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1. Introduction

1.1. Broad Impact

000Building a comprehensive word embedding repository for Turkish using different state-
of-the-art methods can have a significant impact on various natural language processing (NLP)
applications for the Turkish language. Word embeddings are a powerful tool in NLP that
can represent the meaning and context of words in a language. By capturing the semantic
relationships between words, word embeddings can be used in a wide range of applications such
as text classification, sentiment analysis, machine translation, and question-answering systems.

By building a word embedding repository for Turkish using different methods, we can
improve the quality of existing NLP applications and enable the development of new ones. This
can have a direct impact on industries such as e-commerce, finance, and healthcare, where
the Turkish language is commonly used. For example, accurate sentiment analysis in Turkish
can help companies understand customer feedback and improve their products and services
accordingly. Similarly, machine translation between Turkish and other languages can facilitate
cross-cultural communication and trade.

Moreover, building a word embedding repository for Turkish can also benefit research in
NLP and related fields. The availability of a high-quality word embedding repository for Turkish
can enable researchers to conduct more accurate and effective studies on various topics such as
language modeling, machine learning, and data mining.

Overall, building a comprehensive word embedding repository for Turkish using different
methods can have a broad impact on various industries and research fields, and can contribute
to developing and improving NLP applications for the Turkish language.

1.2. Ethical Considerations

AI Ethics is a code of conduct consisting of moral principles and techniques regulating AI
technologies. It can be said that the ethics of AI is a brand-new topic within applied ethics
with remarkable discussion, but few well-established issues and no authoritative overviews1 .
Ethics or moral philosophy is a branch of philosophy that ”involves systematizing, defending,
and recommending concepts of right and wrong behavior”2 . Our intention here is not to
produce objective moral rules, that are absolute, not contingent upon any desire or preference or
policy or choice, one’s own or anyone else’s3 . Undoubtedly, these questions will require further
investigation, particularly in the realm of meta-ethics. Our primary objective here is to present
our considerations on some of the most commonly debated ethical issues in relation to AI, such
as fairness and bias.

NLP algorithms, unfortunately, can be biased because of the data they are trained on. For
instance, language models trained on a corpus of data that contains racial bias can perpetuate
those biases in their outputs. To avoid these issues, one potential solution is to use large datasets

1Bostrom, N., & Yudkowsky, E. (2014). The ethics of artificial intelligence. In E. N. Zalta
(Ed.), The Stanford Encyclopedia of Philosophy (Spring 2014 ed.). Stanford University. Retrieved from
https://plato.stanford.edu/entries/ethics-ai/

2Internet Encyclopedia of Philosophy ”Ethics”. Archived from the original on January 18, 2018. Retrieved
January 7, 2012.

3J. L. Mackie. Ethics: Inventing Right and Wrong. Penguin Books, London, 1977, p.33.
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with the aim of reducing the bias that may be present in smaller datasets. For our project, we
used a massive dataset containing an impressive number of sentences. The text corpus has been
compiled from the web and contains about 500 million tokens (the largest Turkish web corpus
published)4 . Another ethical consideration can be about privacy and security of the data. NLP
systems often deal with sensitive information such as personal conversations or medical records.
It is essential to ensure that such information is stored and transmitted securely and that users
are aware of how their data is being used. We gather all of our data from different sources that
are publicly available5 . Another concern can be the transparency of the training procedure.
The training process and the sources of data used are transparent and clearly documented so
that it is possible to audit and verify the results6 .

2. Project Definition and Planning

2.1. Project Definition

In this project, we aim at building a comprehensive word embedding repository for the
Turkish language. Using each of the state-of-the-art word embedding methods, embeddings of
all the words in the language will be formed using a corpus. First, the three commonly-used
embedding methods (Word2Vec [1, 2], Glove [3], Fasttext [4]) will be used and an embedding
dictionary for each one will be formed. Then we will continue with context-dependent embedding
methods such as BERT [5] and Elmo [6]. Each method will be applied with varying parameters
such as different corpora and different embedding dimensions. The methods will be evaluated
on analogy and similarity tasks.

The project also includes a literature survey, risk analysis, teamwork, system requirements
and modeling, system architecture, and design, implementation, and testing. The success criteria
of the project are based on the quality of the resulting embeddings, as well as the completion of
the project within the allotted time and resources. The project has a broad impact on the field
of natural language processing. It can be used in various applications such as text classification,
sentiment analysis, and machine translation for the Turkish language.

Moreover, our research project encompasses the practical development of a fundamental
web service aimed at comparing word embedding models specifically designed for the Turkish
language. To facilitate this endeavor, we intend to employ a tool called WebVectors (available
at: https://github.com/akutuzov/webvectors) developed by Kutuzov and colleagues [7].
WebVectors serves as a toolkit that enables the deployment of vector semantic models through
the internet, simplifying the demonstration of their capabilities to a wider audience.

2.2. Project Planning

2.2.1. Project Time and Resource Estimation

From the beginning of the semester until the midterm report, we have worked on prepar-
ing the model evaluation software package and training evaluating non-contextual models:
word2vec, fasttext and GloVe. In the first weeks, we did some research on word embeddings

4https://link.springer.com/article/10.1007/s10579-010-9128-6
5https://tulap.cmpe.boun.edu.tr/repository/xmlui/handle/20.500.12913/16
6https://github.com/Turkish-Word-Embeddings/Word-Embeddings-Repository-for-Turkish

https://github.com/akutuzov/webvectors
https://link.springer.com/article/10.1007/s10579-010-9128-6
https://tulap.cmpe.boun.edu.tr/repository/xmlui/handle/20.500.12913/16
https://github.com/Turkish-Word-Embeddings/Word-Embeddings-Repository-for-Turkish
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and models we were planning to use. After that, we worked on writing the evaluation package
and training word2vec and fasttext models. Last weeks before the midterm report, we worked
on training GloVe. GloVe took us more than we liked because we couldn’t train the model right
away on the remote machine we used. We had to spend some time debugging the issue in order
to finally understand that the issue was the lack of disk space.

We then started working on contextual embedding models (BERT and Elmo). In the
following weeks until the final report, we worked on comparing existing BERT and Elmo weights
with the non-contextual models we trained. Towards the end of the semester, we started working
on putting together our results and writing a paper. We have also included some NLP tasks in
our experiments.

In the first weeks, we mainly used our own computers for training word embeddings. Then,
we gained access to the remote machine of the faculty and we were able to train models faster.
This machine allowed us to train models faster thanks to its abundance of RAM and powerful
CPU. We kept using this machine for the contextual models.

2.2.2. Success Criteria

Our project aims to gain a deeper understanding of the performance of static word embed-
dings specifically tailored for the Turkish language. To accomplish this, we conduct comprehen-
sive tests on various models, including Word2vec, FastText, GloVe, BERT, and ELMo. Through
this extensive analysis, we aim to provide a thorough evaluation of the static word embeddings
generated by these models.

Furthermore, our project makes a significant contribution to the field of natural language
processing (NLP) for Turkish by offering a comprehensive benchmark of the performance of
these widely utilized models. This benchmark serves as a valuable resource for researchers in
the field, enabling them to gauge the effectiveness of different word embedding techniques.

Additionally, we emphasize the importance of implementing a web service that facilitates
the calculation of results for diverse word embedding queries and the visualization of outputs.
This web service not only benefits our research project but also holds great value for other
researchers in the field. By providing this tool, we aim to foster collaboration and knowledge
sharing among NLP researchers and contribute to the advancement of the field as a whole.

2.2.3. Risk Analysis

Our project may encounter various risks and challenges. One crucial aspect of Machine
Learning applications is the quality of the data, as biased data can lead to misleading results
in our comparisons. To avoid this issue, we combined the BounWebCorpus and HuaweiCorpus,
resulting in a corpus of 1,384,961,747 tokens. By collecting a significant amount of text and
improving data quality, we aimed to reduce potential biases.

Another challenge we may face is ensuring the accuracy of our evaluation results. To
address this concern and ensure that our evaluation tasks comprehensively capture the model’s
performance, we compiled analogy and similarity tasks from different sources7 8 . These tasks
encompassed 14,321 examples for verb conjugation suffixes, 14,005 examples for noun declension

7https://github.com/onurgu/linguistic-features-in-turkish-word-representations/releases/

tag/v1.0
8https://github.com/bunyamink/word-embedding-models/tree/master/datasets

https://github.com/onurgu/linguistic-features-in-turkish-word-representations/releases/tag/v1.0
https://github.com/onurgu/linguistic-features-in-turkish-word-representations/releases/tag/v1.0
https://github.com/bunyamink/word-embedding-models/tree/master/datasets
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suffixes, 3,296 examples for semantic analogy, 500 examples for semantic similarity, and 140
examples for syntactic similarity.

Inadequate computational resources may also pose a problem for our project. To train our
Word2Vec and FastText models, we upgraded to a more powerful local machine equipped with
an i7-11390H Intel processor and 16 GB of memory. This resulted in a substantial reduction
in algorithm execution time compared to our previous machine, which had an i5-8265U Intel
processor and 8 GB of memory. For our GloVe model, we utilized a remote machine with a
Slurm job scheduler. However, as all models were trained using the CPU, we were unable to
utilize the GPUs provided by the remote machine.

2.2.4. Team Work

From the outset, we identified the need to efficiently train and evaluate multiple models on
the same dataset. To accomplish this, we divided the task of model training between the team
members, with each member responsible for training a specific set of models. This allowed us to
train multiple models in parallel and significantly reduced the overall training time required for
the project.

In addition to the model training, we also worked collaboratively on the development of
the evaluation package. Given its high priority in the project, we allocated sufficient resources to
its development and ensured that it was designed in a way that made it easy to use and allowed
us to quickly iterate and produce results. This allowed us to streamline the evaluation process
and provided us with a reliable way to compare the performance of the different models that we
trained.

Throughout the project, we maintained regular communication and coordination to ensure
that everyone was on the same page and that progress was being made according to schedule.
This included regular check-ins, progress updates, and code reviews to ensure that the different
parts of the project were integrating smoothly and that there were no conflicts or issues that
could cause delays.

Overall, effective teamwork and collaboration between the project members were key fac-
tors in the successful completion of the project. By dividing the work, prioritizing key tasks,
and maintaining regular communication and coordination, we were able to work efficiently and
effectively toward our shared goals.

3. Related Work

There are various word embedding methodologies and related articles in the literature. In
their first paper Efficient estimation of word representations in vector space [1] by Mikolov et.
al., two model architectures, namely the Continuous Bag of Words and Skip-gram techniques,
are introduced for computing continuous vector representations of words from very large data
sets. However, the main problem with the first version of the skip-gram algorithm was the cost
of computing being proportional to the number of words in the vocabulary. In the upcoming
paper Distributed Representations of Words and Phrases and their Compositionality [2], several
extensions on the previously introduced Skip-gram model are introduced to improve both the
quality of the vectors and the training speed. Hierarchical softmax, negative sampling and
subsampling of the frequent words are the main extensions provided in this paper. Word2Vec
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algorithms are implemented in various open-source projects and tutorials including Gensim9 [8],
TensorFlow10 and other publicly available sources11 12 . Word2Vec is used for learning Turkish
word embeddings in various articles as well [9].

GloVe: Global Vectors for Word Representation [3] is another groundbreaking paper for
learning word embeddings that use two major model families in the literature: global matrix
factorization and local context window methods. GloVe model is introduced13 by Pennington
et. al. and compared with other models in the literature.

In Enriching Word Vectors with Subword Information [4], FastText model is introduced
by Bojanowski et. al. In contrast to the previous models that ignore the morphology of the
words, FastText represents the words as a bag of character n-grams. Words are represented as
the sum of these representations. FastText is a fast method, having a reasonable amount of
training time on large corpora and enabling computing word representations for words that did
not appear in the training data. FastText library is developed by Facebook AI Research and
publicly available14 .

Later on, context-dependent embedding methods are developed such as BERT and Elmo.
BERT (Bidirectional Encoder Representations from Transformer) is introduced in the paper
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding [5] by De-
vlin et. al. As stated by the Google AI Language, “BERT outperforms previous methods
because it is the first unsupervised, deeply bidirectional system for pre-training NLP”15 . BERT
has been created to pretrain intricate, two-way representations from text that has not been la-
beled, by conditioning on both the context to the left and right in every layer. BERT models
can be used to generate static word embeddings which are comperable to other word embedding
methods [10].

Lastly, in their paper Deep contextualized word representations [6] by Allen Institute for
Artificial Intelligence, and University of Washington, a new approach to deep contextualized
word representation is introduced that incorporates two distinct aspects: the intricate attributes
of word utilization, such as syntax and semantics, and the dynamic variations of these uses in
various linguistic contexts, thereby modeling polysemy. PyTorch16 and TensorFlow17 implemen-
tations of biLM (deep bidirectional language model) to compute ELMo representations can be
found online. In our work, we have used Turkish CoNLL17 corpus [11] trained with ELMo and
used ELMoForManyLanguages [12] repository to use Turkish word embeddings with API.

So far, The Turkish research community has demonstrated that the word embeddings can
enhance the performance of various NLP tasks in Turkish, as shown in studies such as those by
Demir and Ozgur (2014) [13] and Yildiz et al. (2016) [14]. In addition, there have been in-depth
quantitative analyses of word embeddings, including the Word2Vec skip-gram model, as explored

9Radim Rehurek and Petr Sojka. Software Framework for Topic Modelling with Large Corpora. In Proceed-
ings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pages 45–50, Valletta, Malta, May
2010. ELRA.

10TensorFlow. Word2vec. https://www.tensorflow.org/tutorials/text/word2vec,2021
11https://github.com/akoksal/Turkish-Word2Vec
12https://github.com/graykode/nlp-tutorial
13https://nlp.stanford.edu/projects/glove/
14https://github.com/facebookresearch/fastText
15https://github.com/google-research/bert
16https://github.com/allenai/allennlp/blob/main/allennlp/modules/elmo.py
17https://github.com/allenai/bilm-tf

https://github.com/HIT-SCIR/ELMoForManyLang
https://www.tensorflow.org/tutorials/text/word2vec, 2021
https://github.com/akoksal/Turkish-Word2Vec
https://github.com/graykode/nlp-tutorial
https://nlp.stanford.edu/projects/glove/
https://github.com/facebookresearch/fastText
https://github.com/google-research/bert
https://github.com/allenai/allennlp/blob/main/allennlp/modules/elmo.py
https://github.com/allenai/bilm-tf
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in works such as those by Usen and Erdogan (2014) [15] and Gungor et al. (2017) [9]. So far,
various repositories for Turkish word embeddings have been developed including Word2Vec 18

, GloVe 19 , and BERT 20 [16]. Additionally, word embeddings for many languages including
Turkish are generated for FastText (by Grave et al.) [17] and ELMo (by Che et al.) [12]. In
our work, we have used FastText word embeddings trained by Graev et al. for comparison with
ours and directly used ELMo model trained on Turkish CoNLL17 Corpus, and hosted by NLPL
Vectors Repository [11] 21 .

4. Methodology

In this section we will be explaining the mathematical concepts behind the state-of-the-art
techniques used for the Turkish word embedding repository.

4.1. Word2Vec

Word2Vec is a popular deep learning-based method for generating word representations
or word embeddings. It’s a two-layer neural network that takes a large corpus of text as input
and learns to represent each word in a high-dimensional vector. The basic idea behind Word2Vec
is that words that appear in similar contexts in the corpus should have similar representations.
This is achieved by training the neural network to predict the surrounding words of a target
word given its representation. There are two main variants of Word2Vec: CBOW (Continuous
Bag of Words) and Skip-gram. CBOW tries to predict a target word based on the surrounding
words, while Skip-gram tries to predict the surrounding words based on the target word. In the
second paper by Mikolov et. al. [1], Skip-gram model is improved using Negative Sampling and
Hierarchical Softmax.

Skip-gram Word2Vec architecture consists of an input layer, an output layer, and a sin-
gle hidden layer. The input layer represents the one-hot encoding of the target word wt, and
the output layer is a dense layer with a softmax activation function that predicts the proba-
bility distribution over the context words. There can be more than one such layers in parallel,
representing probability distributions for context words wt+j for different values of j.

The objective of the Skip-gram model is to maximize the average log-likelihood of the
observed words given the surrounding context words in a corpus, which is formulated as:

1

T

T∑
t=1

∑
−m≤j≤m,j ̸=0

log p(wt+j|wt) (4.1)

m is the size of the training context and T stands for number of training words. Similar to
other loss functions generally used in Machine Learning, we prefer to represent the loss function

18https://github.com/akoksal/Turkish-Word2Vec
19https://github.com/inzva/Turkish-GloVe
20https://github.com/stefan-it/turkish-bert
21http://vectors.nlpl.eu/repository/

https://github.com/akoksal/Turkish-Word2Vec
https://github.com/inzva/Turkish-GloVe
https://github.com/stefan-it/turkish-bert
http://vectors.nlpl.eu/repository/
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Figure 4.1: The Skip-gram model architecture for window size = 2 [2].

with logarithm. Log probabilities are crucial in digital probability for various reasons. One reason
is that computers have limitations in representing extremely small numbers. Additionally, logs
possess a remarkable ability to convert multiplication into addition, and computers can perform
addition much faster22 . Probability of a surrounding word wt+j given target word wt, p(wt+j|wt)
is defined as:

p (wt+j | wt) =
exp

(
vTwt+j

uwt

)
∑V

w exp (vTwuwt)
(4.2)

where vwt+j
and uwt are the word embeddings for the context word wt+j and target word

wt, respectively, and V is the vocabulary size. u represents input representation of w, whereas
v represents output representation in Rd. Due to the denominator, cost of calculating the given
probability is proportional to the vocabulary size V , which is often large (105 - 107 terms) [2].

Hierarchical softmax was first introduced by Morin and Bengio (2005) [18] in neural prob-
abilistic language models. The approach is founded on an idea that has the potential to offer
near-exponential acceleration in terms of the number of words present in the vocabulary. It
replaces the normalization term with a binary tree structure, where the root node represents the
entire vocabulary, and the leaves represent individual words. By constructing an appropriate
tree based on a corpus, the complexity of computing softmax can be reduced from O(V ) to
O(log(V )), where V is the corpus size. For instance, if there are 10,000 words in the corpus, a

22Piech, C. (n.d.). Log probabilities. In Probability for Computer Scientists. Retrieved from https://

chrispiech.github.io/probabilityForComputerScientists/en/part1/log_probabilities/

https://chrispiech.github.io/probabilityForComputerScientists/en/part1/log_probabilities/
https://chrispiech.github.io/probabilityForComputerScientists/en/part1/log_probabilities/
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two-layer hierarchical softmax can be created, with each node in the first layer having 100 child
nodes, and each node in the second layer having 100 child nodes as well. With conventional
softmax, output of the activation function would need to be computed 10,000 times. With hier-
archical softmax, however, output would only need to be computed 100 times in the first layer
and then another 100 times for the second layer, resulting in a total of 200 computations23 .

The hierarchical softmax employs a binary tree structure to represent the output layer,
with the V words serving as its leaves. Each node in the tree explicitly denotes the probabilities
of its child nodes. These probabilities create a random path that allocates probabilities to words.
Let wI to be the input word and wO to be the output word. L(wO) is the length of the path
from the root to wO in the tree. n(w, j) is the j-th node on the path from the root to w and
ch(n) is an arbitrarily fixed child of node n. Associate vectors vn with each node n in the tree.
JxK is 1 if x is true, otherwise -1. Then the hierarchical softmax can be formulated as follows [2]:

p(wO|wI) =

L(wO)−1∏
j=1

σ
(
Jn(wO, j + 1) = ch(n(wO, j))K · vTn(wO,j) · uwI

)
(4.3)

where σ = (1+e−x)−1. Another method used for the skip-gram model is Noise Contrastive
Estimation (NCE). The basic idea behind NCE is to use a set of negative samples, drawn from a
noise distribution, to estimate the likelihood of positive samples in a dataset. By using negative
samples, we eliminate the need to go over the whole vocabulary. This significantly speeds up the
training process and allows for larger vocabulary sizes. p(wt+j|wt) is replaced by the following
equation for negative sampling:

=
1

T

T∑
t=1

[
log σ(vTwO

uwI
) +

k∑
i=1

Ewi∼Pn(w)

[
log σ(−vTwi

uwI
)
]]

(4.4)

where k stands for the number of negative samples for training. Experimentally, it has
been found that values of k between 5 and 20 tend to be effective for smaller training datasets,
while for larger datasets, values as low as 2 to 5 can suffice [2]. To get negative samples, Mikolov
et. al. experimentally found out that the best-performing distribution for Pn(w) is the unigram
distribution U(w) raised to the 3

4
rd power, which happened to outperform the unigram and the

uniform distributions.

Lastly, Mikolov et. al. points out the negative effects of frequently reoccurring words such
as ”the”, ”a”, ”an” in English. A method called subsampling of frequent words is used to get
rid of redundant words in the corpus. To eliminate the imbalance between rare and frequent
words, each word wi in the training set is removed with the probability computed by the given

23Mao, Lei. ”Hierarchical Softmax.” Lei Mao’s Log Book. 2018. Available at: https://leimao.github.io/
article/Hierarchical-Softmax/. Accessed on: Feb 25, 2023.

https://leimao.github.io/article/Hierarchical-Softmax/
https://leimao.github.io/article/Hierarchical-Softmax/
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expression:

P (wi) = 1−

√
t

f(wi)
(4.5)

where f(wi) is the frequency of the word wi and t is the chosen threshold. It is stated in
the paper [2] that although this subsampling formula was chosen heuristically, it is found to be
working pretty well in practice.

We utilized two different implementations for the Word2Vec architecture in our study. To
start, we used the straightforward Word2Vec implementation from the TensorFlow Core Tuto-
rials 24 as an introductory tool for gaining familiarity with the concepts. Later on, we employed
the Gensim library [8], which is a free and open-source Python library for representing docu-
ments as semantic vectors, for larger datasets. The second implementation was preferred for its
optimized and well-tested architecture. Gensim library provides the opportunity to experiment
with various algorithms such as Skip-Gram with hierarchical softmax, Skip-Gram with negative
sampling, CBOW with hierarchical softmax, and CBOW with negative sampling.

4.2. GloVe

GloVe is a word embeddings method which is developed based on analysis of model prop-
erties needed semantic and syntactic regularities to emerge in word vectors. It aims to explicitly
explicitly embed these properties into the model structure. The end result is a global log-bilinear
regression model which incorporates the advantages of two prominent model families in natu-
ral language processing literature: global matrix factorization (such as latent space analysis of
Deerwester et al., 1990 [19]) and local context window (such as skip-gram model of Mikolov et
al., 2013 [20]). The resulting GloVe model achieves performance improvements on the analogy,
similarity and named entity recognition (NER) benchmarks.

The GloVe model is based on an analysis of why statistics of word occurrences in a corpus
is the primary source of information used by unsupervised methods for learning word represen-
tations. Let X denote word-word co-occurrence counts whose entries Xi,j are the number of
times word j occurs in the context of word i. Let Xi = ΣkXik be the number of times any word
appears in the context of word i. Let Pij = P (j|i) = Xij

Xi
be the probability that word j appears

in the context of word i.

Now consider the two related words i = ice and j = steam; and probe words k0 = solid,
k1 = water and k2 = fashion. For ki which is related to ice but unrelated to steam, we would
expect the ratio Pik

Pjk
to be large. For ki which is related to both ice and steam or neither, we

would expect the ratio Pik

Pjk
to be close to 1. Compared to the raw probabilities Pij, probability

ratio is a better indicator of relevance of the words and it is better at discriminating between
two similar words. This argument suggests that the starting point for a word vector learning
algorithm should be with the ratios of co-occurrence probabilities rather than the probabilities
themselves. The most general model takes the form:

24TensorFlow. Word2vec. https://www.tensorflow.org/tutorials/text/word2vec,2021

https://www.tensorflow.org/tutorials/text/word2vec, 2021
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F (wi, wj, w̃k) =
Pik

Pjk

(4.6)

where w ∈ Rd are word vectors and w̃ ∈ Rd are context words. Right hand side of this
equation can be extracted from the corpus. Possibilities for F are countless but a unique choice
can be made by enforcing some conditions.

F (wi, wj, w̃k) =
Pik

Pjk

(4.7)

F (wi − wj, w̃k) =
Pik

Pjk

(4.8)

F ((wi − wj)
T w̃k) =

Pik

Pjk

(4.9)

In equation (4.8); two parameters wi and wj are transformed to a single parameter wi−wj

using vector difference since vector spaces are inherently linear structures. Then, in equation
(4.9), dot product is applied to the vector arguments of F to match the right hand side of the
equation which is a scalar. Next, homomorphism is assumed between the groups (R,+) and
(R>0,×). This assumption transforms the left hand side of (4.9) to:

F ((wi − wj)
T w̃k) =

F (wT
i w̃k)

F (wT
j w̃k)

(4.10)

which, by equation (4.9), is solved by:

F (wT
i w̃k) = Pik =

Xik

Xi

(4.11)

If F is selected to be the exponential function (which satisfies the homomorphism assump-
tion), equation (4.11) becomes:

wT
i w̃k = log(Pik) = log(Xik)− log(Xi) (4.12)

This equation is simplified further by absorbing the log(Xi) into the bias of wi, bi. Bias of
w̃k is also added to restore symmetry:

wT
i w̃k + bi + b̃k = log(Xik) (4.13)

After adding a weight factor which gives more weight to the term with higher frequency
in the corpus, loss function is written with equation (4.13):
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J =
V∑

i,j=1

f(Xij)(w
T
i w̃k + bi + b̃k − log(Xik))

2 (4.14)

where f is the weight function and V is the size of the vocabulary.

Using this log-bilinear regression model, word representations that outperform previous
methods on word analogy, word similarity, and named entity recognition tasks can be trained.

4.3. FastText

FastText, developed by Facebook’s AI Research team (Joulin et al., 2016) [4], operates
on the belief that the form of a word holds significant information about its meaning. Unlike
traditional word embeddings like Word2Vec, which create a separate embedding for each distinct
word, FastText takes the morphological structure into account. This is especially relevant in
languages with a rich morphological structure such as Turkish or Japanese, where a single word
can have numerous forms, many of which may be infrequent. This can make it challenging to
generate effective word embeddings. In contrast to Word2Vec, FastText allows us to calculate
word embeddings for words that were not present in the training dataset as well.

In the FastText algorithm, each word w is represented by character n-grams. To create
the n-grams for a word, special symbols are appended to the beginning and end of it. For n = 4
and the word world, following character n-grams are generated:

< wor, worl, orld, rld >

According to Joulin et al., 2016 [4], usually all the n-grams for 3 ≤ n ≤ 6 are extracted
for training. Additionally, the word w itself is also added in the set of its n-grams. FastText
represents the probability of a context word wt+j given the target word wt, denoted as p(wt+j|wt),
in a way similar to Word2Vec, but with some modifications. Specifically, FastText introduces a
score function s and formulates the probability as follows:

p (wt+j | wt) =
es(wt,wt+j)∑V
i=1 e

s(wt,i)
(4.15)

In Word2Vec, s(wt, wt+j) was equal to vTwt+j
uwt . Joulin et al., 2016 [4] proceeds with a

dictionary n-grams of size G. For any word w, Gw ⊂ {1, ..., G} denotes the n-grams appearing in
word w. Each n-gram g is associated with a vector zg. Then the scoring function can be defined
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as the sum of the n-gram vector representations of word w as follows:

s(wt, wt+j) =
∑
g∈Gw

zg
Tvwt+j

(4.16)

Using this approach, FastText is able to calculate word embeddings for words that were
not present in the vocabulary - but can be constructed using different n-grams. During the train-
ing, Optimization is performed using stochastic gradient descent on the negative log-likelihood
presented before. Implementation of this algorithm by Facebook AI can be found on Github25 .

4.4. BERT

BERT [5], which stands for Bidirectional Encoder Representations from Transformers is
a language representation model which is conceptually simple yet empirically powerful. Deep
representations are learned with pre-training and then fine-tuned with one additional output
layer to achieve to create state-of-the-art models for a wide range of tasks.

There were two different approaches to pre-training before BERT. One was ELMo [6],
which used task-specific architectures which used the pre-trained representations. The other
is Generative Pre-trained Transformer (OpenAI GPT) [21] which attempts to minimize the
task specific parameters and fine-tunes every pre-trained parameter for a given task. Both these
methods are unidirectional models. For example, in the OpenAI GPT, a left-to-right architecture
is used, therefore every token can only attend to previous tokens in the attention layer of the
transformer. These approaches are sub-optimal BERT [5].

BERT is a similar approach to the OpenAI model in the sense that it also aims to avoid task
specific parameters. It alleviates the unidirectionality problem using a masked language model
(MLM) training objective. MLM randomly masks one some of the tokens from the input and
the objective is to predict the masked word using the context. MLM objective allows pretraining
of a deep bidirectional Transformer.

Training a BERT model for a task includes two steps: Pre-training and fine-tuning. During
pre-training, the model is trained using unlabeled data over different pre-training tasks. Pre-
training tasks are Masked Language Model task which is described above and next sentence
prediction task. For fine-tuning, the BERT model is initialized with the pre-trained parameters,
and all of the parameters are fine-tuned using labeled data from the downstream tasks. Each
downstream task has separate fine-tuned models, even though they are initialized with the same
pre-trained parameters.

4.5. ELMo

ELMo [6], also known as ”Embeddings from Language Model,” is a technique used for
generating word embeddings. It represents a series of words as a corresponding sequence of
vectors. Unlike ”Bag of Words” methods and earlier vector approaches such as Word2Vec and
GloVe, ELMo embeddings are context-sensitive, producing distinct representations for words
that share the same spelling but have different meanings, such as ”bank” in ”river bank” and

25https://github.com/facebookresearch/fastText

https://github.com/facebookresearch/fastText
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”bank balance”. To produce word-level embeddings, bi-directional LSTM receives character-
level tokens as inputs. This approach is similar to our previous model BERT in terms of its
contextual sensitivity26 .

LSTM (Long-short Term Memory), first developed by Hochreiter et. al. [22], is a specific
recurrent neural network (RNN) architecture that was designed to model temporal sequences
and their long-range dependencies more accurately than conventional RNNs [23]. LSTM suc-
cessfully deals with some of the problems such as exploding/vanishing gradients RNNs might
encounter within various tasks. In a many-to-many model, an LSTM network maps input se-
quence (x1, x2, ..., xt) to (y1, y2, ..., yt) by forwarding hidden and cell states using the equations
provided below from t = 1 to T :

Γ<t>
i = σ(Wixx

<t> +Wiaa
<t−1> + bi) (4.17)

Γ<t>
f = σ(Wfxx

<t> +Wfaa
<t−1> + bf ) (4.18)

c<t> = Γ<t>
f ⊙ c<t−1> + Γ<t>

i ⊙ g(Wcxx
<t> +Wcaa

<t−1> + bc) (4.19)

Γ<t>
o = σ(Woxx

<t> +Woaa
<t−1> + bo) (4.20)

a<t> = Γ<t>
o ⊙ h

(
c<t>

)
(4.21)

y<t> = ϕ(Wyaa
<t> + by) (4.22)

The model architecture [23]27 includes several weight matrices denoted by the W terms (for
example, Wix represents the weight matrix connecting the input gate to the input). Additionally,
there are diagonal weight matrices for peephole connections denoted by Wic, Wf , and Woc. The
bias vectors are denoted by the b terms (such as bi for the input gate bias vector). The logistic
sigmoid function σ is applied to the input gate, forget gate, output gate, and cell activation
vectors Γi, Γf , Γo, and c respectively, which are all of the same sizes as the cell output activation
vector h. The element-wise product of vectors is represented by ⊙. The cell input and cell
output activation functions are represented by g and h, which are generally the hyperbolic
tangent function (tanh). Finally, the network output activation function is denoted by ϕ and is
typically softmax. Below you can find the inner architecture of an LSTM cell28 .

Given a sequence of N tokens, a forward language model computes the probability of the
sequence using conditional probability as follows:

p(t1, t2, . . . , tN) =
N∏
k=1

p(tk|t1, t2, . . . , tk−1) (4.23)

26https://en.wikipedia.org/wiki/ELMo
27In the original paper Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale

Acoustic Modeling, there are extra Wocc
<t> terms in 4.8, 4.9 and 4.11. Later on, these parts are removed for

computational efficiency.
28Retrieved from https://www.coursera.org/specializations/deep-learning.

https://en.wikipedia.org/wiki/ELMo
https://www.coursera.org/specializations/deep-learning
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Figure 4.2: Inside architecture of an LSTM cell

In a classical LSTM architecture with L layers forward, a token embedding xLM
k is passed

through the layers. For creating the token embeddings, different architectures can be used such

as character-level CNNs29 . At each position k, a context-dependent representation
−→
h LM

k,j is
generated. Here j represents the layers from 1 to L and the right arrow indicates that the flow

is from the leftmost word to the rightmost word in the sentence. In the top layer,
−→
h LM

k,L is fed
to a softmax layer to predict the token tk+1. Using this approach, we are able to utilize all the
words t1 to tk to predict tk + 1.

In bi-directional LSTM (which is used by biLM), sequence information in both directions
backward (future to past) and forward (past to future) are processed. Backward iteration at-
tempts to predict the previous token given the future context:

p(t1, t2, . . . , tN) =
N∏
k=1

p(tk|tk+1, tk+2, . . . , tN) (4.24)

Using a bi-directional LSTM, our task reduces to maximizing the log-likelihood of the
predictions using both left and right context:

N∑
k=1

(
log p

(
tk | t1, . . . , tk−1; Θx,

→
ΘLSTM ,Θs

)
+ log p

(
tk | tk+1, . . . , tN ; Θx,

←
ΘLSTM ,Θs

))
(4.25)

29https://github.com/allenai/allennlp/blob/main/allennlp/modules/elmo.py

https://github.com/allenai/allennlp/blob/main/allennlp/modules/elmo.py
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Here, Θx represents the parameters used for token representation, Θs represents the parameters
in dense layer used just before the softmax activation function. Lastly, ΘLSTM represents the
parameters used in the forward and backward directions. In ELMo, some of the weights are
shared between forward and backward directions. Overall, for an L-layer bidirectional LSTM,

2L−1 vectors are computed: xLM
k ,
−→
h LM

k,L ,
←−
h LM

k,L . In the simplest case, we can select the outputs of
the top layer. However, in general, in ELMo it is preferred to compute a task-specific weighting
of all biLM layers:

ELMotaskk = E(Rk; Θ
task) = γtask

L∑
j=0

staskj · hLM
k,j (4.26)

Here, stask is the softmax normalized weights and γtask is used to rescale the whole vector
(practically useful for optimization). It is also stated by E. Peters et al. it is beneficial to add a
moderate amount of dropout to ELMo and regularize it by adding λ ∥w∥22 to the loss function.

5. Requirements and Modeling

Our project’s primary objective was to create word embedding repositories for Turkish
using existing model implementations. As such, traditional software requirements were not
applicable in this context. However, we did develop a model evaluation package, which we will
elaborate on in the Requirements and Modelling section. This package allows for the loading of
different models, performing analogy and similarity tasks, saving results, and generating LaTeX
tables.

5.1. System Requirements

5.1.1. User Requirements

• 5.1.1.1: Users shall be able to associate reference scores with groups of analogy or simi-
larity tasks.

• 5.1.1.2: Users shall be able to load any type of pre-trained model for generating word
embeddings.

• 5.1.1.3: Users shall be able to run analogy or similarity tasks with the loaded models.
• 5.1.1.4: Results of the analogy and similarity tasks shall be saved in a file format that is
easily accessible by users.

• 5.1.1.5: Users shall be able to generate latex tables from the task results and the reference
scores.

5.1.2. System Requirements

• 5.1.2.1: Package shall offer a CLI when loading models to make it easier to configure the
way model is loaded.

• 5.1.2.2: The package should be able to handle large datasets and perform the analogy and
similarity tasks in a reasonable amount of time.
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• 5.1.2.3: The package should be maintainable and easy to update in the event that new
models or tasks are added in the future.

5.2. System Modeling

The evaluation package is composed of several modules that interact with one another to
provide the desired functionality. The main entry point for users is a set of four scripts that
allow them to load models, run analogy and similarity tasks, and save the results in various
formats. The first script, ”evaluate”, prompts the user to configure the way the model is loaded
and then runs the tasks provided by the user. The second script, ”populate metadata”, allows
the user to associate a reference score with a given task. Finally, the ”dump latex table” script
allows the user to generate a LaTeX table with the score and reference score of a given task.

Under the hood, the evaluation package relies on several modules for loading models and
performing tasks. When the ”evaluate” script is run, it uses a model loader module to read
the specified model path and load the pre-trained model into memory. The script then uses
a task runner module to execute the provided tasks against the loaded model and save the
results in a human-readable format. The ”populate metadata” script relies on a metadata
loader module to read in the reference scores for each task and store them in memory. Finally,
the ”dump similarity latex table” and ”dump analogy latex table” scripts use a table generator
module to convert the saved results into a LaTeX table format.

5.3. System Architecture

5.3.1. Word Embeddings Repository for Turkish

The evaluation package is designed to be modular and extensible, with a clear separation
of concerns between the different components. The system architecture consists of several main
modules, each responsible for a specific aspect of the system’s functionality.

Figure 5.1: System Model Diagram
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At the core of the system is the model loader module, which is responsible for reading in
pre-trained models and loading them into memory. This module provides a common interface
for loading different types of models and ensures that the loaded models are compatible with
the rest of the system.

The task runner module is responsible for executing the various analogy and similarity
tasks against the loaded model. It provides a flexible framework for defining new tasks and
allows users to easily specify the tasks they wish to run via the ”evaluate” script.

The metadata loader module is responsible for reading in reference scores for each task
and storing them in memory. This module allows users to provide ground truth scores for each
task and enables the system to generate accurate evaluation metrics.

Finally, the table generator scripts are responsible for converting the saved results into
a LaTeX table format. These scripts provide a convenient way for users to generate tables
summarizing the results of their evaluations.

Overall, the system architecture is designed to be flexible and modular, with each com-
ponent responsible for a specific aspect of the system’s functionality. The clear separation of
concerns between the different modules allows for easy extensibility and maintainability of the
system.

5.3.2. Turkish WebVectors

To support our research endeavors, we have developed a web service based on the template
provided by WebVectors (Kutuzov et al., 2017) [7]. This web service leverages the Gensim30

library to interact with various word embedding models. Additionally, the user interface is
implemented using the Flask31 framework. The web service operates as a standalone service
utilizing Gunicorn32 as the application server.

In this architecture, Gensim functions as a daemon, continuously running in the back-
ground, while Flask communicates with it whenever a query is submitted by a user. This
communication allows the web service to retrieve and process relevant word embeddings based
on the user’s input. Our website is accessible at https://turkishwebvectors.software both
in Turkish and English.

Here you can find the outputs of some queries, visualized with the help of our service:

30https://radimrehurek.com/gensim/
31https://flask.palletsprojects.com/en/2.3.x/
32https://gunicorn.org/

https://turkishwebvectors.software
https://radimrehurek.com/gensim/
https://flask.palletsprojects.com/en/2.3.x/
https://gunicorn.org/
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Figure 5.2: Result of the classical semantic query
on Word2Vec skip-gram architecture.

Figure 5.3: Cosine similarities between pairs of words
using FastText skip-gram architecture.
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Figure 5.4: Visualization of semantically related word embeddings acquired through Word2Vec
using t-SNE algorithm (on the left), visualization of syntactically related word embeddings
acquired through FastText using PCA algorithm (on the right) on two-dimensional space.

6. Design, Implementation, and Testing

6.1. Design & Implementation

Our software package can be split into two groups, the first group being the evaluation
package we described in the Requirements and Modeling section and the second group being
model-specific scripts we prepared for training models.

In the evaluation package, we began with implementing the task and model metadata
repository and providers. Task metadata provider was implemented under the MetaData class.
This class allows one to load existing metadata, update results and save them. Then, using the
MetaData class, we wrote the populate_task_metadata.py script which is a CLI tool for saving
reference scores for tasks. Task metadata is saved in the folder where the tasks are as a csv file
whose name ends with .nlp_metadata.

Then we wrote the model metadata provider under the Model_MetaData class. This class
allows one to load and save model metadata. Using Model_MetaData and MetaData classes, we
implemented the evaluate.py script which takes a model path, list of tasks to run as parameter
and runs the provided tasks with the provided model. If the user is loading a particular model
for a first time, they are prompted to configure how the model is to be loaded. After the loading
is configured, the configuration is dumped as a JSON file whose name ends with .nlp_metadata.

When loading and running the models, we use the Gensim library which allows us to
represent the models as a dictionary mapping words to word embedding vectors.

Finally, we added the dump_analogy_latex_table.py and
dump_similarity_latex_table.py scripts to generate latex tables from the results of our ex-
periments. Together with the other scripts which allowed us to run experiments quickly, these
scripts allowed us to generate several tables in quick succession.

For the model specific scripts, we have mainly written regular Python files (.py) and
Jupyter notebooks (.ipynb). We have maintained a Github repository33 consisting of differ-

33https://github.com/Turkish-Word-Embeddings/Word-Embeddings-Repository-for-Turkish

https://github.com/Turkish-Word-Embeddings/Word-Embeddings-Repository-for-Turkish
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ent word embedding model implementations. Each model has its own folder. There are also
several preprocessing scripts to manipulate our datasets before training our models on them. We
have used Gensim library for Word2Vec and FastText models. For GloVe, we used the official
implementation 34 for training the model and gensim for loading.

6.2. Testing

6.2.1. Intrinsic Evaluation

We have used several intrinsic evaluation methodologies and metrics to test the quality
of the generated word embeddings. Intrinsic evaluation involves evaluating the quality of word
embeddings on a specific task that is designed to test a particular linguistic property. For
example, word similarity tasks, such as the WordSim-353 and SimLex-999 datasets, can be used
to evaluate how well the embeddings capture the semantic similarity between pairs of words.
Analogy tasks and similarity tasks are two types of intrinsic evaluation methodologies that are
commonly used to test the quality of word embeddings.

In analogy tasks, the performance of word embeddings is evaluated on their ability to solve
analogy problems, such as “man is to king as woman is to queen”. This classic analogy can be
solved using word embeddings by finding that closest to wking−wman +wwoman, which turns out
to be wqueen (wx denotes the embedding of word x). In geometric terms, word embeddings of
analogies approximately form parallelograms 35 .

For the analogy task, we have used the metric MRR (Mean Reciprocal Rate) used by
Güngör et. al. on Turkish word embeddings [9]. The mean reciprocal rank (MRR) is a statistical
measure used to evaluate systems that generate lists of possible responses to a set of queries,
sorted by their probability of being correct 36 . The reciprocal rank of a query response is the
inverse of its rank in the list of correct answers, with a value of 1 for the first correct answer, 1

2

for the second, 1
3
for the third, and so on. It can be expressed as follows:

MRR =
1

|Q|

|Q|∑
i=1

1

Si

(6.1)

where Q represents the set of analogy queries, and Si indicates the position of the correct
answer in the list of closest words. In the paper Efficient Estimation of Word Representations in
Vector Space, a slightly different approach is used where the ”question is assumed to be correctly
answered only if the closest word to the vector computed using the above method is exactly the
same as the correct word in the question”.

We have tested our models on the analogy dataset used by Güngör et. al., and compared
our results in the next chapter. Specifically, we have used the syntactic features isim çekim ekleri

34https://github.com/stanfordnlp/GloVe
35https://carl-allen.github.io/nlp/2019/07/01/explaining-analogies-explained.html
36https://en.wikipedia.org/wiki/Mean_reciprocal_rank

https://github.com/stanfordnlp/GloVe
https://carl-allen.github.io/nlp/2019/07/01/explaining-analogies-explained.html
https://en.wikipedia.org/wiki/Mean_reciprocal_rank
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and fiil çekim ekleri. The divided version of the dataset can be found in our Github repository37

. Additionally, we utilized another dataset that can be found online 38 for both semantic and
analogy tasks.

In natural language processing, similarity task for word embeddings refers to measuring
the degree of similarity or relatedness between two or more words based on their vector rep-
resentations obtained from a pre-trained word embedding model. For such purposes, we have
used WordSimTr dataset prepared by Üstün et al. [24] for Turkish word embedding models.
We utilized 140 word pairs that scored between 1 to 10. Our objective is to compute similarity
scores for these word pairs using our model, and then compare the outcomes with hypothetical
ones. The outcome of this comparison can be conveyed using either the Pearson Correlation or
Spearman Correlation coefficients. In our example, Pearson Correlation between two samples
can be defined as follows:

P =
cov(X, Y )

σXσY

=

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(6.2)

where xi and yi represent the similarity scores for each word pair. Similarly, Spearman Correla-
tion between two samples can be defined as follows:

S = 1− 6
∑n

i=1(R(xi)−R(yi))
2

n(n2 − 1)
(6.3)

where n is the number of scores in the dataset and R represents the ranking. In statistics,
ranking is the data transformation in which numerical or ordinal values are replaced by their
rank when the data are sorted. For example, the numerical data 3.4, 5.1, 2.6, 7.3 are observed,
the ranks of these data items would be 2, 3, 1 and 4 respectively39 . S is computed on ranks and
so depicts monotonic relationships while P is on true values and depicts linear relationships40 .
A monotonic relationship is one in which the size of one variable increases as the other variables
also increase (positive monotonic), or where the size of one variable increases as the other variable
also decreases (negative monotonic). Finally, the p-value can be defined as the probability of
observing a correlation between two sample sets by chance if no correlation truly exists. The
resulting coefficients are considered to be more statistically significant when the p-value is low.

6.2.2. Extrinsic Evaluation

For extrinsic evaluations, we used our word embeddings as input features for the following
NLP tasks: Sentiment analysis, part-of-speech tagging, and named-entity recognition.

37https://github.com/Turkish-Word-Embeddings/Word-Embeddings-Repository-for-Turkish/tree/

main/tasks/analogy
38https://github.com/bunyamink/word-embedding-models/tree/master/datasets
39https://en.wikipedia.org/wiki/Ranking#Ranking_in_statistics
40https://stats.stackexchange.com/q/14963

https://github.com/Turkish-Word-Embeddings/Word-Embeddings-Repository-for-Turkish/tree/main/tasks/analogy
https://github.com/Turkish-Word-Embeddings/Word-Embeddings-Repository-for-Turkish/tree/main/tasks/analogy
https://github.com/bunyamink/word-embedding-models/tree/master/datasets
https://en.wikipedia.org/wiki/Ranking##Ranking_in_statistics
https://stats.stackexchange.com/q/14963


22

Sentiment Analysis aims to classify sentences and expressions based on their prominent
sentiment. This task is particularly beneficial in rapidly categorizing millions of comments and
reviews across various social media platforms within a matter of minutes. To tackle this task,
we trained a bidirectional LSTM model with 16 hidden units using PyTorch. We applied mean
and max pooling to the outcome and then feed it to a linear output layer without activation. We
trained the model for 5 epochs with a training batch size of 16 and a validation batch size of 8.
We utilized the Turkish media sentiment analysis dataset provided by Türkmenoğlu et al. [25].
Considering only the labeled reviews, it contained a total of 5571 negative and 10529 positive
reviews. After training our model, we constructed confusion matrices and evaluated F1 scores
to ensure that our model was not affected by the imbalance present in the dataset.

POS tagging, also known as grammar tagging, seeks to label each input token with its
corresponding part-of-speech, such as noun, verb, adverb, or conjunction. With the aid of
labeled corpora, several techniques can effectively perform this task by learning probability
distributions through either linguistic properties or statistical machine learning. Since POS
tagging is a fundamental linguistic resource, it has many practical applications, such as text
indexing and retrieval. To tackle this task, we trained a bidirectional LSTM model with 16
hidden units using TensorFlow. We set the return_sequences parameter to True and applied
a TimeDistributed Dense layer with a Softmax activation function. To optimize our model, we
used Categorical Cross-entropy as our loss function and Adam as the optimizer. We trained
the model for 5 epochs with a batch size of 128. We have used Turkish dependency treebank
annotated in UD style, created by the members of TABILAB from Boğaziçi University [26].
Overall, it had 7803 sentences in the training set, 979 sentences in the dev (validation) set, and
979 sentences in the test set. For padding, we set the maximum length to be 130 as it was the
length of the longest sentence.

In Named Entity Recognition, our aim is to detect and categorize important information in
text, known as named entities. For this purpose, we have used the dataset prepared by Gungor
et al. [27]. Overall, we had 25514 sentences for training, 2954 sentences for validation, and 2915
sentences for the test set. We had four classes: I-ORG for organizations, I-PER for persons,
I-LOC for locations, and O for non-entities. Similar to the previous models, we trained a bidi-
rectional LSTM model with 16 hidden units using TensorFlow. We set the return_sequences

parameter to True and applied a TimeDistributed Dense layer with a Softmax activation func-
tion. To optimize our model, we used Categorical Cross-entropy as our loss function and Adam
as the optimizer. We trained the model for 5 epochs with a batch size of 128. For all models,
the embedding layers for all models are fixed during training. Our experimental results can be
found in the Results section.

7. Results

We have trained our models with the following configurations. We have used the paper
Linguistic Features in Turkish Word Representations by Güngör et. al. as a reference for MRR
results. Overall weighted results are calculated based on the number of examples.

We have used the Turkish word embeddings generated by FastText [17] as our reference
and compared our results with it. We have trained our FastText model using Gensim with the
following configurations.
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• As our dataset, we used the merged version of BounWebCorpus41 and HuaweiCorpus42 .
Final training corpus has a size of ∼10.5 GB. Overall, we had 1,384,961,747 tokens and
1,573,013 unique words (excluding words occurring less than the minimum frequency).

• For our models, number of embedding features was set to 300.
• Window (maximum distance between the current and predicted word within a sentence)
size was set to 5.

• The number of negative samples for negative sampling was set to 5.
• The minimum frequency was set to 10.
• The number of iterations (epochs) over the corpus was set to 5 and 10 respectively.
• For the analogy task, N was set to 10.
• Skip-gram with negative sampling was used.
• (Relevant for FastText) Minimum length of a char gram was set to 3, and the maximum
length was set to 6. The maximum length of word gram was set to 1.

• (FastText Turkish Word Embeddings [17]) Turkish word embeddings were trained using
CBOW with position-weights, in dimension 300, with character n-grams of length 5, a
window of size 5 and 10 negatives.

• For ELMo, we have used Turkish CoNLL17 corpus43 prepared by Language Technology
Group at the University of Oslo. This model had 327,299 unique words in total.

In the following table, you can find the overall performance of the models we evaluated in
our experiments.

41https://tulap.cmpe.boun.edu.tr/repository/xmlui/handle/20.500.12913/16
42https://github.com/onurgu/linguistic-features-in-turkish-word-representations/releases
43http://vectors.nlpl.eu/repository/

https://www.mn.uio.no/ifi/english/research/groups/ltg/
https://www.mn.uio.no/ifi/english/research/groups/ltg/
https://tulap.cmpe.boun.edu.tr/repository/xmlui/handle/20.500.12913/16
https://github.com/onurgu/linguistic-features-in-turkish-word-representations/releases
http://vectors.nlpl.eu/repository/
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Word2Vec 5 epochs 0.604 0.318 0.535 83.80 82.57 70.72 74.33

Word2Vec 10 epochs 0.609 0.329 0.551 82.53 81.68 70.77 74.57
Word2Vec 10 epochs CBOW 0.612 0.380 0.414 76.89 77.62 68.76 66.15

Word2Vec 10 epochs left-aligned 0.287 0.236 0.535 79.05 79.42 69.85 73.98

Word2Vec 10 epochs right-aligned 0.551 0.266 0.463 79.02 76.72 70.11 73.17

Word2Vec 15 epochs 0.606 0.337 0.555 81.54 81.83 70.67 74.53

FastText 5 epochs 0.718 0.360 0.258 61.12 62.55 67.45 70.37

FastText 10 epochs 0.697 0.371 0.303 66.51 68.16 67.35 70.53

FastText Facebook 0.801 0.514 0.346 76.92 80.28 65.12 68.92

Word2Vec & FastText Average 0.658 0.368 0.470 79.12 79.19 68.15 71.98

Glove window size 5 0.549 0.144 0.460 73.45 74.13 61.59 64.33

Glove window size 10 0.363 0.171 0.501 69.87 72.33 67.93 70.89

Decontextualized Elmo 0.237 0.162 0.078 39.11 39.43 35.18 36.77

Decontextualized BERT 0.038 0.036 0.034 25.17 28.45 10.65 12.63

X2Static BERT 0.771 0.499 0.391 84.72 83.03 75.94 70.39

Analogy Similarity

Intrinsic Evaluation Results

Figure 7.1: Comparing the CBOW and Skip-gram architectures on analogy tasks, we find that
they perform similarly on verb conjugation suffixes. However, when it comes to noun declension
suffixes, CBOW outperforms Skip-gram. On semantic analogy tasks, Skip-gram performs better
than CBOW.

You can find the results of CBOW-Skipgram Word2Vec comparison, Word2Vec with 5
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epochs, Word2Vec with 10 epochs, left-alignedWord2Vec with 10 epochs, right-alignedWord2Vec
with 10 epochs, Word2Vec with 15 epochs, FastText with 5 epochs, FastText with 10 epochs,
FastText trained by Facebook AI, average of the word vectors generated by Word2Vec and
FastText with 10 epochs, GloVe with 100 iterations and ELMo (Turkish CoNLL17) on static
embeddings, BERT generated with X2Static in the following tables.

Morphological Categories Number of examples Top-N Miss Ratio MRR Reference MRR
Improvement with
respect to reference

1. tekil kişi çekimi.txt 990 0.288 0.439 0.339 29.68%
2. tekil kişi çekimi.txt 946 0.411 0.323 0.365 -11.48%
2. çoğul kişi çekimi.txt 946 0.349 0.398 0.327 21.94%
3. çoğul kişi çekimi.txt 1128 0.419 0.372 0.42 -11.22%
emir kipi.txt 1176 0.187 0.632 0.465 36.06%
gelecek zaman kipi.txt 1176 0.105 0.801 0.707 13.37%
gereklilik kipi.txt 1128 0.232 0.561 0.467 20.19%
geçmiş zaman eki (-di).txt 1176 0.225 0.622 0.535 16.25%
geçmiş zaman eki (-miş).txt 1176 0.088 0.799 0.774 3.32%
istek kipi.txt 1176 0.249 0.582 0.534 8.97%
olumsuzluk eki.txt 1176 0.137 0.642 0.67 -4.08%
şimdiki zaman eki (-mekte).txt 1176 0.132 0.749 0.646 15.99%
şimdiki zaman eki (-yor).txt 861 0.077 0.874 0.847 3.26%

Overall 14231 0.220 0.604 0.549 10.02%

Table 7.1: Fiil çekim ekleri : MRR Result Comparison for Word2Vec with 5 epochs

Semantic Categories Number of examples Top-N Miss Ratio MRR
Aile 90 0.289 0.526
Para birimi 156 0.730 0.149
Şehir-bölge 1344 0.092 0.605

Ülke-başkent 506 0.081 0.656
Eş anlamlılar 600 0.4 0.467
Zıt anlamlılar 600 0.336 0.448

Overall 3296 0.226 0.535

Table 7.2: Semantic categories: MRR Results of Word2Vec with 5 epochs

Similarity Task Statistics

Syntactic Similarity
Pearson Result: 83.80 p-value: 6.83 x 10−21

Spearman Result: 82.57 p-value: 7.98 x 10−20

OOV Ratio: 46.42

Semantic Similarity
Pearson Result: 70.72 p-value: 6.38 x 10−57

Spearman Result: 74.33 p-value: 9.93 x 10−66

OOV Ratio: 26.6

Table 7.3: Similarity test results for Word2Vec with 5 epochs (p× 100)
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Morphological Categories Number of examples Top-N Miss Ratio MRR Reference MRR
Improvement with
respect to reference

Şimdiki zaman eki (-yor) 861 0.067 0.884 0.847 4.37%
geçmiş zaman eki (-miş) 1176 0.086 0.808 0.774 4.39%
Gelecek zaman eki 1176 0.109 0.792 0.707 12.05%
Olumsuzluk eki 1176 0.136 0.651 0.67 -2.83%
Şimdiki zaman eki (-mekte) 1176 0.115 0.760 0.646 17.65%
Geçmiş zaman eki (-di) 1176 0.220 0.633 0.535 18.32%

İstek kipi 1176 0.237 0.593 0.534 11.02%
Gereklilik kipi 1128 0.238 0.575 0.467 23.10%
Emir kipi 1176 0.193 0.643 0.465 38.29%
3. çoğul kişi çekimi 1128 0.392 0.388 0.42 -7.61%
2. tekil kişi çekimi 946 0.426 0.315 0.365 -13.70%
1. tekil kişi çekimi 990 0.311 0.426 0.339 25.66%
2. çoğul kişi çekimi 946 0.358 0.380 0.327 16.20%

Overall 14231 0.219 0.609 0.549 10.96%

Table 7.4: Fiil çekim ekleri : MRR Result Comparison for Word2Vec with 10 epochs

Morphological Categories Number of examples Top-N Miss Ratio MRR Reference MRR
Improvement with
respect to reference

-den eki.txt 1128 0.502 0.30 0.238 26.26%
-e eki.txt 1176 0.516 0.271 0.236 14.92%
1. tekil kişi iyelik.txt 1128 0.640 0.221 0.148 49.60%
1. çoğul kişi iyelik.txt 1128 0.505 0.343 0.25 37.44%
2. tekil kişi iyelik.txt 1176 0.568 0.317 0.321 -1.13%
2. çoğul kişi iyelik.txt 1081 0.555 0.299 0.196 52.75%
3. tekil kişi iyelik eki.txt 1176 0.321 0.437 0.448 -2.37%
3. çoğul kişi iyelik.txt 1128 0.484 0.228 0.178 28.40%
eşitlik eki (-ce).txt 276 0.945 0.0345 0.027 27.84%
ismin -de hali.txt 1128 0.709 0.137 0.136 0.83%
ismin -i hali.txt 1176 0.337 0.439 0.439 0.18%
tamlayan eki.txt 1176 0.275 0.539 0.488 10.61%
vasıta eki (-le).txt 1128 0.454 0.337 0.253 33.32%

Overall 14005 0.510 0.318 0.274 16.11%

Table 7.5: İsim çekim ekleri : MRR Result Comparison for Word2Vec with 5 epochs

Morphological Categories Number of examples Top-N Miss Ratio MRR Reference MRR
Improvement with
respect to reference

Tamlayan eki 1176 0.252 0.548 0.488 12.30%
3. tekil kişi iyelik eki 1176 0.292 0.467 0.448 4.24%

İsmin -i hali 1176 0.325 0.454 0.439 3.42%
2. tekil kişi iyelik eki 1176 0.552 0.322 0.321 0.31%
Vasıta eki (-le) 1128 0.437 0.355 0.253 40.16%
1. çoğul kişi iyelik eki 1128 0.498 0.358 0.25 43.2%
-den eki 1128 0.481 0.316 0.238 32.77%
-e eki 1176 0.480 0.293 0.236 23.98%
2. çoğul kişi iyelik eki 1081 0.546 0.288 0.196 46.88%
3. çoğul kişi iyelik eki 1128 0.466 0.245 0.178 37.64%
1. tekil kişi iyelik eki 1128 0.654 0.216 0.148 45.95%

İsmin -de hali 1128 0.683 0.148 0.136 8.70%
Eşitlik eki (-ce) 276 0.956 0.028 0.027 3.70%

Overall 14005 0.479 0.329 0.273 20.51%

Table 7.6: İsim çekim ekleri : MRR Result Comparison for Word2Vec with 10 epochs
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Semantic Categories Number of examples Top-N Miss Ratio MRR
Aile 90 0.256 0.571
Para birimi 156 0.724 0.181
Şehir-bölge 1344 0.083 0.622

Ülke-başkent 506 0.045 0.683
Eş anlamlılar 600 0.385 0.476
Zıt anlamlılar 600 0.323 0.452

Overall 3296 0.210 0.551

Table 7.7: Semantic categories: MRR Results of Word2Vec with 10 epochs

Similarity Task Statistics

Syntactic Similarity
Pearson Result: 82.53 p-value: 8.56 x 10−20

Spearman Result: 81.68 p-value: 4.11 x 10−19

OOV Ratio: 46.42

Semantic Similarity
Pearson Result: 70.77 p-value: 4.77 x 10−57

Spearman Result: 74.57 p-value: 2.36 x 10−66

OOV Ratio: 26.6

Table 7.8: Similarity test results for Word2Vec with 10 epochs (p× 100)

Morphological Categories Number of examples Topn Miss Ratio MRR Reference MRR
Improvement with
respect to reference

1. tekil kişi çekimi.txt 990 0.797 0.105 0.339 -69.03%
2. tekil kişi çekimi.txt 946 0.877 0.059 0.365 -83.84%
2. çoğul kişi çekimi.txt 946 0.851 0.085 0.327 -74.01%
3. çoğul kişi çekimi.txt 1128 0.803 0.105 0.42 -75.0%
emir kipi.txt 1176 0.656 0.21 0.465 -54.84%
gelecek zaman kipi.txt 1176 0.39 0.437 0.707 -38.19%
gereklilik kipi.txt 1128 0.632 0.212 0.467 -54.6%
geçmiş zaman eki (-di).txt 1176 0.4 0.428 0.535 -20.0%
geçmiş zaman eki (-miş).txt 1176 0.332 0.483 0.774 -37.6%
istek kipi.txt 1176 0.577 0.235 0.534 -55.99%
olumsuzluk eki.txt 1176 0.578 0.248 0.67 -62.99%
şimdiki zaman eki (-mekte).txt 1176 0.431 0.328 0.646 -49.23%
şimdiki zaman eki (-yor).txt 861 0.084 0.806 0.847 -4.84%

Overall 14231 0.567 0.287 0.549 -47.81%

Table 7.9: Fiil çekim ekleri : MRR Result Comparison for left-aligned Word2Vec with 10 epochs

Morphological Categories Number of examples Topn Miss Ratio MRR Reference MRR
Improvement with
respect to reference

-den eki.txt 1128 0.727 0.148 0.238 -37.82%
-e eki.txt 1176 0.708 0.143 0.236 -39.41%
1. tekil kişi iyelik.txt 1128 0.768 0.123 0.148 -16.89%
1. çoğul kişi iyelik.txt 1128 0.596 0.254 0.25 1.6%
2. tekil kişi iyelik.txt 1176 0.634 0.229 0.321 -28.66%
2. çoğul kişi iyelik.txt 1081 0.693 0.182 0.196 -7.14%
3. tekil kişi iyelik eki.txt 1176 0.268 0.507 0.448 13.17%
3. çoğul kişi iyelik.txt 1128 0.549 0.196 0.178 10.11%
eşitlik eki (-ce).txt 276 0.967 0.018 0.027 -33.33%
ismin -de hali.txt 1128 0.832 0.073 0.136 -46.32%
ismin -i hali.txt 1176 0.341 0.431 0.439 -1.82%
tamlayan eki.txt 1176 0.352 0.411 0.488 -15.78%
vasıta eki (-le).txt 1128 0.679 0.164 0.253 -35.18%

Overall 14005 0.6 0.236 0.275 -14.09%

Table 7.10: İsim çekim ekleri : MRR Result Comparison for left-aligned Word2Vec with 10 epochs
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Morphological Categories Number of examples Topn Miss Ratio MRR
aile.txt 90 0.311 0.544
es-anlamlilar.txt 600 0.417 0.408
para-birimi.txt 156 0.788 0.157
sehir-bolge.txt 1344 0.085 0.617
zit-anlamlilar.txt 600 0.363 0.432
ülke-başkent.txt 506 0.067 0.703

Overall 3296 0.233 0.535

Table 7.11: Semantic categories: MRR Results of left-aligned Word2Vec with 10 epochs

Similarity Task Statistics

Syntactic Similarity
Pearson Result: 79.05 p-value: 3.31 x 10−17

Spearman Result: 79.42 p-value: 1.85 x 10−17

OOV Ratio: 46.42

Semantic Similarity
Pearson Result: 69.85 p-value: 5.20 x 10−55

Spearman Result: 73.98 p-value: 8.60 x 10−65

OOV Ratio: 26.6

Table 7.12: Similarity test results for left-aligned Word2Vec with 10 epochs (p× 100)

Morphological Categories Number of examples Topn Miss Ratio MRR Reference MRR
Improvement with
respect to reference

1. tekil kişi çekimi.txt 990 0.323 0.418 0.339 23.3%
2. tekil kişi çekimi.txt 946 0.426 0.31 0.365 -15.07%
2. çoğul kişi çekimi.txt 946 0.316 0.41 0.327 25.38%
3. çoğul kişi çekimi.txt 1128 0.394 0.412 0.42 -1.9%
emir kipi.txt 1176 0.183 0.634 0.465 36.34%
gelecek zaman kipi.txt 1176 0.116 0.733 0.707 3.68%
gereklilik kipi.txt 1128 0.227 0.572 0.467 22.48%
geçmiş zaman eki (-di).txt 1176 0.242 0.586 0.535 9.53%
geçmiş zaman eki (-miş).txt 1176 0.117 0.677 0.774 -12.53%
istek kipi.txt 1176 0.319 0.477 0.534 -10.67%
olumsuzluk eki.txt 1176 0.122 0.668 0.67 -0.3%
şimdiki zaman eki (-mekte).txt 1176 0.334 0.391 0.646 -39.47%
şimdiki zaman eki (-yor).txt 861 0.072 0.863 0.847 1.89%

Overall 14231 0.244 0.551 0.549 0.43%

Table 7.13: Fiil çekim ekleri : MRR Result Comparison for right-aligned Word2Vec with 10 epochs

Morphological Categories Number of examples Topn Miss Ratio MRR Reference MRR
Improvement with
respect to reference

-den eki.txt 1128 0.588 0.163 0.238 -31.51%
-e eki.txt 1176 0.361 0.317 0.236 34.32%
1. tekil kişi iyelik.txt 1128 0.738 0.154 0.148 4.05%
1. çoğul kişi iyelik.txt 1128 0.559 0.293 0.25 17.2%
2. tekil kişi iyelik.txt 1176 0.581 0.303 0.321 -5.61%
2. çoğul kişi iyelik.txt 1081 0.699 0.173 0.196 -11.73%
3. tekil kişi iyelik eki.txt 1176 0.298 0.394 0.448 -12.05%
3. çoğul kişi iyelik.txt 1128 0.579 0.148 0.178 -16.85%
eşitlik eki (-ce).txt 276 0.957 0.021 0.027 -22.22%
ismin -de hali.txt 1128 0.649 0.137 0.136 0.74%
ismin -i hali.txt 1176 0.262 0.421 0.439 -4.1%
tamlayan eki.txt 1176 0.259 0.513 0.488 5.12%
vasıta eki (-le).txt 1128 0.547 0.206 0.253 -18.58%

Overall 14005 0.515 0.266 0.275 -3.19%

Table 7.14: İsim çekim ekleri : MRR Result Comparison for right-aligned Word2Vec with 10 epochs
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Morphological Categories Number of examples Topn Miss Ratio MRR
aile.txt 90 0.367 0.454
es-anlamlilar.txt 600 0.492 0.348
para-birimi.txt 156 0.75 0.18
sehir-bolge.txt 1344 0.158 0.51
zit-anlamlilar.txt 600 0.39 0.457
ülke-başkent.txt 506 0.16 0.572

Overall 3296 0.295 0.463

Table 7.15: Semantic categories: MRR Results of right-aligned Word2Vec with 10 epochs

Similarity Task Statistics

Syntactic Similarity
Pearson Result: 79.02 p-value: 3.50 x 10−17

Spearman Result: 76.72 p-value: 9.95 x 10−16

OOV Ratio: 46.42

Semantic Similarity
Pearson Result: 70.11 p-value: 1.47 x 10−55

Spearman Result: 73.17 p-value: 9.61 x 10−63

OOV Ratio: 26.6

Table 7.16: Similarity test results for right-aligned Word2Vec with 10 epochs (p× 100)

Morphological Categories Number of examples Topn Miss Ratio MRR Reference MRR
Improvement with
respect to reference

1. tekil kişi çekimi.txt 990 0.293 0.432 0.339 27.43%
2. tekil kişi çekimi.txt 946 0.452 0.298 0.365 -18.36%
2. çoğul kişi çekimi.txt 946 0.364 0.386 0.327 18.04%
3. çoğul kişi çekimi.txt 1128 0.375 0.394 0.42 -6.19%
emir kipi.txt 1176 0.193 0.627 0.465 34.84%
gelecek zaman kipi.txt 1176 0.105 0.781 0.707 10.47%
gereklilik kipi.txt 1128 0.247 0.561 0.467 20.13%
geçmiş zaman eki (-di).txt 1176 0.218 0.629 0.535 17.57%
geçmiş zaman eki (-miş).txt 1176 0.088 0.805 0.774 4.01%
istek kipi.txt 1176 0.22 0.599 0.534 12.17%
olumsuzluk eki.txt 1176 0.139 0.647 0.67 -3.43%
şimdiki zaman eki (-mekte).txt 1176 0.116 0.769 0.646 19.04%
şimdiki zaman eki (-yor).txt 861 0.064 0.889 0.847 4.96%

Overall 14231 0.217 0.606 0.549 10.44%

Table 7.17: Fiil çekim ekleri : MRR Results of Word2Vec with 15 epochs

Morphological Categories Number of examples Topn Miss Ratio MRR Reference MRR
Improvement with
respect to reference

-den eki.txt 1128 0.473 0.335 0.238 40.76%
-e eki.txt 1176 0.458 0.307 0.236 30.08%
1. tekil kişi iyelik.txt 1128 0.614 0.24 0.148 62.16%
1. çoğul kişi iyelik.txt 1128 0.481 0.361 0.25 44.4%
2. tekil kişi iyelik.txt 1176 0.552 0.32 0.321 -0.31%
2. çoğul kişi iyelik.txt 1081 0.551 0.283 0.196 44.39%
3. tekil kişi iyelik eki.txt 1176 0.27 0.484 0.448 8.04%
3. çoğul kişi iyelik.txt 1128 0.477 0.235 0.178 32.02%
eşitlik eki (-ce).txt 276 0.949 0.031 0.027 14.81%
ismin -de hali.txt 1128 0.65 0.162 0.136 19.12%
ismin -i hali.txt 1176 0.313 0.464 0.439 5.69%
tamlayan eki.txt 1176 0.256 0.547 0.488 12.09%
vasıta eki (-le).txt 1128 0.427 0.361 0.253 42.69%

Overall 14005 0.468 0.337 0.275 22.67%

Table 7.18: İsim çekim ekleri : MRR Results of Word2Vec with 15 epochs
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Morphological Categories Number of examples Topn Miss Ratio MRR
aile.txt 90 0.244 0.59
es-anlamlilar.txt 600 0.382 0.468
para-birimi.txt 156 0.692 0.2
sehir-bolge.txt 1344 0.089 0.617
zit-anlamlilar.txt 600 0.332 0.458
ülke-başkent.txt 506 0.04 0.712

Overall 3296 0.212 0.555

Table 7.19: Semantic categories: MRR Results of Word2Vec with 15 epochs

Similarity Task Statistics

Syntactic Similarity
Pearson Result: 81.54 p-value: 5.29 x 10−19

Spearman Result: 81.83 p-value: 3.14 x 10−19

OOV Ratio: 46.42

Semantic Similarity
Pearson Result: 70.67 p-value: 5.33 x 10−57

Spearman Result: 74.53 p-value: 2.98 x 10−66

OOV Ratio: 26.6

Table 7.20: Similarity test results for Word2Vec with 15 epochs

Morphological Categories Number of examples Top-N Miss Ratio MRR Reference MRR
Improvement with
respect to reference

1. tekil kişi çekimi.txt 990 0.087 0.675 0.339 99.16%
2. tekil kişi çekimi.txt 946 0.086 0.718 0.365 96.66%
2. çoğul kişi çekimi.txt 946 0.076 0.763 0.327 133.39%
3. çoğul kişi çekimi.txt 1128 0.277 0.621 0.42 47.99%
emir kipi.txt 1176 0.219 0.622 0.465 33.81%
gelecek zaman kipi.txt 1176 0.034 0.883 0.707 24.89%
gereklilik kipi.txt 1128 0.192 0.640 0.467 37.12%
geçmiş zaman eki (-di).txt 1176 0.256 0.589 0.535 10.16%
geçmiş zaman eki (-miş).txt 1176 0.080 0.759 0.774 -1.83%
istek kipi.txt 1176 0.161 0.559 0.534 4.76%
olumsuzluk eki.txt 1176 0.108 0.776 0.67 15.86%
şimdiki zaman eki (-mekte).txt 1176 0.058 0.884 0.646 36.91%
şimdiki zaman eki (-yor).txt 861 0.059 0.883 0.847 4.33%

Overall 14231 0.133 0.718 0.549 30.78%

Table 7.21: Fiil çekim ekleri : MRR Result Comparison for FastText with 5 epochs

Morphological Categories Number of examples Top-N Miss Ratio MRR Reference MRR
Improvement with
respect to reference

-den eki.txt 1128 0.453 0.331 0.238 39.11%
-e eki.txt 1176 0.553 0.251 0.236 6.60%
1. tekil kişi iyelik.txt 1128 0.432 0.349 0.148 136.31%
1. çoğul kişi iyelik.txt 1128 0.295 0.512 0.25 105.19%
2. tekil kişi iyelik.txt 1176 0.482 0.339 0.321 5.91%
2. çoğul kişi iyelik.txt 1081 0.218 0.594 0.196 203.54%
3. tekil kişi iyelik eki.txt 1176 0.468 0.312 0.448 -30.20%
3. çoğul kişi iyelik.txt 1128 0.483 0.257 0.178 44.40%
eşitlik eki (-ce).txt 276 0.822 0.0747 0.027 176.77%
ismin -de hali.txt 1128 0.605 0.188 0.136 38.93%
ismin -i hali.txt 1176 0.458 0.332 0.439 -24.28%
tamlayan eki.txt 1176 0.276 0.515 0.488 5.56%
vasıta eki (-le).txt 1128 0.356 0.425 0.253 68.20%

Overall 14005 0.432 0.360 0.27 33.33%

Table 7.22: İsim çekim ekleri : MRR Result Comparison for FastText with 5 epochs
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Semantic Categories Number of examples Top-N Miss Ratio MRR
Aile 90 0.422 0.312
Para birimi 156 0.852 0.055
Şehir-bölge 1344 0.645 0.186

Ülke-başkent 506 0.193 0.548
Eş anlamlılar 600 0.611 0.243
Zıt anlamlılar 600 0.575 0.233

Overall 3296 0.560 0.258

Table 7.23: Semantic categories: MRR Results of FastText with 5 epochs

Similarity Task Statistics

Syntactic Similarity
Pearson Result: 61.12 p-value: 5.70 x 10−9

Spearman Result: 62.55 p-value: 1.97 x 10−9

OOV Ratio: 46.42

Semantic Similarity
Pearson Result: 67.45 p-value: 4.83 x 10−50

Spearman Result: 70.37 p-value: 3.82 x 10−56

OOV Ratio: 26.6

Table 7.24: Similarity test results for FastText with 5 epochs (p× 100)

Morphological Categories Number of examples Topn Miss Ratio MRR Reference MRR
Improvement with
respect to reference

1. tekil kişi çekimi.txt 990 0.111 0.600 0.339 77.16%
2. tekil kişi çekimi.txt 946 0.096 0.671 0.365 83.91%
2. çoğul kişi çekimi.txt 946 0.104 0.713 0.327 118.16%
3. çoğul kişi çekimi.txt 1128 0.286 0.581 0.42 38.42%
emir kipi.txt 1176 0.222 0.588 0.465 26.62%
gelecek zaman kipi.txt 1176 0.036 0.871 0.707 23.26%
gereklilik kipi.txt 1128 0.189 0.647 0.467 38.58%
geçmiş zaman eki (-di).txt 1176 0.255 0.599 0.535 11.96%
geçmiş zaman eki (-miş).txt 1176 0.084 0.782 0.774 1.09%
istek kipi.txt 1176 0.182 0.534 0.534 0.11%
olumsuzluk eki.txt 1176 0.097 0.773 0.67 15.40%
şimdiki zaman eki (-mekte).txt 1176 0.063 0.850 0.64 31.65%
şimdiki zaman eki (-yor).txt 861 0.066 0.880 0.847 3.94%

Overall 14231 0.141 0.697 0.549 26.95%

Table 7.25: Fiil çekim ekleri : MRR Result Comparison for FastText with 10 epochs

Morphological Categories Number of examples Topn Miss Ratio MRR Reference MRR
Improvement with
respect to reference

-den eki.txt 1128 0.443 0.332 0.238 39.78%
-e eki.txt 1176 0.520 0.282 0.236 19.53%
1. tekil kişi iyelik.txt 1128 0.469 0.321 0.148 117.29%
1. çoğul kişi iyelik.txt 1128 0.300 0.487 0.25 94.96%
2. tekil kişi iyelik.txt 1176 0.466 0.371 0.321 15.85%
2. çoğul kişi iyelik.txt 1081 0.248 0.561 0.196 186.27%
3. tekil kişi iyelik eki.txt 1176 0.393 0.372 0.448 -16.80%
3. çoğul kişi iyelik.txt 1128 0.469 0.259 0.178 45.95%
eşitlik eki (-ce).txt 276 0.884 0.054 0.027 103.33%
ismin -de hali.txt 1128 0.607 0.204 0.136 50.0%
ismin -i hali.txt 1176 0.406 0.382 0.439 -12.82%
tamlayan eki.txt 1176 0.256 0.549 0.488 12.62%
vasıta eki (-le).txt 1128 0.356 0.418 0.253 65.57%

Overall 14005 0.421 0.371 0.274 35.40%

Table 7.26: İsim çekim ekleri : MRR Result Comparison for FastText with 10 epochs
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Semantic Categories Number of examples Top-N Miss Ratio MRR
Aile 90 0.333 0.412
Para birimi 156 0.827 0.079
Şehir-bölge 1344 0.553 0.232

Ülke-başkent 506 0.138 0.583
Eş anlamlılar 600 0.573 0.276
Zıt anlamlılar 600 0.52 0.296

Overall 3296 0.493 0.303

Table 7.27: Semantic categories: MRR Results of FastText with 10 epochs

Similarity Task Statistics

Syntactic Similarity
Pearson Result: 66.51 p-value: 7.58 x 10−11

Spearman Result: 68.16 p-value: 1.67 x 10−11

OOV Ratio: 46.42

Semantic Similarity
Pearson Result: 67.35 p-value: 7.74 x 10−50

Spearman Result: 70.53 p-value: 1.71 x 10−56

OOV Ratio: 26.6

Table 7.28: Similarity test results for FastText with 10 epochs (p× 100)

Morphological Categories Number of examples Topn Miss Ratio MRR Reference MRR
Improvement with
respect to reference

1. tekil kişi çekimi.txt 990 0.031 0.829 0.339 144.54%
2. tekil kişi çekimi.txt 946 0.045 0.787 0.365 115.62%
2. çoğul kişi çekimi.txt 946 0.056 0.793 0.327 142.51%
3. çoğul kişi çekimi.txt 1128 0.309 0.587 0.42 39.76%
emir kipi.txt 1176 0.165 0.701 0.465 50.75%
gelecek zaman kipi.txt 1176 0.017 0.921 0.707 30.27%
gereklilik kipi.txt 1128 0.117 0.754 0.467 61.46%
geçmiş zaman eki (-di).txt 1176 0.077 0.778 0.535 45.42%
geçmiş zaman eki (-miş).txt 1176 0.076 0.856 0.774 10.59%
istek kipi.txt 1176 0.104 0.712 0.534 33.33%
olumsuzluk eki.txt 1176 0.032 0.885 0.67 32.09%
şimdiki zaman eki (-mekte).txt 1176 0.052 0.9 0.646 39.32%
şimdiki zaman eki (-yor).txt 861 0.039 0.928 0.847 9.56%

Overall 14231 0.088 0.801 0.549 45.81%

Table 7.29: Fiil çekim ekleri : MRR Results of FastText word embeddings prepared by Facebook AI

Morphological Categories Number of examples Topn Miss Ratio MRR Reference MRR
Improvement with
respect to reference

-den eki.txt 1128 0.302 0.476 0.238 100.0%
-e eki.txt 1176 0.336 0.464 0.236 96.61%
1. tekil kişi iyelik.txt 1128 0.35 0.462 0.148 212.16%
1. çoğul kişi iyelik.txt 1128 0.254 0.547 0.25 118.8%
2. tekil kişi iyelik.txt 1176 0.392 0.464 0.321 44.55%
2. çoğul kişi iyelik.txt 1081 0.188 0.65 0.196 231.63%
3. tekil kişi iyelik eki.txt 1176 0.25 0.562 0.448 25.45%
3. çoğul kişi iyelik.txt 1128 0.24 0.553 0.178 210.67%
eşitlik eki (-ce).txt 276 0.873 0.061 0.027 125.93%
ismin -de hali.txt 1128 0.374 0.333 0.136 144.85%
ismin -i hali.txt 1176 0.283 0.512 0.439 16.63%
tamlayan eki.txt 1176 0.15 0.726 0.488 48.77%
vasıta eki (-le).txt 1128 0.277 0.534 0.253 111.07%

Overall 14005 0.295 0.514 0.275 87.21%

Table 7.30: İsim çekim ekleri : MRR Results of FastText word embeddings prepared by Facebook AI
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Morphological Categories Number of examples Topn Miss Ratio MRR
aile.txt 90 0.211 0.564
es-anlamlilar.txt 600 0.392 0.398
para-birimi.txt 156 0.801 0.094
sehir-bolge.txt 1344 0.365 0.339
zit-anlamlilar.txt 600 0.428 0.4
ülke-başkent.txt 506 0.316 0.277

Overall 3296 0.39 0.346

Table 7.31: Semantic categories: MRR Results of FastText word embeddings prepared by Facebook AI

Similarity Task Statistics

Syntactic Similarity
Pearson Result: 76.92 p-value: 4.64 x 10−15

Spearman Result: 80.28 p-value: 3.76 x 10−17

OOV Ratio: 49.28

Semantic Similarity
Pearson Result: 65.12 p-value: 1.72 x 10−43

Spearman Result: 68.92 p-value: 1.72 x 10−50

OOV Ratio: 30.2

Table 7.32: Similarity test results for FastText word embeddings prepared by Facebook AI

Morphological Categories Number of examples Topn Miss Ratio MRR Reference MRR
Improvement with
respect to reference

1. tekil kişi çekimi.txt 990 0.193 0.486 0.339 43.36%
2. tekil kişi çekimi.txt 946 0.184 0.525 0.365 43.84%
2. çoğul kişi çekimi.txt 946 0.172 0.555 0.327 69.72%
3. çoğul kişi çekimi.txt 1128 0.294 0.51 0.42 21.43%
emir kipi.txt 1176 0.194 0.631 0.465 35.7%
gelecek zaman kipi.txt 1176 0.078 0.832 0.707 17.68%
gereklilik kipi.txt 1128 0.209 0.63 0.467 34.9%
geçmiş zaman eki (-di).txt 1176 0.231 0.618 0.535 15.51%
geçmiş zaman eki (-miş).txt 1176 0.104 0.791 0.774 2.2%
istek kipi.txt 1176 0.204 0.577 0.534 8.05%
olumsuzluk eki.txt 1176 0.111 0.679 0.67 1.34%
şimdiki zaman eki (-mekte).txt 1176 0.08 0.807 0.646 24.92%
şimdiki zaman eki (-yor).txt 861 0.042 0.892 0.847 5.31%

Overall 14231 0.162 0.658 0.549 19.8%

Table 7.33: Fiil çekim ekleri : MRR Results of word vectors generated by averaging Word2Vec and FastText
word vectors (10 epochs)

Morphological Categories Number of examples Topn Miss Ratio MRR Reference MRR
Improvement with
respect to reference

-den eki.txt 1128 0.45 0.33 0.238 38.66%
-e eki.txt 1176 0.487 0.299 0.236 26.69%
1. tekil kişi iyelik.txt 1128 0.534 0.287 0.148 93.92%
1. çoğul kişi iyelik.txt 1128 0.404 0.427 0.25 70.8%
2. tekil kişi iyelik.txt 1176 0.499 0.341 0.321 6.23%
2. çoğul kişi iyelik.txt 1081 0.396 0.425 0.196 116.84%
3. tekil kişi iyelik eki.txt 1176 0.335 0.448 0.448 0.0%
3. çoğul kişi iyelik.txt 1128 0.475 0.247 0.178 38.76%
eşitlik eki (-ce).txt 276 0.942 0.037 0.027 37.04%
ismin -de hali.txt 1128 0.637 0.177 0.136 30.15%
ismin -i hali.txt 1176 0.336 0.451 0.439 2.73%
tamlayan eki.txt 1176 0.246 0.548 0.488 12.3%
vasıta eki (-le).txt 1128 0.405 0.386 0.253 52.57%
çoğul eki.txt 1128 0.322 0.496 1.0 -50.4%

Overall 15133 0.434 0.368 0.329 12.02%

Table 7.34: İsim çekim ekleri : MRR Results of word vectors generated by averaging Word2Vec and FastText
word vectors (10 epochs)
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Morphological Categories Number of examples Topn Miss Ratio MRR
aile.txt 90 0.222 0.597
es-anlamlilar.txt 600 0.44 0.395
para-birimi.txt 156 0.731 0.144
sehir-bolge.txt 1344 0.196 0.508
zit-anlamlilar.txt 600 0.402 0.396
ülke-başkent.txt 506 0.113 0.625

Overall 3296 0.291 0.470

Table 7.35: Semantic categories: MRR Results of word vectors generated by averaging Word2Vec and
FastText word vectors (10 epochs)

Similarity Task Statistics

Syntactic Similarity
Pearson Result: 79.12 p-value: 1.98 x 10−51

Spearman Result: 79.19 p-value: 7.97 x 10−60

OOV Ratio: 46.43

Semantic Similarity
Pearson Result: 68.15 p-value: 2.97 x 10−17

Spearman Result: 71.98 p-value: 2.67 x 10−17

OOV Ratio: 26.60

Table 7.36: Similarity test results for word vectors generated by averaging Word2Vec and FastText word
vectors (10 epochs)

Morphological Categories Number of examples Topn Miss Ratio MRR Reference MRR
Improvement with
respect to reference

1. tekil kişi çekimi.txt 990 0.851 0.061 0.339 -82.01%
2. tekil kişi çekimi.txt 946 0.93 0.033 0.365 -90.96%
2. çoğul kişi çekimi.txt 946 0.925 0.028 0.327 -91.44%
3. çoğul kişi çekimi.txt 1128 0.717 0.117 0.42 -72.14%
emir kipi.txt 1176 0.563 0.266 0.465 -42.8%
gelecek zaman kipi.txt 1176 0.237 0.606 0.707 -14.29%
gereklilik kipi.txt 1128 0.673 0.158 0.467 -66.17%
geçmiş zaman eki (-di).txt 1176 0.273 0.48 0.535 -10.28%
geçmiş zaman eki (-miş).txt 1176 0.204 0.596 0.774 -23.0%
istek kipi.txt 1176 0.622 0.214 0.534 -59.93%
olumsuzluk eki.txt 1176 0.27 0.509 0.67 -24.03%
şimdiki zaman eki (-mekte).txt 1176 0.407 0.408 0.646 -36.84%
şimdiki zaman eki (-yor).txt 861 0.108 0.753 0.847 -11.1%

Overall 14231 0.512 0.33 0.549 -39.88%

Table 7.37: Fiil çekim ekleri : MRR Results of GloVe word vectors (100 iterations, window size 5)

Morphological Categories Number of examples Topn Miss Ratio MRR Reference MRR
Improvement with
respect to reference

-den eki.txt 1128 0.832 0.092 0.238 -61.34%
-e eki.txt 1176 0.746 0.117 0.236 -50.42%
1. tekil kişi iyelik.txt 1128 0.965 0.013 0.148 -91.22%
1. çoğul kişi iyelik.txt 1128 0.907 0.038 0.25 -84.8%
2. tekil kişi iyelik.txt 1176 0.721 0.166 0.321 -48.29%
2. çoğul kişi iyelik.txt 1081 0.99 0.003 0.196 -98.47%
3. tekil kişi iyelik eki.txt 1176 0.409 0.319 0.448 -28.79%
3. çoğul kişi iyelik.txt 1128 0.732 0.097 0.178 -45.51%
eşitlik eki (-ce).txt 276 0.989 0.006 0.027 -77.78%
ismin -de hali.txt 1128 0.856 0.057 0.136 -58.09%
ismin -i hali.txt 1176 0.434 0.317 0.439 -27.79%
tamlayan eki.txt 1176 0.466 0.333 0.488 -31.76%
vasıta eki (-le).txt 1128 0.881 0.062 0.253 -75.49%
çoğul eki.txt 1128 0.538 0.266 1.0 -73.4%

Overall 15133 0.73 0.144 0.329 -56.15%

Table 7.38: İsim çekim ekleri : MRR Results of GloVe word vectors (100 iterations, window size 5)
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Semantic Categories Number of examples Top-N Miss Ratio MRR
aile.txt 90 0.356 0.423
es-anlamlilar.txt 600 0.522 0.271
para-birimi.txt 156 0.923 0.037
sehir-bolge.txt 1344 0.141 0.53
zit-anlamlilar.txt 600 0.368 0.385
ülke-başkent.txt 506 0.081 0.722

Overall 3296 0.285 0.46

Table 7.39: Semantic categories: MRR Results of GloVe word vectors (100 iterations, window size 5)

Similarity Task Statistics

Syntactic Similarity
Pearson Result: 73.45 p-value: 0.00 x 10
Spearman Result: 74.13 p-value: 0.00 x 10

OOV Ratio: 39.29

Semantic Similarity
Pearson Result: 61.59 p-value: 0.00 x 10
Spearman Result: 64.33 p-value: 0.00 x 10

OOV Ratio: 23.60

Table 7.40: Similarity test results for GloVe word vectors (100 iterations, window size 5)

Morphological Categories Number of examples Topn Miss Ratio MRR Reference MRR
Improvement with
respect to reference

1. tekil kişi çekimi.txt 990 0.787 0.092 0.339 -72.86%
2. tekil kişi çekimi.txt 946 0.875 0.051 0.365 -86.03%
2. çoğul kişi çekimi.txt 946 0.86 0.058 0.327 -82.26%
3. çoğul kişi çekimi.txt 1128 0.658 0.157 0.42 -62.62%
emir kipi.txt 1176 0.529 0.309 0.465 -33.55%
gelecek zaman kipi.txt 1176 0.213 0.634 0.707 -10.33%
gereklilik kipi.txt 1128 0.598 0.222 0.467 -52.46%
geçmiş zaman eki (-di).txt 1176 0.297 0.467 0.535 -12.71%
geçmiş zaman eki (-miş).txt 1176 0.19 0.611 0.774 -21.06%
istek kipi.txt 1176 0.591 0.251 0.534 -53.0%
olumsuzluk eki.txt 1176 0.209 0.566 0.67 -15.52%
şimdiki zaman eki (-mekte).txt 1176 0.349 0.489 0.646 -24.3%
şimdiki zaman eki (-yor).txt 861 0.093 0.73 0.847 -13.81%

Overall 14231 0.472 0.363 0.549 -33.92%

Table 7.41: Fiil çekim ekleri : MRR Results of GloVe word vectors (100 iterations, window size 10)

Morphological Categories Number of examples Topn Miss Ratio MRR Reference MRR
Improvement with
respect to reference

-den eki.txt 1128 0.782 0.112 0.238 -52.94%
-e eki.txt 1176 0.71 0.123 0.236 -47.88%
1. tekil kişi iyelik.txt 1128 0.95 0.022 0.148 -85.14%
1. çoğul kişi iyelik.txt 1128 0.862 0.069 0.25 -72.4%
2. tekil kişi iyelik.txt 1176 0.697 0.185 0.321 -42.37%
2. çoğul kişi iyelik.txt 1081 0.975 0.01 0.196 -94.9%
3. tekil kişi iyelik eki.txt 1176 0.367 0.388 0.448 -13.39%
3. çoğul kişi iyelik.txt 1128 0.713 0.12 0.178 -32.58%
eşitlik eki (-ce).txt 276 0.989 0.008 0.027 -70.37%
ismin -de hali.txt 1128 0.833 0.065 0.136 -52.21%
ismin -i hali.txt 1176 0.386 0.384 0.439 -12.53%
tamlayan eki.txt 1176 0.425 0.361 0.488 -26.02%
vasıta eki (-le).txt 1128 0.828 0.088 0.253 -65.22%
çoğul eki.txt 1128 0.506 0.301 1.0 -69.9%

Overall 15133 0.697 0.171 0.329 -48.07%

Table 7.42: İsim çekim ekleri : MRR Results of GloVe word vectors (100 iterations, window size 10)
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Morphological Categories Number of examples Topn Miss Ratio MRR
aile.txt 90 0.344 0.49
es-anlamlilar.txt 600 0.528 0.278
para-birimi.txt 156 0.878 0.071
sehir-bolge.txt 1344 0.092 0.614
zit-anlamlilar.txt 600 0.367 0.404
ülke-başkent.txt 506 0.061 0.712

Overall 3296 0.261 0.501

Table 7.43: Semantic categories: MRR Results of GloVe word vectors (100 iterations, window size 10)

Similarity Task Statistics

Syntactic Similarity
Pearson Result: 69.87 p-value: 0.00 x 10
Spearman Result: 72.33 p-value: 0.00 x 10

OOV Ratio: 47.14

Semantic Similarity
Pearson Result: 67.93 p-value: 0.00 x 10
Spearman Result: 70.89 p-value: 0.00 x 10

OOV Ratio: 26.60

Table 7.44: Similarity test results for GloVe word vectors (100 iterations, window size 10)

Morphological Categories Number of examples Topn Miss Ratio MRR Reference MRR
Improvement with
respect to reference

1. tekil kişi çekimi.txt 990 0.666 0.103 0.339 -69.62%
2. tekil kişi çekimi.txt 946 0.573 0.125 0.365 -65.75%
2. çoğul kişi çekimi.txt 946 0.548 0.193 0.327 -40.98%
3. çoğul kişi çekimi.txt 1128 0.715 0.076 0.42 -81.9%
emir kipi.txt 1176 0.804 0.047 0.465 -89.89%
gelecek zaman kipi.txt 1176 0.405 0.329 0.707 -53.47%
gereklilik kipi.txt 1128 0.568 0.216 0.467 -53.75%
geçmiş zaman eki (-di).txt 1176 0.481 0.304 0.535 -43.18%
geçmiş zaman eki (-miş).txt 1176 0.444 0.374 0.774 -51.68%
istek kipi.txt 1176 0.542 0.198 0.534 -62.92%
olumsuzluk eki.txt 1176 0.545 0.211 0.67 -68.51%
şimdiki zaman eki (-mekte).txt 1176 0.279 0.51 0.646 -21.05%
şimdiki zaman eki (-yor).txt 861 0.365 0.373 0.847 -55.96%

Overall 14231 0.534 0.237 0.549 -56.82%

Table 7.45: Fiil çekim ekleri : MRR Results of static word vectors generated by ELMo trained on Turkish
CoNLL17 corpus.

Morphological Categories Number of examples Topn Miss Ratio MRR Reference MRR
Improvement with
respect to reference

1. tekil kişi çekimi.txt 990 0.266 0.461 0.339 35.99%
2. tekil kişi çekimi.txt 946 0.374 0.418 0.365 14.52%
2. çoğul kişi çekimi.txt 946 0.376 0.407 0.327 24.46%
3. çoğul kişi çekimi.txt 1128 0.373 0.4 0.42 -4.76%
emir kipi.txt 1176 0.231 0.593 0.465 27.53%
gelecek zaman kipi.txt 1176 0.094 0.83 0.707 17.4%
gereklilik kipi.txt 1128 0.267 0.509 0.467 8.99%
geçmiş zaman eki (-di).txt 1176 0.223 0.637 0.535 19.07%
geçmiş zaman eki (-miş).txt 1176 0.122 0.763 0.774 -1.42%
istek kipi.txt 1176 0.23 0.62 0.534 16.1%
olumsuzluk eki.txt 1176 0.21 0.58 0.67 -13.43%
şimdiki zaman eki (-mekte).txt 1176 0.103 0.826 0.646 27.86%
şimdiki zaman eki (-yor).txt 861 0.067 0.869 0.847 2.6%

Overall 14231 0.223 0.612 0.549 11.51%

Table 7.46: Fiil Çekim Ekleri : MRR Results of Word2Vec CBOW with 10 epoch
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Morphological Categories Number of examples Topn Miss Ratio MRR Reference MRR
Improvement with
respect to reference

-den eki.txt 1128 0.479 0.349 0.238 46.64%
-e eki.txt 1176 0.412 0.417 0.236 76.69%
1. tekil kişi iyelik.txt 1128 0.585 0.254 0.148 71.62%
1. çoğul kişi iyelik.txt 1128 0.449 0.374 0.25 49.6%
2. tekil kişi iyelik.txt 1176 0.535 0.377 0.321 17.45%
2. çoğul kişi iyelik.txt 1081 0.492 0.317 0.196 61.73%
3. tekil kişi iyelik eki.txt 1176 0.38 0.418 0.448 -6.7%
3. çoğul kişi iyelik.txt 1128 0.432 0.316 0.178 77.53%
eşitlik eki (-ce).txt 276 0.946 0.036 0.027 33.33%
ismin -de hali.txt 1128 0.516 0.289 0.136 112.5%
ismin -i hali.txt 1176 0.381 0.42 0.439 -4.33%
tamlayan eki.txt 1176 0.241 0.629 0.488 28.89%
vasıta eki (-le).txt 1128 0.399 0.45 0.253 77.87%
çoğul eki.txt 1128 0.316 0.53 1.0 -47.0%

Overall 15133 0.441 0.39 0.329 18.59%

Table 7.47: İsim Çekim Ekleri : MRR Results of Word2Vec CBOW with 10 epoch

Morphological Categories Number of examples Topn Miss Ratio MRR Reference MRR
Improvement with
respect to reference

aile.txt 90 0.289 0.499 1.0 -50.1%
es-anlamlilar.txt 600 0.422 0.405 1.0 -59.5%
para-birimi.txt 156 0.724 0.158 1.0 -84.2%
sehir-bolge.txt 1344 0.222 0.425 1.0 -57.5%
zit-anlamlilar.txt 600 0.367 0.374 1.0 -62.6%
ülke-başkent.txt 506 0.249 0.504 1.0 -49.6%

Overall 3296 0.315 0.414 1.0 -58.64%

Table 7.48: Semantic categories: MRR Results of Word2Vec CBOW with 10 epoch

Similarity Task Statistics

Syntactic Similarity
Pearson Result: 77.62 p-value: 0.00 x 10
Spearman Result: 76.90 p-value: 0.00 x 10

OOV Ratio: 46.43

Semantic Similarity
Pearson Result: 66.16 p-value: 0.00 x 10
Spearman Result: 68.77 p-value: 0.00 x 10

OOV Ratio: 26.60

Table 7.49: Similarity test results of static word vectors generated by Word2Vec CBOW with 10 epoch

Morphological Categories Number of examples Topn Miss Ratio MRR
aile.txt 90 0.856 0.066
es-anlamlilar.txt 600 0.928 0.029
para-birimi.txt 156 0.571 0.001
sehir-bolge.txt 1344 0.755 0.077
zit-anlamlilar.txt 600 0.657 0.214
ülke-başkent.txt 506 0.259 0.001

Overall 3296 0.687 0.078

Table 7.51: Semantic categories: MRR Results of static word vectors generated by ELMo trained on Turkish
CoNLL17 corpus.

Similarity Task Statistics

Syntactic Similarity
Pearson Result: 39.11 p-value: 2.00 x 10−3

Spearman Result: 39.43 p-value: 1.00 x 10−3

OOV Ratio: 55.00

Semantic Similarity
Pearson Result: 35.18 p-value: 0.00 x 10
Spearman Result: 36.77 p-value: 0.00 x 10

OOV Ratio: 28.20

Table 7.52: Similarity test results of static word vectors generated by ELMo trained on Turkish CoNLL17
corpus.
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Morphological Categories Number of examples Topn Miss Ratio MRR Reference MRR
Improvement with
respect to reference

-den eki.txt 1128 0.687 0.151 0.238 -36.55%
-e eki.txt 1176 0.635 0.23 0.236 -2.54%
1. tekil kişi iyelik.txt 1128 0.699 0.082 0.148 -44.59%
1. çoğul kişi iyelik.txt 1128 0.643 0.117 0.25 -53.2%
2. tekil kişi iyelik.txt 1176 0.665 0.14 0.321 -56.39%
2. çoğul kişi iyelik.txt 1081 0.461 0.077 0.196 -60.71%
3. tekil kişi iyelik eki.txt 1176 0.623 0.213 0.448 -52.46%
3. çoğul kişi iyelik.txt 1128 0.694 0.171 0.178 -3.93%
eşitlik eki (-ce).txt 276 0.511 0.009 0.027 -66.67%
ismin -de hali.txt 1128 0.666 0.116 0.136 -14.71%
ismin -i hali.txt 1176 0.677 0.178 0.439 -59.45%
tamlayan eki.txt 1176 0.498 0.3 0.488 -38.52%
vasıta eki (-le).txt 1128 0.612 0.191 0.253 -24.51%
çoğul eki.txt 1128 0.69 0.169 1.0 -83.1%

Overall 15133 0.633 0.162 0.329 -50.6%

Table 7.50: İsim çekim ekleri : MRR Results of static word vectors generated by ELMo trained on Turkish
CoNLL17 corpus.

Morphological Categories Number of examples Topn Miss Ratio MRR Reference MRR
Improvement with
respect to reference

1. tekil kişi çekimi.txt 990 0.97 0.018 0.339 -94.69%
2. tekil kişi çekimi.txt 946 0.932 0.033 0.365 -90.96%
2. çoğul kişi çekimi.txt 946 0.928 0.04 0.327 -87.77%
3. çoğul kişi çekimi.txt 1128 0.961 0.019 0.42 -95.48%
emir kipi.txt 1176 0.959 0.016 0.465 -96.56%
gelecek zaman kipi.txt 1176 0.872 0.068 0.707 -90.38%
gereklilik kipi.txt 1128 0.946 0.026 0.467 -94.43%
geçmiş zaman eki (-di).txt 1176 0.966 0.02 0.535 -96.26%
geçmiş zaman eki (-miş).txt 1176 0.88 0.087 0.774 -88.76%
istek kipi.txt 1176 0.963 0.022 0.534 -95.88%
olumsuzluk eki.txt 1176 0.91 0.041 0.67 -93.88%
şimdiki zaman eki (-mekte).txt 1176 0.962 0.018 0.646 -97.21%
şimdiki zaman eki (-yor).txt 861 0.855 0.091 0.847 -89.26%

Overall 14231 0.932 0.038 0.549 -93.14%

Table 7.53: Fiil çekim ekleri : MRR Results of static word vectors generated by Bert.

Morphological Categories Number of examples Topn Miss Ratio MRR Reference MRR
Improvement with
respect to reference

-den eki.txt 1128 0.938 0.027 0.238 -88.66%
-e eki.txt 1176 0.95 0.019 0.236 -91.95%
1. tekil kişi iyelik.txt 1128 0.968 0.014 0.148 -90.54%
1. çoğul kişi iyelik.txt 1128 0.965 0.013 0.25 -94.8%
2. tekil kişi iyelik.txt 1176 0.954 0.027 0.321 -91.59%
2. çoğul kişi iyelik.txt 1081 0.986 0.009 0.196 -95.41%
3. tekil kişi iyelik eki.txt 1176 0.895 0.059 0.448 -86.83%
3. çoğul kişi iyelik.txt 1128 0.938 0.027 0.178 -84.83%
eşitlik eki (-ce).txt 276 0.946 0.009 0.027 -66.67%
ismin -de hali.txt 1128 0.931 0.028 0.136 -79.41%
ismin -i hali.txt 1176 0.883 0.078 0.439 -82.23%
tamlayan eki.txt 1176 0.937 0.038 0.488 -92.21%
vasıta eki (-le).txt 1128 0.98 0.009 0.253 -96.44%
çoğul eki.txt 1128 0.812 0.123 1.0 -87.7%

Overall 15133 0.934 0.036 0.329 -89.07%

Table 7.54: İsim çekim ekleri : MRR Results of static word vectors generated by Bert.
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Semantic Categories Number of examples Top-N Miss Ratio MRR
aile.txt 90 0.767 0.137
es-anlamlilar.txt 600 0.848 0.072
para-birimi.txt 156 0.987 0.003
sehir-bolge.txt 1344 0.947 0.032
zit-anlamlilar.txt 600 0.968 0.017
ülke-başkent.txt 506 0.978 0.007

Overall 3296 0.935 0.034

Table 7.55: Semantic categories: MRR Results of static word vectors generated by Bert.

Similarity Task Statistics

Syntactic Similarity
Pearson Result: 25.17 p-value: 2.00 x 10−2

Spearman Result: 28.45 p-value: 8.00 x 10−3

OOV Ratio: 39.29

Semantic Similarity
Pearson Result: 10.65 p-value: 3.70 x 10−2

Spearman Result: 12.63 p-value: 1.30 x 10−2

OOV Ratio: 23.60

Table 7.56: Similarity test results of static word vectors generated by Bert trained on Turkish CoNLL17
corpus.

Morphological Categories Number of examples Topn Miss Ratio MRR Reference MRR
Improvement with
respect to reference

1. tekil kişi çekimi.txt 990 0.914 0.041 0.339 -87.91%
2. tekil kişi çekimi.txt 946 0.849 0.079 0.365 -78.36%
2. çoğul kişi çekimi.txt 946 0.885 0.058 0.327 -82.26%
3. çoğul kişi çekimi.txt 1128 0.919 0.051 0.42 -87.86%
emir kipi.txt 1176 0.872 0.064 0.465 -86.24%
gelecek zaman kipi.txt 1176 0.849 0.097 0.707 -86.28%
gereklilik kipi.txt 1128 0.874 0.073 0.467 -84.37%
geçmiş zaman eki (-di).txt 1176 0.92 0.036 0.535 -93.27%
geçmiş zaman eki (-miş).txt 1176 0.869 0.081 0.774 -89.53%
istek kipi.txt 1176 0.935 0.031 0.534 -94.19%
olumsuzluk eki.txt 1176 0.816 0.119 0.67 -82.24%
şimdiki zaman eki (-mekte).txt 1176 0.928 0.046 0.646 -92.88%
şimdiki zaman eki (-yor).txt 861 0.843 0.088 0.847 -89.61%

Overall 14231 0.883 0.066 0.549 -87.93%

Table 7.57: Fiil çekim ekleri : MRR Results of static word vectors generated by aggregating Bert embeddings.

Morphological Categories Number of examples Topn Miss Ratio MRR Reference MRR
Improvement with
respect to reference

-den eki.txt 1128 0.934 0.025 0.238 -89.5%
-e eki.txt 1176 0.883 0.061 0.236 -74.15%
1. tekil kişi iyelik.txt 1128 0.98 0.009 0.148 -93.92%
1. çoğul kişi iyelik.txt 1128 0.931 0.04 0.25 -84.0%
2. tekil kişi iyelik.txt 1176 0.908 0.046 0.321 -85.67%
2. çoğul kişi iyelik.txt 1081 0.935 0.031 0.196 -84.18%
3. tekil kişi iyelik eki.txt 1176 0.781 0.117 0.448 -73.88%
3. çoğul kişi iyelik.txt 1128 0.939 0.026 0.178 -85.39%
eşitlik eki (-ce).txt 276 0.996 0.004 0.027 -85.19%
ismin -de hali.txt 1128 0.951 0.02 0.136 -85.29%
ismin -i hali.txt 1176 0.726 0.145 0.439 -66.97%
tamlayan eki.txt 1176 0.822 0.083 0.488 -82.99%
vasıta eki (-le).txt 1128 0.94 0.028 0.253 -88.93%
çoğul eki.txt 1128 0.848 0.081 1.0 -91.9%

Overall 15133 0.891 0.054 0.329 -83.43%

Table 7.58: İsim çekim ekleri : MRR Results of static word vectors generated by aggregating Bert embeddings.
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Semantic Categories Number of examples Top-N Miss Ratio MRR
aile.txt 90 0.889 0.067
es-anlamlilar.txt 600 0.995 0.001
para-birimi.txt 156 0.968 0.024
sehir-bolge.txt 1344 0.562 0.264
zit-anlamlilar.txt 600 0.873 0.067
ülke-başkent.txt 506 0.583 0.249

Overall 3296 0.729 0.161

Table 7.59: Semantic categories: MRR Results of static word vectors generated by aggregating Bert embed-
dings.

Similarity Task Statistics

Syntactic Similarity
Pearson Result: 24.76 p-value: 3.50 x 10−2

Spearman Result: 31.05 p-value: 8.00 x 10−3

OOV Ratio: 47.86

Semantic Similarity
Pearson Result: 26.58 p-value: 0.00 x 10
Spearman Result: 32.14 p-value: 0.00 x 10

OOV Ratio: 28.60

Table 7.60: Similarity test results of static word vectors generated by aggregating Bert embeddings trained
on Turkish CoNLL17 corpus.

Morphological Categories Number of examples Topn Miss Ratio MRR Reference MRR
Improvement with
respect to reference

1. tekil kişi çekimi.txt 990 0.116 0.684 0.339 101.77%
2. tekil kişi çekimi.txt 946 0.093 0.733 0.365 100.82%
2. çoğul kişi çekimi.txt 946 0.075 0.713 0.327 118.04%
3. çoğul kişi çekimi.txt 1128 0.273 0.541 0.42 28.81%
emir kipi.txt 1176 0.069 0.779 0.465 67.53%
gelecek zaman kipi.txt 1176 0.025 0.882 0.707 24.75%
gereklilik kipi.txt 1128 0.121 0.71 0.467 52.03%
geçmiş zaman eki (-di).txt 1176 0.105 0.75 0.535 40.19%
geçmiş zaman eki (-miş).txt 1176 0.043 0.887 0.774 14.6%
istek kipi.txt 1176 0.079 0.819 0.534 53.37%
olumsuzluk eki.txt 1176 0.046 0.751 0.67 12.09%
şimdiki zaman eki (-mekte).txt 1176 0.044 0.843 0.646 30.5%
şimdiki zaman eki (-yor).txt 861 0.015 0.924 0.847 9.09%

Overall 14231 0.085 0.771 0.549 40.37%

Table 7.61: Fiil çekim ekleri : MRR Results of static word vectors generated with X2Static from BERT
model.

Morphological Categories Number of examples Topn Miss Ratio MRR Reference MRR
Improvement with
respect to reference

-den eki.txt 1128 0.171 0.491 0.238 106.3%
-e eki.txt 1176 0.194 0.502 0.236 112.71%
1. tekil kişi iyelik.txt 1128 0.362 0.39 0.148 163.51%
1. çoğul kişi iyelik.txt 1128 0.233 0.498 0.25 99.2%
2. tekil kişi iyelik.txt 1176 0.407 0.449 0.321 39.88%
2. çoğul kişi iyelik.txt 1081 0.241 0.527 0.196 168.88%
3. tekil kişi iyelik eki.txt 1176 0.099 0.59 0.448 31.7%
3. çoğul kişi iyelik.txt 1128 0.271 0.327 0.178 83.71%
eşitlik eki (-ce).txt 276 0.663 0.096 0.027 255.56%
ismin -de hali.txt 1128 0.376 0.291 0.136 113.97%
ismin -i hali.txt 1176 0.102 0.646 0.439 47.15%
tamlayan eki.txt 1176 0.093 0.721 0.488 47.75%
vasıta eki (-le).txt 1128 0.185 0.544 0.253 115.02%
çoğul eki.txt 1128 0.196 0.599 1.0 -40.1%

Overall 15133 0.233 0.499 0.329 51.88%

Table 7.62: İsim çekim ekleri : MRR Results of static word vectors generated with X2Static from BERT
model.



41

Semantic Categories Number of examples Top-N Miss Ratio MRR
aile.txt 90 0.244 0.546
es-anlamlilar.txt 600 0.402 0.39
para-birimi.txt 156 0.673 0.141
sehir-bolge.txt 1344 0.249 0.439
zit-anlamlilar.txt 600 0.372 0.437
ülke-başkent.txt 506 0.342 0.258

Overall 3296 0.333 0.391

Table 7.63: Semantic Categories: MRR Results of static word vectors generated with X2Static from BERT
model.

Similarity Task Statistics

Syntactic Similarity
Pearson Result: 83.03 p-value: 0.00 x 10
Spearman Result: 84.72 p-value: 0.00 x 10

OOV Ratio: 42.86

Semantic Similarity
Pearson Result: 70.39 p-value: 0.00 x 10
Spearman Result: 75.94 p-value: 0.00 x 10

OOV Ratio: 26.20

Table 7.64: Similarity test results of static word vectors generated with X2Static from BERT model.

Model

Word2Vec
Skip-Gram

0.9047 0.9361 0.9786

Word2Vec CBOW 0.8982 0.9357 0.9787

FastText Skip-Gram 0.9008 0.9367 0.9785

Word2Vec-FastText
SG Average

0.8895 0.9374 0.9785

GloVe 0.8842 0.9360 0.9784

Decontextualized
ELMo

0.8412 0.9363 0.9784

Decontextualized
BERT

0.8388 0.9354 0.9784

X2Static BERT 0.8823 0.9364 0.9789

Accuracy

Sentiment
Analysis

PoS
Tagging

Named Entity
Recognition

Table 7.65: Extrinsic Evaluation Results

8. Conclusion

Based on our experimental results, we can come up with the following conclusions:

i. According to Bojanowski et. al., FastText architecture “ignores the internal structure of
words, which is an important limitation for morphologically rich languages, such as Turkish
or Finnish.” [4] Because the FastText model is able to utilize character-level information, it
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excels at capturing the meaning of suffixes and prefixes, resulting in better performance for
learning syntactic features such as noun and verb inflections. However, it is outperformed
by Word2Vec models on semantic analogy tasks.

ii. In the original paper of GloVe [3], it is reported that GloVe outperforms Word2Vec. In our
case however, we observed that GloVe embeddings were worse compared to word2vec. We
found another study [28] with GloVe on a Turkish corpus which reported a similar finding.
It shows that, neural-network-based (predictive models) approaches are more suitable for
training Turkish word embeddings compared to extracting the statistical information by
training on the nonzero elements in a word-word cooccurrence matrix (count-based model).

iii. When all other metrics are held constant, there is no significant difference in performance
between the CBOW and Skip-gram architectures of Word2Vec for Turkish verb conjugation
suffixes. However, for noun declension suffixes, CBOW outperforms Skip-gram. On the
other hand, for semantic analogy tasks, Skip-gram performs better than CBOW.

iv. Consistent with expectations, averaging the word vectors produced by Word2Vec and Fast-
Text with the same number of epochs resulted in word vectors that outperformed FastText
in semantic analogy tasks and Word2Vec in syntactic analogy tasks.

v. Bommasani et al. (2020) [29] suggest two distinct methods for generating static word
embeddings from contextual models. Similar to the results of their experiments for English,
the decontextualized approach, in which each word w is considered independently of its
context, performs poorly for Turkish as well.

vi. Our study suggests that extrinsic evaluations may not be as effective as intrinsic evaluations
in distinguishing between different models. Intrinsic evaluations have shown to be more
reliable in evaluating model performances compared to extrinsic evaluations. This finding is
consistent with the observation made by Wang et al. [30], who suggest that the performance
of extrinsic evaluations heavily relies on their ability to capture sequential information,
whereas word meaning plays a secondary role in these tasks.
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