
AUTOMATED CURATION OF A DATASET FOR NAMED ENTITY

RECOGNITION FROM Wikipedia

by

Furkan Enes Yalçın & Nazmican Çalık

Submitted to the Department of Computer

Engineering in partial fulfillment of

the requirements for the degree of

Bachelor of Science

Undergraduate Program in Computer Engineering

Boğaziçi University

Spring 2019

ii

AUTOMATED CURATION OF A DATASET FOR NAMED ENTITY

RECOGNITION FROM Wikipedia

APPROVED BY:

Dr. Suzan Üsküdarlı

(Project Supervisor)

DATE OF APPROVAL:

iii

ACKNOWLEDGEMENTS

iv

ABSTRACT

AUTOMATED CURATION OF A DATASET FOR NAMED

ENTITY RECOGNITION FROM Wikipedia

Most NER datasets do not contain many lexically ambiguous words, as a result

it becomes hard for a NER model trained with such a dataset to distinguish between

different meanings of a lexically ambiguous word. For example, in the sentence "Paris

Hilton owns a Hilton Hotel in Paris.", Both Paris and Hilton are used with two different

meanings and their entity types are different too. (Paris: Person, Paris: Location, etc.)

In order to deal with this problem, we decided to come up with a method to curate

a dataset that intensely contains such words, with their entity types in a language

independent manner. We decided to use Wikipedia as our data source because of the

number of available languages and its potential for such words. These words are brought

together under the category called "Disambiguation pages". We get potential meanings

of an ambiguous term from these pages and then extract sentences from pages that

refers to these potential meanings. We call these potential meanings "Disambiguation

Term Candidate (DT)". Later, we extract the entity type information of a DT from yet

another Wikimedia Site, Wikidata. After we fetch all of these information we gather

them all and create a useful data set for NER.

v

ÖZET

ADLANDIRILMIŞ VARLIK TANIMADA KULLANILMASI

AMACIYLA VİKİPEDİ’DEN OTOMATİK OLARAK VERİ

SETİ OLUŞTURMA

Çoğu NER veriseti fazla eşsesli söz öbeği içermiyor, bu sebeple bu verisetleriyle

eğitilen NER modelleri eşsesli söz öbeklerinin farklı anlamlarını birbirinden ayırmakta

zorlanıyor. Örneğin, "Paris’teki Hilton Oteli Paris Hilton’undur." cümlesinde hem

Paris hem de Hilton kelimeleri iki farklı anlamda kullanılmıştır, ayrıca bu anlamların

varlık tipleri de farklıdır. (Paris: İnsan, Paris. Mekan, v.b.) Bu sorunla başa çıkmak

amacıyla içinde bir çok eşsezli söz öbeği barındıran verisetleri oluşturmaya yönelik ve

herhangi bir dil için çalışabilecek bir metod geliştirmeye karar verdik. Böyle bir çok söz

öbeği barındırdığını düşündüğümüz ve birden fazla dilde metinlere sahip olduğu için

Vikipedi’yi kaynak olarak seçtik. Vikipedi bünyesinde bu kelimeler "Anlam ayrımı"

kategorisi altında toplanmıştır. Bu çok anlamlı sözlerin olası anlamlarını bu sayfalardan

elde edip, sonrasında bu sayfalar aracılığıyla olası anlamların içinde geçtiği cümleleri de

elde ediyoruz. Sonrasında, bu olası anlamların varlık tiplerini de bir başka Wikimedia

sitesi olan Wikidata aracılığıyla öğreniyoruz. Tüm bu veriyi çektikten sonra bunları

birleştirip kullanışlı bir veriseti elde ediyoruz.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . vii

LIST OF TABLES . viii

LIST OF SYMBOLS . ix

LIST OF ACRONYMS/ABBREVIATIONS . x

1. INTRODUCTION AND MOTIVATION . 1

2. STATE OF THE ART . 2

3. METHODS . 3

4. RESULTS . 10

5. CONCLUSION AND DISCUSSION . 11

6. FUTURE WORK . 12

REFERENCES . 14

APPENDIX A: DATA AVAILABILITY STATEMENT 15

APPENDIX B: STANDARDS, LAWS, REGULATIONS AND DIRECTIVES 16

vii

LIST OF FIGURES

Figure 3.1. ETG of Boğaziçi University. 4

Figure 3.2. Methodology. 5

viii

LIST OF TABLES

ix

LIST OF SYMBOLS

x

LIST OF ACRONYMS/ABBREVIATIONS

AT Ambiguous Term - e.g. Beşiktaş

DT Disambiguated Term - e.g. e.g. Beşiktaş Football Team,

Beşiktaş (City)
VDT Valid Disambiguated Term. Selected from DTs. - e.g. Beşik-

taş Football Team, Beşiktaş (City)
ETG Entity Type Graph - Graph of classes that the entity belongs

to. In our case, entities are VDTs.
WP Wikipedia Page

SE Sentence with entity. <Sentence, beginning index of entity,

stopping index of entity>
TAG Tag of the disambiguation term in a sentence - e.g. Location.

PER Person

ORG Organization

LOC Location

ORGLOC Organization-Location

1

1. INTRODUCTION AND MOTIVATION

Named Entity is a real world object such as persons, locations, organizations,

products, etc., that can be denoted with a proper name. For example, Charlie Chaplin

which is a famous person, is an entity in a text. Further examples include Eiffel Tower,

World Health Organization etc. However, terms that don’t refer to the instances of real

world objects are not recognized as named entities. For instance, car is not a named

entity because it is too generic and don’t refer to an instance of an entity.

In information science, one of the most challenging tasks is to recognize which

named entity belongs to which entity type. Type of entities include locations, persons,

organizations, etc. Recognizing unique named entities is a problem and if the surface

form of the named entity is ambiguous then the problem is harder. In the following

example we will try to illustrate the problem.

Let’s say our sentence is "Paris Hilton geçen ay yeni bir otel aldığını duyurdu." In

this sentence Paris and Hilton words are named entities. The problem is to decide if the

word "Paris" refers to the city Paris or the name of the famous Paris Hilton. Another

instance of the problem in this sentence is Hilton. It could refer to the surname of

the Paris Hilton or the Hilton Hotels which is an organization. In order to develop a

good statistical model for the problem there is a need for a good dataset. Our aim is

to curate a dataset that is including ambiguous terms and their disambiguation term

candidates in a sentence for a supervised machine learning model.

Yet another motivation for us is the lack of supervised datasets in alternative

languages. [1]. Datasets created for NER tasks are typically curated for specific lan-

guages.(e.g.Portegese [2] With the methods we are proposing, it will be possible to

construct a dataset for such languages.

2

2. STATE OF THE ART

There are many datasets available that are created for sake of NER algorithms.

However, in most of these datasets there are only a handful of surface forms that are

disambiguous, which means tagged with multiple entity types - e.g. "Paris: Location"

and "Paris: Person". We predict that NER models, trained with such datasets can’t

perform well when they encounter these words. Since they did not encounter these

words with their different meanings on training set, they cannot distinguish between a

Person Paris and a Location Paris. But NER model do not encounter with these kind

of words in the test sets either because the whole dataset is lacking these words which

has the same surface form but are different entitites.

We hope to achieve to improve the performances of such models by providing

them with a dataset which includes a high proportion of such words. In fact, datasets

created with our method will mainly consist of such words.

3

3. METHODS

In this project we will try to get as many sentence as possible from Wikipedia

Turkish pages to create a dataset. Our final aim is to create an automated tool that

scraps the Turkish Wikipedia disambiguation pages and collects sentences.

Before we move on to the models that we used when solving the problem, we

have to introduce some terminology.

• (AT) Ambiguous Term: Ambiguous Term is the word or words, that we are

trying to determine its entity type. These terms may have several meanings.

For example, Fenerbahçe which can mean the district or the Football Team.

We get these terms from the disambiguation pages in Wikipedia. Every entry in

those pages, leads to several meanings, semantics which have their own Wikipedia

pages.

• (DT) Disambiguated Term: These are the terms that carry a specific mean-

ing in a disambiguation page of an AT. Each DT offers a different semantic for

the AT. A good dataset should include as big sets of sentences as possible for as

many different DT as possible for an AT.

• (VDT) Valid Disambiguated Term: These are the disambiguation terms that

are actually useful for the dataset. They are valid disambiguation terms because

they include the ambiguation term in their surface form. This validation method

is configurable.

• (ETG) Entity Type Graph: This is a graph of entity types. We gather these

classes from Wikidata.

• (ET) Entity Type: This refers to the type of an entity. In ETG.

4

Figure 3.1. ETG of Boğaziçi University.

5

• Tag: This is the tag of a data entry in the dataset. This can be one of the

following predetermined values: Location, Person, Organization, Organization-

Location etc.

Our final goal is to curate a dataset that consist of tuples in the following format:

<AT, VDT, SE, TAG>

Let’s see how we construct these data step by step.

Figure 3.2. Methodology.

(i) Fetching Ambiguous Terms

In this first step our aim is to get all the ambiguous terms in following format.

<AT>+

For this we used the python pywikibot and crawled the page for dismabiguation

pages list. That way we get all the ambiguous terms in the Wikipedia database.

(ii) Getting Disambiguated Terms

In this step our aim is to get all disambiguation terms for each AT, in following

format.

<AT, DT+>+

6

For this, we crawled the dismabiguation page of every AT. From these pages, we

extract all links to other Wikipedia pages and assume that they disambiguate the

AT.

(iii) Remove Invalid Disambiguated Terms

In this third step, our aim is to filter out the unnecessary disambiguation terms.

Some of these were irrelevant to our ambiguous term. For example in every case

there is a disambiguated term page linked to general disambiguation page. The

data format is not so different than the first step. This time we have the VDT’s

instead of DT’s.

<AT, VDT+>+

We applied a simple logic when determining if a disambiguated term is valid or

not. If the ambiguous term is a substring of the disambiguated term candidate,

then we concluded that this DT is a VDT. The reasoning behind this was the

following, if the text included the ambiguous term only then we will try to get

the meaning of it.

Important Note: After this step we divided the process into two subprocesses.

One process is responsible for finding the ETG (Entity Type Graph) and the

other gets the text from the referenced pages of the DT’s.

(iv) Constructing the ETG For Every AT, VDT Pair

In this step we find the ETG of a <AT,VDT> pair. For this purpose we have

used Wikidata. When we are finished with this step we want to have the follow-

ing data points for every <AT,VDT> pair. We represent the graph in GraphML

format.

<AT, VDT, ETG>+

7

For each valid disambiguated term, we query the Wikidata entry. Since most

pages in Wikipedia is mapped to Wikidata, we can get their Wikidata entry via

their Wikipedia page. Then we first get the "instance of" field of the VDT, by

doing this we find the class of the VDT. Then, we query the "subclass of" field

of this class. We add these newly found classes to the graph and add edges from

former class to the these newly found classes. We continue this operation for

each class in the ETG until there is no new class is found. Figure 3.1 shows an

example ETG.

(v) Identifying Entity TAGs for each AT, VDT Pair

In this step we identify the entity type of each VDT using its ETG.

<AT, VDT, TAG>+

We search the nodes of the ETG for predetermined entity types. These prede-

termined entity types are person, organization, location and can be changed. If

the ETG contains one or many of these we tag the VDT. For example, if ETG

contains "organiation" class, current TAG becomes "ORG". If it contains both

"organization" and "location" current TAG becomes "ORGLOC".

(vi) Getting The Sentences From Wikipedia Dump

We were normally planning to get the pages and pages text from live Wikipedia

page. However we have realized that it will pose time related problems. The rea-

son is the following, making a network call to curl the Wikipedia page introduces

a network lag. Considering there are more than twelve thousand pages, it is not

affordable. That’s why we have decided to use the Wikipedia pages dump. This

dump is in XML format. There are several different dumps for Wikipedia. Some

of them gives metadata on the other hand some gives the pages information. The

dump we have worked with includes all Turkish Pages on Wikipedia.

In this step we find the sentences that makes the barebones of our dataset. We

8

try to get the sentences that includes links to vdt’s. Detect the location of vdt’s

in the text and sace the start and end index as well. We put the sentence and

the pair into the following format.

<AT, VDT, SE>+

Parsing a big XML file was harder then we expected. We needed to come up with

a way to parse the Wikipedia dump efficiently as it is a big file. We have found

a Python package called mwxml that is created for the purpose of parsing the

Wikipedia dumps. We have parsed the Wikipedia dump with mwxml, it creates

a generator object that traverses the pages in the dump.

For each page that is not a disambiguation page, the following process is applied.

Links in the Wikipedia page follows the following form.

• [[Link|Seen Text]]

• [[Link]]

With the help of regex we capture the links in the page. After capturing the

links, we hash the links (whole link) and save the hash value into a dictionary.

Then, we get the salt text of the page with the help of a python package called

mwparserfromhell.

Then we seperate the sentences via nltk. We then filter the sentences that includes

templates, comments etc. Then we traverse the hash map that has the keys and

replace the links with their seen texts and save the sentence with the final format.

<AT, VDT, SE>+

(vii) Constructing The Final Form of The Dataset

In this step our aim is to finalize the dataset using all the information we got

until now. We just needed to merge the TAG and the Sentences for every <AT,

VDT, SE>+ tuple. The final data format is in CoNNL-U format which is an

9

extended version of CoNNL-X. [3].For every sentence we separate the words and

tag the entities, which allows us to convert the dataset to CoNNL-U format.

That is our way to solve the problem and construct a dataset for NER Models

that is rich in terms of ambiguous terms.

10

4. RESULTS

We ran our method for Turkish Wikipedia and constructed a dataset to prove

that our method works. This dataset contains 213,974 sentences with 247,191 tagged

entities which is a relatively big number for a dataset. Some of the sentences may

include noise, however most of the sentences are clean and suitable for the dataset.

Even if we lost almost half of the entity tags, tool has constructed a dataset that is

relatively big.

We validated that the proposed approach can be applied for any languages which

Wikipedia supports. Furthermore, the dataset can be continuously updated with up-

to-date entity references, as Wikipedia pages are also continuously updated.

Sample outputs of intermediate stages:

• <AT, VDT, SE, START, END>

– “beşiktaş”, “Beşiktaş (basketbol takımı)”, "Beşiktaş, kurulduğu 1933 yılından

bu yana Türkiye Basketbol Ligi’nde toplam 2 defa şampiyon olmuştur.", 0,

8

– “tünel”, ”Tünel (semt)”, "Adını, Pera da denen, Tünel-Taksim arasında uzanan

İstiklal Caddesi ve ona açılan sokakların belirlediği alanı kapsayan Beyoğlu

semtinden alır.", 22, 27

– “new jersey”, “New Jersey (albüm)”, ”Slippery When Wet ve ardından 1988

yılında yayınlanan New Jersey albümleri ile grup dünya çapında büyük bir

üne erişti.” ,54 , 64

• <AT, VDT, TAG>

– “beşiktaş”, “Beşiktaş (basketbol takımı)”, “ORG”

– “beşiktaş”, "Beşiktaş, Beşiktaş", “LOC”

– “sabancı”, ”Sabancı Üniversitesi”, “ORGLOC”

– “sabancı”, “Güler Sabancı”, “PER”

11

5. CONCLUSION AND DISCUSSION

After all, the proposed system works. We were successful collecting sentences

from Wikipedia. The dataset we created with the tool used Turkish Wikipedia Pages

from the wikipedia pages dump. We successfully collected 213,974 sentences in total.

Some of them include more than one entity so that we have extracted 247,191 named

entities in total for Turkish language. If we improve our strategies, we can be able to

increase this number.

Secondly, the tool we created curates datasets that are up to date. Wikipedia is a

community sourced platform, the information (pages, links etc) get updated every day.

As new pages are introduced, the system will find the current, up to date sentences.

Whenever the users wish they can update their datasets by running the tool with the

new dump.

We created a program that is language independent. That means as long as the

Wikipedia pages exist, we can change the parameter of the program and collect data

for other languages. We have tried to write the code for our program as flexible as

possible. Since the full execution of the program takes a relatively long time, we have

split the execution to several steps. We record every data we get after each step. That

way if the execution stops at a point we don’t lose any data.

With improvements to the existing system we can increase the number of sen-

tences sharply. We showed that the proposed system works and language independency

is a huge plus. System can be used for the languages that are poor in terms of NER

datasets.

12

6. FUTURE WORK

We are simply proposing a method to curate a dataset for NER but we are also

writing a code for this so that we can evaluate its usefulness. We divided our algorithm

to several steps. Each step can be improved, perfected or customized separately. The

followings are the possible improvements:

• Improving the sentence extraction: For now we are using nltk tools with-

out any configuration. Some of the sentences are not separated correct with this

tool but adjustments are possible to tune nltk to extract sentences with a better

accuracy.

• Increasing the number of sentences that are taken from Wikipedia

pages: For now we are only taking the sentences that are giving link to the cor-

responding VDT. What we can do in the future is to provide a logic or heuristic

that will allow us to take the sentences that don’t give any links, however, that

are useful.

• Creating a user interface to provide statistical data on curation pro-

cess: For now we don’t have an interface to show the statistics of data crawling

process. In the future we can create a web based solution to see the data flow

from Wikipedia to our dataset. It can be helpful to see the success rate of the

dataset curating process. It might allow us to intervene the process as humans if

we detect any mistake that the program does e.g. Adding a sentence that does

not actually includes the AT.

So, all of these can be used just as a guideline to curate a useful dataset for NER

Models, or people can directly use our program too. We are currently using Wikipedia

as our data source. There may exist other data sources which are more suitable for this

purpose or can be created in the future solely for this purpose.We believe that usage

13

of datasets created by our method will greatly improve an NER model’s accuracy on

texts that intensely contain lexically ambiguous words.

14

REFERENCES

1. Lample, G., M. Ballesteros, S. Subramanian, K. Kawakami and C. Dyer, “Neural

architectures for named entity recognition”, arXiv preprint arXiv:1603.01360 , 2016.

2. Santos, D., N. Seco, N. Cardoso and R. Vilela, “Harem: An advanced ner evalu-

ation contest for portuguese”, quot; In Nicoletta Calzolari; Khalid Choukri; Aldo

Gangemi; Bente Maegaard; Joseph Mariani; Jan Odjik; Daniel Tapias (ed) Pro-

ceedings of the 5 th International Conference on Language Resources and Evaluation

(LREC’2006)(Genoa Italy 22-28 May 2006), 2006.

3. Buchholz, S. and E. Marsi, “CoNLL-X shared task on multilingual dependency pars-

ing”, Proceedings of the tenth conference on computational natural language learning ,

pp. 149–164, Association for Computational Linguistics, 2006.

15

APPENDIX A: DATA AVAILABILITY STATEMENT

16

APPENDIX B: STANDARDS, LAWS, REGULATIONS AND

DIRECTIVES

