(_):-
input_ref(true),!,fail.

forward_subsumed(R,A):-
cls(C,A),subsumes(C,R),!.

ol_forward_subsumed(R):
unmark(R,UR),clses(C,_,[0,0],a),subsumes(C,UR).
backward_subsumes(R):-
cls(C,N),subsumes(R,C),retract(clses(C,N,A,a)),
assert(clses(C,N,A,p)),fail.

backward_subsumes(_):-!.

subsumes(Cl1,Cl2):-

!,copy_term(Cl1,C1),copy_term(Cl2,C2),!,term_variables(C2,TV),

groundise(C2,TV,0),subsvars(C1,C2,[]),!.

subsvars(C1,C2,Vars):-
C1 \= (_,_),!,literal_from_clause(L,C2,_),

unifyable(C1,L,A),none_occurs(A,Vars).

subsvars((H,R),C,Vars):-
literal_from_clause(L,C,_),unifyable(H,L,A),none_occurs(A,Vars),

append(A,Vars,NV),subsvars(R,C,NV).

none_occurs([],_).

none_occurs(_,[]).

none_occurs([V|T],U):-
not_unified(V,U),none_occurs(T,U).

not_unified(_,[]).

not_unified(V=S1,[A=S2|T]) :-(not(V==A);(V==A,S1==S2)), not_unified(V=S1,T).

checkSubsVars([]).

checkSubsVars([_]).

checkSubsVars([H1=_,H2=X|T]):- H1 \== H2 , checkSubsVars([H2=X|T]).

exact_member(_,[]):-

!,fail.

exact_member(X,[H|_]):-
X==H,!.

exact_member(X,[_|T]):-
exact_member(X,T).

next_clause_num(X):-
retract(cls_num(X)),Y is X +1,assert(cls_num(Y)).

exact_literal_from_clause(L,C) :-
 literal_from_clause(L1,C,_),unifyable(L1,L,[]).

%-L(iteral) , +C(lause) , -R(est)

literal_from_clause(L1,L2,[]):-
L2 \= (_,_),!,unify_with_occurs_check(L1,L2).

literal_from_clause(L,C,R):-

long_literal_from_clause(L,C,R).

long_literal_from_clause(L,(L,R),R).

long_literal_from_clause(L,(R,L),R):-
L \= (_,_).

long_literal_from_clause(L,(H,T),(H,R)) :-
long_literal_from_clause(L,T,R).

%checks maximum depth and clause length

find_literal(L,C,R,CN,Dep):-
max_asserted_clause_length(D),between(1,D,CL),
cls(C,CN),litnames(CN,_,Dep),c_length(C,CL),
literal_from_clause(L1,C,R),

unify_with_occurs_check(L,L1).

find_literal(L,C,R,CN):-

cls(C,CN),literal_from_clause(L1,C,R),
unify_with_occurs_check(L,L1).

find_input_literal(L,C,R,CN):-
clses(C,CN,[0,0],a),literal_from_clause(L,C,R).

unmark(+(C),C):-

C \= (_,_),!.

unmark(C,C):-

C \= (_,_),!.

unmark((+(_),T),R):-

unmark(T,R),!.

unmark((_,T),R):-

unmark(T,R).

ol_tautology(C):-

unmark(C,UC),tautology(UC),write(taut),nl.

tautology(C):-

C \= (_,_), !,fail.

tautology((H,T)):-

negate(H,NH),exact_literal_from_clause(NH,T),!.

tautology((_,T)):-

tautology(T).

singleton_vars(C,[]):-

term_variables(C,[]),!.

singleton_vars(C,V):-

bagof(X , L^V1^V2^R^(term_variables(C,V1),

literal_from_clause(L,C,R), term_variables(R,V2),

member(X,V1), not(exact_member(X,V2))),V),!.

singleton_vars(_,[]) :-!.

all_singular([],_).

all_singular([A=B|T],V)
:-
exact_member(A,V),exact_member(B,V),all_singular(T,V).

not_in_assignment_list(_,[]).

not_in_assignment_list(V,[A=B|T]):-not(unifyable(V,A,[])),not(unifyable(V,B,[])),

not_in_assignment_list(V,T).

no_double_assignment([]):-!.

no_double_assignment([_=_]):-!.

no_double_assignment([A=B|T]):-
(exact_member(A=B,T);exact_member(B=A,T);

(not_in_assignment_list(A,T), not_in_assignment_list(B,T))),no_double_assignment(T).

remove_duplicates_lr(C,C,I,I):-
C \= (_,_),!.

remove_duplicates_lr(C,C2,I,NI):-
singleton_vars(C,V),c_length(C,CL),

do_remove_duplicates2_lr(C,C2,CL,V,I,NI),!.

remove_duplicates_lr(_,_,_,_).

do_remove_duplicates2_lr(C,C,1,_,I,I):-!.

do_remove_duplicates2_lr((H,Rest),C2,CL,V,I,NNI):-

 last_literal_from_clause(H,C1,Rest),

NCL is CL-1,between(1,NCL,N),nth_literal(L,Rest,N,_),
unifyable(H,L,Z),no_double_assignment(Z),

all_singular(Z,V),!, remove_index_duplicates(N,I,NI),

 do_remove_duplicates2_lr(Rest,C2,NCL,V,NI,NNI).
do_remove_duplicates2_lr((L1,R1),(L1,R2),N,V,[H|T],[H|NI]):-

M is N-1,do_remove_duplicates2_lr(R1,R2,M,V,T,NI).

remove_index_duplicates(N,[H|T],NL):-

M is N+1 , nth_member(M,[H|T],A),((H=<A , T=NL);

(H>A , set_nth_member(N,T,H,NL))).

nth_member(1,[A|T],A):-!.

nth_member(N,[_|T],A):-

M is N - 1,nth_member(M,T,A).

set_nth_member(1,[H|T],A,[A|T]):-!.

set_nth_member(N,[H|T],A,[H|NT]):-M is N-1,set_nth_member(M,T,A,NT),!.

remove_duplicates(C,C) :-

C \= (_,_),!.

remove_duplicates(C,C2) :-
singleton_vars(C,V),do_remove_duplicates2(C,C2,V),!.

remove_duplicates(_,_).

do_remove_duplicates2(C,C,_) :-
C \= (_,_),!.

do_remove_duplicates2(C1,C2,V):-
last_literal_from_clause(H,C1,Rest),
teral_from_clause(L,Rest,_),unifyable(H,L,Z),
no_double_assignment(Z),all_singular(Z,V),!,
do_remove_duplicates2(Rest,C2,V).

do_remove_duplicates2(C1,C2,V):- last_literal_from_clause(L1,C1,R1),
do_remove_duplicates2(R1,R2,V),

 append_cls2(R2,L1,C2).

do_remove_duplicates(C,C,_) :- C \= (_,_),!.

do_remove_duplicates((H,T),C,V):- literal_from_clause(L,T,_),unifyable(H,L,Z),
no_double_assignment(Z),

all_singular(Z,V),!,do_remove_duplicates(T,C,V).

do_remove_duplicates((H,T1),(H,T2),V):-

do_remove_duplicates(T1,T2,V).

update_maximum_asserted_clause_length(R):-

c_length(R,Num),!,max_asserted_clause_length(M),!,

(Num =< M; (Num > M,
retract(max_asserted_clause_length(_)),

assert(max_asserted_clause_length(Num)))),!.

last_literal_from_clause(L,L,[]):-L \=(_,_),!.

last_literal_from_clause(L,(H,L),H):-L \=(_,_),!.

last_literal_from_clause(L,(H,T),(H,R)):-last_literal_from_clause(L,T,R),!.

reduce(C,RC):-

last_literal_from_clause(+(_),C,R),reduce(R,RC),!.

reduce(C,RC):-

last_literal_from_clause(LL,C,R),negate(LL,NLL),
literal_from_clause(+(NLL),R,_),reduce(R,RC).

reduce(C,C):-!.

%succeeds only of refutation found.

resolve(C1,R1,C2,R2):-

(R1 = [],R2 = [],write(unsat),
next_clause_num(Q),assert(clses([],Q,[C1,C2],a)));

(((R1 = [],R2 \= [],R=R2);

(R2 = [],R1 \= [],R=R1);

(R1 \= [],R2 \= [],append_cls(R1,R2,TR),remove_duplicates(TR,R))),

(
 (R \=(_,_),negate(R,NR),cls(NR,NRN),!,

next_clause_num(Q),assert(clses(R,Q,[C1,C2],a)),litnames(C1,_,DD1),

litnames(C2,_,DD2),max(DD1,DD2,MDD),MDDD is MDD+1,assert(litnames(Q,z,MDDD)),

 next_clause_num(QQ),assert(clses([],QQ,[Q,NRN],a)),nl, write(refuted));

(
!,not(tautology(R)),!,not(forward_subsumed(R,_)),
backward_subsumes(R),next_clause_num(Num),

 write(C1),write(--),write(C2),write(-->),write(Num),nl,

 assert(clses(R,Num,[C1,C2],a)),
update_maximum_asserted_clause_length(R),

 litnames(C1,_,D1),litnames(C2,_,D2),max(D1,D2,MD),MD1 is MD +1,

 assert(litnames(Num,x,MD1)),!,update_lists(Num,C1,C2),!,fail))).

set_mode(X):-retractall(mode(_)),assert(mode(X)).

contradictory_clause(L,LN,NL,NLN):-

find_literal(A,A,_,LN),
unify_with_occurs_check(A,L),

 negate(L,NL),find_literal(B,B,_,NLN),
unify_with_occurs_check(NL,B),next_clause_num(Q),

assert(clses([],Q,[LN,NLN],a)),write(refuted).

incr_resolution_depth(Y):-

repeat,retract(depth(X)),Y is X+1,assert(depth(Y)).

start(F):-

retractall(cls_num(_)),retractall(clses(_,_,_,_)),

retractall(litnames(_,_,_)),assert(cls_num(1)),

read_theorem(F),!,nl,nl,init_lists,!,

 ((mode(ir),go_ir); (mode(anl),go_anl); (mode(sr),go_sr);

(mode(ur),go_ur); (mode(ol),go_ol); (mode(lr),go_lr)),!.

go_ir:-

cls_num(X),!,CN is X-1,write(CN),nl,cls(C,CN),
literal_from_clause(NL1,C,R2),

ol_depth(OLD),try_ir(NL1,R2,CN,OLD,[]).

try_ir(_,_,_,_,0,_):-fail.

try_ir(NL1,C,CN2,D,L) :-

D>0,negate(NL1,L1),find_input_literal(L1,_,R1,CN1),
CN1 \= CN2,append_cls(C,R1,Res),
remove_duplicates(Res,Res2),not(tautology(Res2)),
check_parameter_depth(Res2,PD),PD<3,
c_length(Res2,CL),CL<6,not(forward_subsumed(Res2),
next_clause_num(X),assert(clses(Res2,X,-1,a)),

((Res2 = [],write(refuted),write_list([CN1|L]));

(D1 is D-1,literal_from_clause(L3,Res2,Rest),

try_ir(L3,Rest,-1,D1,[[CN1,Res2]|L]))).

go_ur:-

incr_resolution_depth(D),write(D),
find_literal(L1,L1,R1,CN1),

 negate(L1,NL1),find_literal(NL1,_,R2,CN2,A),
CN2 \= CN1,resolve(CN1,R1,CN2,R2).

go_ol

:-

cls_num(X),!,between(1,X,CN),cls(C,CN),
last_literal_from_clause(NL1,C,R2),

append_cls2(R2,+(NL1),MC),ol_depth(OLD),

try_ol(NL1,MC,R2,CN,OLD,[]).
try_ol(_,_,_,_,0,_):-fail.

try_ol(NL1,C,_,CN2,D,L) :-
D>0,negate(NL1,L1),find_input_literal(L1,_,R1,CN1),
CN1 \= CN2,append_cls2(C,R1,Res),
remove_duplicates(Res,Res1),

reduce(Res1,Res2),increase_resolutions, not(ol_tautology(Res2)),

not(ol_forward_subsumed(Res2)),

 ((Res2 = [],write(refuted),write_list([CN1|L]));

(c_length(Res2,1),negate(Res2,NRes2),cls(NRes2,_));

(D1 is D-1,last_literal_from_clause(L3,Res2,R3),

append_cls2(R3,+(L3),MRes),
try_ol(L3,MRes,R3,-1,D1,[[CN1,MRes]|L]))).

go_anl

:-

repeat,concat_lists, new_clauses([CN1|_]),

find_literal(L1,_,R1,CN1),concRooted_clauses(CRC),

old_clauses(OC),negate(L1,NL1),find_literal(NL1,_,R2,CN2),

((not(member(CN1,CRC)),member(CN2,CRC),
member(CN2,OC));

 (member(CN1,CRC),member(CN2,OC))),

CN2 \= CN1,resolve(CN1,R1,CN2,R2).

redundant(NR,I1) :-
cls(A,B),subsumes(A,NR),litnames(B,I2,_),
identical_indices(I1,I2).

identical_indices([_],[_]):-!.

identical_indices([HA1,HA2|TA],[HB1,HB2|TB]):-

(((HA1 >= HA2 , HB1 >= HB2));((HA1 < HA2, HB1 < HB2))),

identical_indices([HA2|TA],[HB2|TB]).

go_lr

:-

between(2,50,Dep),

find_max_index_literal(L1,C1,R1,CN1,RestI1,D1),D1<Dep,

check_parameter_depth(C1,PDep1),PDep1<6,negate(L1,NL1),

find_max_index_literal(NL1,C2,R2,CN2,RestI2,D2),D2<Dep,

check_parameter_depth(C1,PDep2),PDep2<6,CN2>CN1,

not(clses(_,_,[CN1,CN2],_)),append_cls2(R1,R2,R),

append(RestI1,RestI2,RI),
remove_duplicates_lr(R,NR,RI,NRI),

not(redundant(NR,NRI)),next_clause_num(Q),
assert(clses(NR,Q,[CN1,CN2],a),

max(D1,D2,D3),D is D3 +1,assert(litnames(Q,NRI,D)),

contradictory_clause(_,Q,_,_).

min(A,B,A):-A=<B,!.

min(_,B,B):-!.

find_max_index_literal(L,L,[],CN,[],D) :-
cls(L,CN),L \= (_,_),litnames(CN,_,D).

find_max_index_literal(L,C,R,CN,RI,D) :-
not(var(L)),cls(C,CN),C=(_,_),litnames(CN,I,D),greatest(SI,I),

index(SI,I,N),nth_literal(L1,C,N,R),
unify_with_occurs_check(L,L1),del(SI,I,RI).

find_max_index_literal(L,C,R,CN,RI,D) :-

var(L),cls(C,CN),C=(_,_),litnames(CN,I,D),greatest(SI,I),

index(SI,I,N),nth_literal(L,C,N,R),del(SI,I,RI).

greatest(L,[L]).

greatest(S,[H1|T]):-

greatest(ST,T),max(H1,ST,S).

index(A,[A|_],1):-!.

index(A,[H|T],Y):-

index(A,T,X),Y is X+1.

nth_literal(L,(L,R),1,R):-!.

nth_literal(L,(R,L),2,R):-L \= (_,_),!.

nth_literal(L,L,1,[]):-!.

nth_literal(L,(H,T),N,(H,R)):-
M is N-1,nth_literal(L,T,M,R),!.

%output predicates

indent(0).

indent(N):-

write(' '),N1 is N-1,tab(N1).

printRefutationRoute :-

clses([],CN,_,_),printRoute(CN,simple).

printRefutationRoute(X) :-

clses([],CN,_,_),printRoute(CN,X).

printRefutationRoute(tree):-

!,clses([],N,_,_),printT(N,0).

printT(0,_):-!.

printT(N,T):-

clses(_,N,[A,B],_),T1 is T +7,printT(A,T1),indent(T),

write(N),nl,printT(B,T1).

printRoute(0,_).

printRoute(N,X):-

clses(C,N,[PC1,PC2],_),printRoute(PC1,X),

 printRoute(PC2,X),((PC1 ==0);

 (X=simple,write(PC1+PC2-->N),nl);

 (X=verbose,clses(C1,PC1,_,_),clses(C2,PC2,_,_),

 write(C1),write(' + '),nl,write(C2) , nl ,write('-->'),

 write(C),nl,nl)),!.

write_list([]):-!.

write_list([H|T]):-write(H),nl,write_list(T).

read_theorem2(File):-

open(File,read,S),repeat,

read_cls(S,[_|L]),substitute_negation(L,NL),insert(NL),

at_end_of_stream(S),

close(S).

read_cls(S,A) :-

at_end_of_stream(S).

read_cls(S,A) :-

read_line(S,L) , ((append([i,n,c,l,u,d,e,'('],T,L),
append(I,[')','.'],T),term_to_atom(IA,I),read_theorem2(IA)

);

(L \= [c,n,f|_], ((append(A,[')',')','.'],L),!);

(read_cls(S,C), append(L,C,A))))),!.

substitute_negation([],[]):-!.

substitute_negation([~|R],[-|N]):-
R=[' '|RR],substitute_negation(RR,N),!.

substitute_negation([~|R],[-|N]):-
R\=[' '|RR],substitute_negation(R,N),!.

substitute_negation([A|R],[A|N]):-
substitute_negation(R,N),!.

read_theorem(File):-

retractall(cls_num(_)),retractall(clses(_,_,_,_)),

retractall(litnames(_,_,_)),assert(cls_num(1)),
open(File,read,S),

 repeat,

 read_line(S,L),L \= [n,e,g,a,t,e,d,_,c,o,n,c,l,u,s,i,o,n],

 parse_line(L,NL),insert(NL),at_end_of_stream(S),

 close(S).

parse_line([],[]):-!.

parse_line(L,NL):-

 down_all(L,L1),up_vars(L1,L2),remove_paranthesis(L2,NL).

%makes all laters downcase.

down_all([],[]).

down_all([H|T],[NH|NT]):-
 downcase_atom(H,DH),(DH = '~',NH ='-';NH=DH),!,down_all(T,NT).

%checks if all letters are alpha-numerical.

all_alpha([]).

all_alpha([H|T):-

char_type(H,alnum),all_alpha(T).

up_vars(L,NL):-

append(F,[H|T],L), H \= '(' , not(char_type(H,alnum)),

tail(F,Last,_),char_type(Last,alnum),length(Min,_),

append(Min,[H1|T1],F),char_type(H1,alpha),
all_alpha(T1),
upcase_atom(H1,UH1),up_vars(T,NT),

 append(Min,[UH1|T1],Temp),
append(Temp,[H|NT],NL),!.up_vars(T,T).

%removes the substring '()'

remove_paranthesis([],[]).

remove_paranthesis(['(',')'|T],NT):-
 remove_paranthesis(T,NT),!.

remove_paranthesis([H|T],[H|NT]):-
remove_paranthesis(T,NT),!.

add_disj([],[]).

add_disj(['|'|T],[','|NT]):-

!,add_disj(T,NT).

add_disj([H|T],[H|NT]):-

add_disj(T,NT).

insert([]):-!.

insert(L):-

add_disj(L,NL),atom_chars(A,NL),write(A),
term_to_atom(T,A),remove_duplicates(T,NT),next_clause_num(X),write(X),nl,

 asserta(clses(NT,X,[0,0],a)),
update_maximum_asserted_clause_length(NT).

create_indices(A,CN):-
cls(C,CN),c_length(C,L),T is A + L ,A1 is A+1, create_list(T,I,A1),assert(litnames(CN,I,0)),CN1 is CN+1,create_indices(T,CN1),!.

create_indices(A,CN):-!.

%reads a line from file

%swallows the commented lines.

read_line(S,L):-

repeat,
get_char(S,C),not((C =' ';C='\t')),!,
((C = end_of_file,L=[]);

(C = '\n',L=[]); (((C = ';');(C = '%')) ,
repeat,
get_char(S,D),

(D='\n';D=end_of_file),L=[]); (L=[C|T],read_line(S,T))),!.

%%initializing lists&flags

%

init_lists:-

cls_num(X),X1 is X-1,create_list(X1,L,1),create_indices(0,1),

retractall(new_clauses(_)),retractall(old_clauses(_)),
retractall(just_clauses(_)),retractall(concRooted_clauses(_)),
retractall(cncs(_)),retractall(max_length(_)),retractall(depth(_)),

retractall(max_asserted_clause_length(_)),
retractall(number_of_resolutions(_)),

 assert(number_of_resolutions(0)),assert(max_asserted_clause_length(4)),

assert(depth(1)),assert(max_length(1)),

 assert(cncs(false)),assert(new_clauses(L)),assert(old_clauses([])),

assert(just_clauses([])),assert(concRooted_clauses([X1])),

((input_ref(_);assert(input_ref(false))),!, (max_clause_length(_);

assert(max_clause_length(7)))),!.
create_list(L,[L],L):-!.

create_list(X,Z,L) :-
Y is X -1,create_list(Y,T,L),append([X],T,Z).
p(X,Y) ∨ p(Y,a) ∨ ~p(a,b)	 	 p(a,X’) ∨ p(X’,b)

		 p(X,a) ∨ p(a,a) ∨ p(a,a)

 p(X,a) ∨ p(a,a)

		

~q(X)			~q(f(X)) ∨ q(X)

~q(f(X))		~q(f(X)) ∨ q(X)	

~q(f(f(X)))		~q(f(X)) ∨ q(X)

					….

					….

 		C0 	 B0

C1 	 B1

C2	 B2

..

..

..

Cn	Bn

P(e,X,X)

P(X,e,X)

P(X,I(X),e)

P(I(X),X,e)

~S(X) ∨ ~S(Y) ∨ ~P(X,I(Y),Z) ∨ S(Z)

S(b)

~P(X,Y,U) ∨ ~P(Y,Z,V) ∨ ~P(X,V,W) ∨ P(U,Z,W)

~P(X,Y,U) ∨ ~P(Y,Z,V) ∨ ~P(U,Z,W) ∨ P(X,V,W)

 ~S(I(b))

~S(I(b)) 		~S(X)∨~S(Y)∨~P(X,I(Y),Z)∨S(Z)

~S(X)∨~S(Y)∨~P(X,I(Y),I(b))

 		~S(X’)∨~S(Y’)∨~P(X’,I(Y’),Z’)∨S(Z’)

~S(X’)∨~S(Y’)∨~P(X’,I(Y’),X)∨~S(Y)∨~P(X,I(Y),I(b))

P(X”,I(X”),e)

	

~S(X’)∨~S(X’)∨~S(Y)∨~P(e,I(Y),I(b))

	

~S(X’)∨~S(Y)∨~P(e,I(Y),I(b))			

P(e,X,X)

 	~S(X’)∨~S(b)				S(b)

~S(X’)				S(b)	

 	

 □

~S(I(b))			~S(X)∨~S(Y)∨~P(X,I(Y),Z)∨S(Z)

~S(I(b))∨~S(X)∨~S(Y)∨~P(X,I(Y),I(b))

p(e,X’,X’)

~S(I(b))∨~S(e)∨~S(b)∨~P(e,I(b),I(b))

~S(I(b))∨~S(e)∨~S(Y)		S(b)

~S(I(b))∨~S(e)∨~S(b)

~S(I(b))∨~S(e)		~S(X’)∨~S(Y)∨~P(X’,I(Y),Z)∨S(Z)

~S(I(b))∨ ~S(e)∨~S(X’)∨~S(Y)∨~P(X’,I(Y),e)

								P(X,I(X),e)

~S(I(b))∨ ~S(e)∨~S(Y)∨~S(Y)∨~P(X’,I(Y),X)

~S(I(b))∨ ~S(e)∨~S(Y)		S(b)	

~S(I(b))∨ ~S(e)

	

	 □

	

P(X,I(X),e)			~S(X’)∨~S(Y)∨~P(X’,I(Y),Z)∨S(Z)

~S(X)∨~S(Y)∨S(e)

~S(X)∨S(e)		S(b)	

 S(e)		

 -S(i(b))	 ~S(X’)∨~S(Y)∨~P(X’,I(Y),Z)∨S(Z)

		

~S(X’)∨~S(Y)∨~P(X’,I(Y),i(b))		

S(b)

~S(X’)∨~P(X’,I(b),i(b))				

P(e,X,X)

		

		 ~S(e)

□

P(X) ∨Q(X) 			P(X’) ∨~Q(X’)

P(X) ∨ Q(X) ∨ P(X) 		

P(X) ∨ Q(X)

 P(X)			~P(X’) ∨Q(X’)

	

P(X) ∨ Q(X) 		~P(X’) ∨~Q(X’)

P(X) ∨ Q(X) ∨ ~P(X’)

P(X) ∨ Q(X)

	

 □

Q1(X) ∨ P2(X)		Q3(X) ∨ ~P4(X)

		 Q1(X) ∨ Q3(X)

	 		 Q3(X)

p(g(X,Y),X,Y)

p(X,h(X,Y),Y)

~p(X,Y,U) ∨ ~p(Y,Z,V) ∨ ~p(X,V,W) ∨ p(U,Z,W)

~p(X,Y,U) ∨ ~p(Y,Z,V) ∨ ~p(U,Z,W) ∨ p(X,V,W)

~p(k(X),X,k(X))

~p(X,Y,U)∨~p(Y,Z,V)∨~p(X,V,W)∨p(U,Z,W)

~p(k(X’),X’,k(X’))

~p(X,Y,k(X’))∨~p(Y,X’,V)∨~p(X,V,k(X’))

							

								p(g(X’’,Y’),X’’,Y’)

	

~p(g(X’’,k(X’)),Y,k(X’))∨~p(Y,X’,X’’)

							

								p(g(X,Y’),X,Y’)

		~p(X,X’,X)

								p(X,h(X,Y),Y)

					 □

~S(I(b)) 		~S(X)∨~S(Y)∨~P(X,I(Y),Z)∨S(Z)

~S(X)∨~S(Y)∨~P(X,I(Y),I(b))

P(e,X,X)

 		

~S(X’)∨~S(Y’)∨~P(X’,I(Y’),X)∨~S(Y)∨~P(X,I(Y),I(b))

~S(X)∨~S(Y)∨~P(X,I(Y),Z)∨S(Z)

	

~S(X’)∨~S(X’)∨~S(Y)∨~P(e,I(Y),I(b))

				

P(X”,I(X”),e)

 	~S(X’)∨~S(b)				S(b)

~S(X’)				S(b)	

 	

 □

P1(e,X,X)

P2(X,e,X)

P3(X,I(X),e)

P4(I(X),X,e)

~S8(X) ∨ ~S7(Y) ∨ ~P6(X,I(Y),Z) ∨ S5(Z)

S9(b)

~P13(X,Y,U) ∨ ~P12(Y,Z,V) ∨ ~P11(X,V,W) ∨ P10(U,Z,W)

~P17(X,Y,U) ∨ ~P16(Y,Z,V) ∨ ~P15(U,Z,W) ∨ P14(X,V,W)

~S18(I(b))

~S8(X)∨~S7(Y)∨~P6(X,I(Y),Z)∨S5(Z)			S9(b)

~S7(Y)∨~P6(b,I(Y),Z)∨S5(Z)				S9(b)

P6(b,I(b),Z)∨S5(Z)				P3(X,I(X),e)

 S5(e)	

~S8(X)∨~S7(Y)∨~P6(X,I(Y),Z)∨S5(Z)

 ~S7(Y)∨~P6(e,I(Y),Z)∨S5(Z)				S9(b)

 ~P6(e,I(b),Z)∨S5(Z)			P1(e,X,X)

		 S5(i(b))		~S18(I(b))

	

		

 □

_1177327004.unknown

