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1. Introduction and Motivation 
  

It goes without saying that filtering the abundant information provided to the users 
is a necessity in this era which makes recommendation systems necessary since a 
recommendation system is a subclass of information filtering system.[1] A recommender 
system or a recommendation system is a system that suggests some items such as food, 
movie, and music to some customers in an application. In other words, it estimates the 
"rating" or "preference".[2] There are many examples of such systems around the internet. 
For example, IMDb recommends similar movies to the movie that we look for there.[3] 
Another example could be YouTube, which lists some similar videos to the left of the 
page.[4] There are two point of views of this system. From the customer point of view, it is 
important because it gives the opportunity to experience some new materials that have 
similarity with the products he/she has been enjoyed. From the provider point of view, it 
is crucial because it presents a chance to make profit quick by saving time of the customer 
while he/she looks for an item.[5] 

 
In our project, we will build a recommendation engine for cafés. In the ordering 

applications such as YemekSepeti, the system recommends some drinks if we do not buy 
some with the meal.[6] Furthermore, it lists the items that have been sold mostly on the top 
of the menu in order to speed up the purchase. When it comes to the outside, the 
employee brings a menu and we order some items. The fact that QR code has been used 
thoroughly by smartphones nowadays brings us the idea that we can use a smartphone to 
view menu and to make recommendations as in the ordering applications. In fact, those 
recommendations will be more reliable than the recommendation that the employee of the 
café makes because the latter wants to popularize all items in the menu, whereas the 
former is generated from the past orders of the café, most of which have been rated by 
some clients or via the information of the current customer. 

 
Finally, our application will improve the sales of the cafés because total 

satisfaction among the clients will increase by our recommendations. In other words, we 
increase the probability of enjoy for a customer by narrowing down the choices in the 
menu. Therefore, the cafés benefiting our app will produce more items that are popular 
among the past clients, and improve the items that are less liked.   
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2. State of the Art 
  

Throughout our work, we have encountered a plenty of research papers that have 
resolved the recommendation problem from many perspectives. Additionally, we 
discovered an app called QikServe that has a strong association with our project in terms 
of UI and categorization of the menu.[7] 

 
 First of all, collaborative filtering and knowledge-based approaches were used mainly 
in the research. The major point of the collaborative approach is that a customer will 
prefer those items that like-minded people prefer.[8] A collaborative filtering 
recommender system, therefore, makes prediction for a user based on the similarity 
between the interest profile of that user and those of other users.[9] [10] [11] For the latter 
approach, we can say that it generates recommendations to a client by consulting its 
knowledge base of the product domain, and then reasoning what products will best satisfy 
his/her requirements.[12]  
 
 Each filtering approach has both advantages and disadvantages. Knowledge-based 
filtering does not need prior knowledge and adapts easily to preference changes.[1] In spite 
of solving well-known cold start problem, knowledge- based approaches also have some 
drawbacks.[1] It requires knowledge engineering since the system is based on the 
knowledge of important features of the product.[1] The worst thing about knowledge-
based filtering is that the recommendations are static.[1] 
 

On the other hand, collaborative filtering is not only dynamic but also 
personalized in terms of recommendations resulting from individual past behavior.[1] As 
collaborative filtering is based on similarity between users or items, past behaviors of 
similar users are taken into consideration.[1] [13] Therefore, it is also social and active.[1] [13] 
Collaborative filtering has mainly two different approaches which are memory based and 
model based. The model approach deals with new users and new items easily.[13] [14] [15] 
Since, the memory based approach relies on similarity between users, the similarity rate 
should be calculated for each recommendation. On the other hand, the memory based 
approach relies on model of users or items based on the user preferences and only the 
model is queried in the model case and the model is smaller compared to the dataset 
which results in higher speed.[13] [14] [15] The best thing about memory-based collaborative 
filtering is simplicity.[15] Moreover, the database is updated easily with the new data.[13] 
Since there is limited amount of items in a menu, user-based and memory-based 
approaches are beneficial for our case. Regarding these benefits, we decided on user-
based and memory-based collaborative filtering.  

 
While collaborative filtering offers advantages, it has some disadvantages that 

must be considered beforehand. Main drawbacks are the dependency on human ratings, 
sparsity and cold start problem.[16] Hybrid approach which is a combination of different 
filtering techniques is used to solve these drawbacks in general. However, there is no 
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specific hybrid approach that addresses our case. Therefore, we designed our hybrid 
approach by combining user and memory-based collaborative filtering and some other 
techniques.  

 

3. Methods 

3.1 General Idea 
  

Let the system has n users and m items. When the user x logs in to the system 
to order food or/and beverages, our aim is to find the most similar k users and 
recommend items to the user x accordingly. The idea is that there are items that are 
not rated by the user x. Therefore, these items are all candidates for recommendation. 
A rating is estimated for each unrated item via using the rating given for this item by 
the each of k users. The item with the highest estimated rating is recommended to the 
user x. 

 

3.2 Representation 
  

We have two classes which are users and items. Users have preferences as 
ratings for certain items.[17] These ratings are represented by a utility matrix.[17] Let us 
call the nxm utility matrix R. Each element Rij in the R represents the average rating 
for the item j given by the user i. Ratings are between 0 and 5. If the user i has not 
rated the item j yet, corresponding Rij will be empty.[17] 

3.2.1 Menu Assumption 
  

Items fall into five categories which are beverages,  appetizers, entrée, 
main course and dessert. Items will be sorted in terms of categories. In 
addition, matrix indexing for items will be shaped according to these 
categories. For instance, first 10 items are appetizers then entrée etc. 
Categorization is necessary to recommend items from each category easily. 

3.2.2 Past Orders Matrix 
  

In order to represent the past orders, we have used a matrix. In this 
matrix, each row implies an order of a customer. For each order, ordered items 
are assigned as 1, the other items are assigned as 0. Items that are assigned as 
1 have their rankings, the others have no ranking. We divided the columns of 
the matrix into three sections. First section takes the first column as 
customer’s identification. The remaining columns are divided equally. The 
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first half corresponds to each item in the menu, and sorted according to the 
menu assumption. The second half corresponds to rating of each item.   

 

3.3 Data Generation 
  
We have preferred working with randomized data because the datasets in the 

literature involve too many features to handle. Furthermore, the data gives idea about 
the recommendation procedure. In order to generate the data, we specified some 
assumptions. However, we parameterized the number of customers, orders and items 
to analyze how the recommendation changes with the different parameters. 

3.3.1 Assumptions 
  

• There are 100 customers in the population. In order to pick a customer, we 
take a random number from uniformly distributed [1…100]. 

• There are 200 orders in total. In order to fill an order, we need to select 
some items from each category. 

• From entrée and dessert, maximum 1 item must be selected each. 
• From appetizers, main course and dessert, maximum 2 items must be 

selected each. 
• For the selected items, we pick a random number from uniformly 

distributed [0…5]. 
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For example, the data above was generated from a menu consisting of 3 
entreés, 3 desserts, 4 beverages, 4 appetizers and 6 main courses. (note that this is just 
a part of the data because full version does not fit into the page.) 

 

3.4 Obtaining the Utility Matrix R 
  

In order to fill the utility matrix, we need to clear out how many distinct 
customers are in the past orders matrix, and find their average ratings for all items 
they have ordered. 

 
Basically, we iterate over rows of the matrix. In each iteration, we certainly 

encounter one of the two cases; namely, the customer is in the utility matrix or not. In 
the first case, we add the customer to the utility matrix and assign his/her rankings to 
the corresponding items. In the second case, we find the row of corresponding 
customer, and assign the rankings as in the first case; however, if there is an item that 
has a rank before, then we assign the average of before and current ranks of that item. 

 

3.5 Similarity Measure 
  

The first important question is how to find the most similar k users. In other 
words, how to measure the similarity of users from the utility matrix R is one of the 
main problems.[17] Leskovec, Rajaraman & Ullman (2014) claim that there are mainly 
two distance measures which are Jaccard distance and Cosine distance.[17] In terms of 
ratings, one of the main differences between Cosine distance and Jaccard distance is 
that the former one deals with detailed ratings smoothly whereas the latter one loses 
important information. [17] In cosine similarity, blanks in R are treated as 0 and the 
cosine of the angle between two users are calculated.[17] “A larger (positive) cosine 
implies a smaller angle and therefore a smaller distance.”[17] 

 
In cosine similarity, missing ratings are assumed to be zero which treats as 

negative.[18] To eliminate this effect, ratings can be normalized by subtracting the row 
mean from the each rating in the row.[18] This method is called Centered Cosine 
similarity which also assumes the missing ratings to be zero but zero is neutral and 
average for this case because after normalizing, positive values depict like and 
negative values depict dislike.[18] It handles not only missing ratings but also tough 
raters and easy raters.[18] Centered Cosine similarity is also known as Pearson 
Correlation.[18]  
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3.6 Rating Estimation  
  

The other important question is how to estimate the rating. Generally, average 
rating is calculated by taking k users’ rating into consideration. In some cases, also 
similarity score is used while taking average. However, it ignores the similarity values 
found by Pearson Correlation and treats all of the k users same. Therefore weighting 
the average rating with the similarity values is a clever solution.[18] 

 
In our cafe case, a user is more likely to taste an item in the menu more than 

once. Hence, the number of ratings given for an item also plays an important role. The 
number of ratings given is stored in a matrix with the same logic behind the utility 
matrix R. Let us call this nxm utility matrix T. Each element Tij in the R represents the 
number of ratings given for the item j by the user i. If the user i has not rated the item 
j yet, corresponding Tij will be zero. As a result, not only the similarity values but also 
the number of ratings given is taken into consideration. Dependency on human ratings 
is decreased by using this approach. After the ratings are found for each unrated item, 
the items with the highest ratings from each category are recommended to the user. 

 
 rxi : the estimated rating for user x and item i 

sxy : the similarity value between user x and user y 
tyi : the number of ratings given by user y to item i 
N : the set of k users similar to user x 
 

3.7 Overcoming The Drawbacks of Collaborative Filtering 
  

Cold start and sparsity problems are the difficulties with collaborative 
filtering.[16] Since a menu in a cafe has limited amount of items, sparsity is not a 
problem in our case. In the case of cold start problem, users are divided into two: 
active users and passive users. A passive user becomes an active user after rating p 
items in the menu. If the the user is passive, average ratings for each unrated item is 
used via taking the column based averages of unrated items. The unrated item from 
each category with the highest average ratings are recommended. This top-rated items 
technique reflects highly rated items. Top-ordered items may also be recommended 
by using T matrix. The number of orders for each unrated item is used via taking the 
column sum of unrated items. The unrated item from each category with the highest 
number of orders are recommended. This top-rated items technique reflects popular 
items. Cold start problem is solved in this way.   
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4. Application 
 
Our recommendation system will be used in mobile devices. Each café will have its 

own QR code which will be read by our application from customer’s smartphone. The 
QR code will open the menu and the customer will enter his/her order while getting 
recommendations. 

 
In our case, we implemented a simple Android version of the recommendation engine. 

First, we scan the QR code, then we list the menu by denoting the recommendations on 
some items, finally we ask the user to rate the items he/she ordered.  

 

                       
           Menu with recommendations                 Rate the orders in the end 
 

5. Results 
 
In order to understand how a recommendation engine works accurately, one must 

observe how the recommendations are close to the desired. Mathematically, some 
accuracy metrics such as Mean Absolute Error(MAE) and Root Mean Squared 
Error(RMSE) could be defined to calculate the error between the predicted values and the 
actual values. This brings out two main issues; namely, what metric is used and how the 
actual values are determined. 

 
Firstly, we preferred to use RMSE as the accuracy metric because it was used in the 

Netflix Prize contest to rate the proposed algorithms[19]. Furthermore, it indicates the large 
errors more clearly than MAE[20].  

 
Secondly, there were two approaches to find the actual rating; randomly generate a 

rating between 0 and 5, or by using the central limit theorem, estimate a rating with the 
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mean and variance of the previous customers’ ratings. The second approach is not reliable 
because the customer’s rating becomes dependent to all other customers; however, in our 
recommendation, we estimate the rating with the similar customers to current customer. 
The first approach is not confident because it does not generate a stable rating, compared 
to the second approach.  

 

5.1 Dataset 
  

In order to handle the issue of determining the actual rating, we decided to 
work with some datasets. While determining the datasets, we considered that there 
must be a plenty of users with a plenty of ratings and the number of users must be 
much larger than the number of items rated. In the light of these criteria, we selected 
two datasets: Jester Dataset[21] and Random Dataset. 

 5.1.1 Jester Dataset 
  

In this dataset, over the ratings (-10 to +10) of 100 jokes from 73421 users 
are   collected[21].  However, we picked 1000 users those rated all 100 jokes to observe 
how the number of user and joke affects the error. From this point, we parameterized 
the number of users, jokes, and jokes to be removed in order to predict them. 
Furthermore, we converted the rating to the interval of 0-5. In order to prepare the 
dataset for the experiments, we removed randomly some jokes for each user. In the 
end, we conducted some experiments on the Jester Dataset. 

 5.1.2 Random Dataset 
  

In this case, the dataset was generated randomly. In other words, we picked a 
random number in 0-5 as a rating for each item for each user. Then, we applied the 
same procedure, except converting, to the Random Dataset, as in the Jester Dataset, 
for the experiments.  

 

5.2 Experiments 
 
The experiments were conducted on the datasets explained above via four 

different measures with different parameters like number of users, total order, number 
of neighbours and number of recommendations etc. The number of tastes were not 
taken into consideration because there is no such data in the datasets. Moreover, we 
wanted to give more generalizable results in terms of applicability to different 
domains. 
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5.2.1 Accuracy Measures 
  

Root Mean Square Error, Reverse Root Mean Square Error, Group 
Binary Accuracy and Pairwise Binary Accuracy were used as error measures.  
 

The error between the actual ratings of the items to be recommended 
according to our algorithm and their desired ratings was calculated by using 
common RMSE formula. The accuracy was found by subtracting the RMSE 
from one. 

 
The error between the ratings of the items to be recommended 

according to the real data and their actual ratings according to our algorithm 
was calculated by using common RMSE formula. Since the items to be 
recommended were found by using the real values, this measure is the reverse 
of the previous one. Therefore, we called it as Reverse RMSE. The accuracy is 
again found by subtracting the Reverse RMSE from one. 

 
Actually the aim of the project was not to find the most accurate 

ratings. The aim was to find the most accurate recommendations. Therefore, 
we developed another accuracy measure which focuses on the true 
recommendation rather than its rating. For instance, if an item is found to be 
recommended with the best rating of 3.0 among all other candidates and the 
desired rating of this item is 4.0 but actually this item is also has the best 
rating according to the real values in the dataset, our algorithm is successful 
regardless of its rating.  

 
Let us say that the number of items to be recommended is r. The r 

items to be recommended is found by using the actual ratings and also the 
desired ratings. We have r items which were founded via actual ratings and r 
more items which were founded via desired ratings. The intersection of these 
two sets are the true recommendations. When the intersection is subtracted 
from the items founded by actual ratings, false recommendations are obtained. 
Finally, Group Binary Accuracy was found by dividing the number true 
recommendations to r. 

 
Moreover, from the idea of the Group Binary Accuracy, we developed 

another accuracy measure. We called it Pairwise Binary Accuracy. The main 
idea is the same with Group Binary Accuracy but the pairwise comparison of 
the items in the two item sets were used instead of their intersection. If the 
items are same, they are labeled as true recommendations. Otherwise, false 
recommendations. However, this was not a significant and efficient measure 
because the items to be recommended to the users are not labeled with its rank 
in our application. 
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For instance, we want to recommend seven items. According to the our 
algorithm, items with id 2, 7, 8, 21, 24, 13 and 19 which is ordered in terms of 
the ratings are recommended. According to the desired ratings, items with id 
8, 2, 7, 5, 24, 20 and 13 which is ordered in terms of the ratings should be 
recommended.  

 
In RMSE, items with id 2, 7, 8, 21, 24, 13 and 19 and their ratings are 

used. In Reverse RMSE, items with id 8, 2, 7, 5, 24, 20, 13 and their actual 
ratings are used.  

 
In Group Binary Accuracy, the intersection of two sets which contains 

items with id 2, 7, 8, 24 and 13 is labeled as true recommendations. So, 
accuracy is 5/7. In Pairwise Binary Accuracy, only the item with id 24 
matches. So, the accuracy is 1/7.  

 
It is clearly seen that, Pairwise Binary Accuracy is not a good measure 

for our case but we also tested our algorithm with this measure to see its 
behavior with different parameters and to give idea about the case of reporting 
the ranks of the recommendations to the users. As it is stated before, we did 
not provide the predicted ratings of the recommended items to the user. 
Therefore, RMSE and Reverse RMSE is not vital but gives a general idea 
regarding the performance. It is clearly seen that the most important and vital 
measure is Group Binary Accuracy. 

5.2.2 What has been achieved? 
  

Here are the base values of the parameters:  
Number of Users = 200 
Total Number of Items = 30 
Total Order = 200 
Number of Neighbours = 10 
Number of Recommendations = 7 
  
Number of users & total number of items (each user was assumed to 

order once), total order, number of neighbours and number of 
recommendations were altered separately. Four different accuracies on two 
different datasets were calculated and the results were achieved. 
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It is seen that Group Binary Accuracy becomes 1.0 after 10 
recommendations. RMSE and Reverse-RMSE becomes equal after 10 
recommendations. This is so important because the equality depicts that all of 
the recommendations were true but the ratings were a little bit deviated. We 
did not use the value of 10 as the base case since we wanted to see the effect 
of the other parameters to the Group Binary Accuracy. As the number of users 
and total order increase, accuracies increase but there is no significant change. 
The number of neighbours is correlated with the accuracy. In addition, 
Pairwise Binary Accuracy is low as it was expected. 
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6. Conclusion and Discussion 
 
In this project, the aim was recommending items accurately. The performance of our 

algorithm was measured with two different datasets and four different accuracy measures.
 Pairwise binary accuracy does not reflect the real performance of our system. So, its 
low accuracy is not important for us. Group binary accuracy is the most important one 
because it measures true recommendation and it has the highest accuracy rates. 
Remaining ones measures the accuracy of rating estimation. Furthermore, the 
shortcoming of the collaborative filtering was eliminated. The final result is satisfying 
regarding our aim.  

 
Our project has an economical potential in terms of increasing the overall sales for a 

café by increasing the sales of most seller items and improving the least sold items. To 
some extent, it may accelerate the fact that the cafés will be segmented in terms of their 
popular items. Let us suppose we have two cafés; namely café A and B. In time, café A 
becomes famous for its Turkish coffee and café B for its Latté. Here, our app may 
decrease that time so that both cafés could sell more items on the remaining time. 

 
In addition, simulating a QR code on the tables in the café to activate the menu and 

ordering items from a smartphone is exciting and innovator. Also, the customer will not 
need any other application for recommendation.  

 

7. Future Work 
 
iOS version may be developed and payment solution may be added which will create 

self-order and self-pay application with recommendations. In this case, the need for 
waiters will decrease. One day the cafes without checkout lines and waiters may spread, 
who knows. Nothing is impossible. Think Amazon Go.[22]  
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