
HIERARCHICAL MULTITASK LEARNING FOR LANGUAGE MODELING

WITH TRANSFORMERS

by

Çağla Aksoy

B.S., Computer Engineering, Boğaziçi University, 2017

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2020

ii

HIERARCHICAL MULTITASK LEARNING FOR LANGUAGE MODELING

WITH TRANSFORMERS

APPROVED BY:

Prof. Tunga Güngör

(Thesis Supervisor)

Assist. Prof. Fatma Başak Aydemir

Prof. Emin Erkan Korkmaz

DATE OF APPROVAL: 27.08.2020

iii

ACKNOWLEDGEMENTS

I want to thank Tunga Güngör for his guidance during my graduate studies. I

would also like to thank Fatma Başak Aydemir and Emin Erkan Korkmaz for accepting

to be in my jury.

I thank Alper Ahmetoğlu for his help, patience, and supportive mind-opening

discussions. It is a pleasure to research together in this field. I feel lucky to have him

with me in all circumstances.

I am grateful to my mother for raising me as a confident woman with a love of

learning. I especially thank my brother for being a role model for me with his sense

of responsibility and honesty. Also, I thank my father and my Ate for their cordial

supports every time.

I thank my colleagues, especially Zeynep Furtun, for providing me the flexibility

to balance work and research.

The numerical calculations reported in this thesis were partially performed at

TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA re-

sources) and TETAM servers.

iv

ABSTRACT

HIERARCHICAL MULTITASK LEARNING FOR

LANGUAGE MODELING WITH TRANSFORMERS

Recent works show that learning contextualized embeddings for words is bene-

ficial for natural language processing (NLP) tasks. Bidirectional Encoder Representa-

tions from Transformers (BERT) is one successful example of this approach. It learns

embeddings by solving two tasks, which are masked language model (masked LM) and

the next sentence prediction (NSP). This procedure is known as pre-training. The

pre-training of BERT can also be framed as a multitask learning problem. In this

thesis, we adopt hierarchical multitask learning approaches for BERT pre-training.

Pre-training tasks are solved at different layers instead of the last layer, and informa-

tion from the NSP task is transferred to the masked LM task. Also, we propose a

new pre-training task, bigram shift, to encode word order information. To evaluate the

effectiveness of our proposed models, we choose two downstream tasks, one of which

requires sentence-level embeddings (textual entailment), and the other requires contex-

tualized embeddings of words (question answering). Due to computational restrictions,

we use the downstream task data instead of a large dataset for the pre-training to see

the performance of proposed models when given a restricted dataset. We test their per-

formance on several probing tasks to analyze learned embeddings. Our results show

that imposing a task hierarchy in pre-training improves the performance of embeddings.

v

ÖZET

HİYERARŞİK ÇOKLU GÖREV ÖĞRENİMİ YAKLAŞIMI

İLE DÖNÜŞTÜRÜCÜLERDE DİL MODELLEME

Son çalışmalar kelimelerin bağlamsal gömmelerini kullanmanın alt görevler için

faydalı olduğunu göstermiştir. Bu yaklaşımın başarılı bir örneği Dönüştürücülerden

Çift yönlü Gizyazar Gösterimi’dir (DÇGG). DÇGG bağlamsal gömmeleri maskelenmiş

dil modeli (maskelenmiş DM) ve sonraki cümle tahmini (SCT) olan iki görevi bir-

likte çözerek öğrenir. Bu işlem ön eğitim olarak adlandırılır. DÇGG’nin ön eğitimi

aynı zamanda çoklu görev öğrenimi olarak da tasarlanabilir. Bu tezde, DÇGG’nin

ön eğitimi için hiyerarşik çoklu görev öğrenimi yaklaşımları uygulanmıştır. Ön eğitim

görevleri son katman yerine farklı katmanlarda çözülür ve SCT görevindeki bilgiler

maskelenmiş DM görevine aktarılır. Ayrıca, iki-gram yerini değiştirme görevi ek bir

ön eğitim görevi olarak kelimelerin dizilimine ait bilgileri kodlamak için önerilmiştir.

Oluşturulan gömmeleri test etmek için iki farklı alt görev seçilmiştir. Bunlardan biri

cümle düzeyinde gömmeler gerektiren metinsel gerektime problemidir. Diğeri ise ke-

lime düzeyinde bağlamsal gömme gerektiren soru cevaplama problemidir. Hesaplama

kısıtlamaları nedeniyle, önerilen modellerin ön eğitimi büyük veri seti yerine alt görev

verileri kullanılarak yapılmıştır. Öğrenilen gömmeleri analiz etmek ve yorumlamak

için tasarlanan çeşitli irdeleme problemlerinde bu gömmelerin performansları ince-

lenmiştir. Sonuçlar, ön eğitimde görev hiyerarşisi uygulanmasının gömmelerin per-

formansını arttırdığını göstermektedir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . x

LIST OF SYMBOLS . xiii

LIST OF ACRONYMS/ABBREVIATIONS . xv

1. INTRODUCTION . 1

2. PRELIMINARIES . 7

2.1. Deep Contextualized Embeddings . 7

2.1.1. Embeddings from Language Models 7

2.1.2. Generative Pre-training . 8

2.1.3. Transformer . 10

2.1.4. Bidirectional Encoder Representations from Transformers 11

2.2. Multitask Learning . 14

3. METHODS . 18

3.1. Changes in Pre-training . 19

3.2. Changes in Fine-tuning . 22

4. EXPERIMENTS AND RESULTS . 25

4.1. Datasets . 25

4.1.1. Pre-training Data Preparation 25

4.1.2. Downstream Data Preparation 27

4.1.3. Probing Tasks . 29

4.2. Training Details . 32

4.3. Pre-training Results . 32

4.4. Fine-tuning Results . 36

4.5. Ablation Studies . 48

4.6. Probing Tasks . 50

vii

5. CONCLUSIONS . 53

REFERENCES . 55

APPENDIX A: Results of Lower Architectures 59

viii

LIST OF FIGURES

Figure 1.1. Word2Vec model architectures. 3

Figure 2.1. BiLSTM model. 8

Figure 2.2. GPT model. 9

Figure 2.3. BERT model. 12

Figure 2.4. MTL architectures. 15

Figure 3.1. Hierarchical BERT architectures. 21

Figure 3.2. Concatenation techniques. 22

Figure 3.3. Downstream architectures. 23

Figure 3.4. Downstream architectures with concatenated parts. 24

Figure 4.1. NSP-Masked LM loss curves versus mask layer for lower mask ar-

chitectures. 34

Figure 4.2. NSP-Masked LM loss curves versus NSP layer for lower NSP archi-

tectures. 35

Figure 4.3. Pre-training results versus fine-tuning results for QA classifiers which

are pre-trained on SQuAD sets. 46

ix

Figure 4.4. Pre-training results versus fine-tuning results for QA classifiers which

are pre-trained on WikiText-2 set. 47

x

LIST OF TABLES

Table 3.1. Inputs to NSP and masked LM classifiers for different models. . . . 20

Table 3.2. Inputs to masked LM classifier for concatenated models. 21

Table 3.3. Inputs for sentence-level and token-level downstream tasks. 23

Table 3.4. Inputs for token-level downstream tasks for concatenated models. . 24

Table 4.1. The number of pre-training examples in the train sets. 26

Table 4.2. The number of pre-training examples in the validation sets. 26

Table 4.3. The number of examples in the SQuAD sets. 27

Table 4.4. Data preparation example from SQuAD1.1 dataset. 28

Table 4.5. The number of fine-tuning examples for question-answering task. . 29

Table 4.6. The number of examples in the MultiNLI sets. 29

Table 4.7. Data preparation example from MultiNLI dataset. 30

Table 4.8. Selected layers for lower architectures. 36

Table 4.9. Accuracies of pre-trained models on SQuAD validation sets. 37

Table 4.10. Accuracies of pre-trained models on WikiText-2 validation set. . . 38

xi

Table 4.11. Results of QA classifiers that are pre-trained on SQuAD. 39

Table 4.12. Results of QA classifiers that are pre-trained on WikiText-2. . . . 40

Table 4.13. Example for exact match and F-measure calculation. 41

Table 4.14. Average results of QA classifiers that are pre-trained on WikiText-2. 43

Table 4.15. Results on MultiNLI validation sets. 45

Table 4.16. Results of ablation studies for pre-training on SQuAD. 48

Table 4.17. Results of ablation studies for pre-training on WikiText-2. 49

Table 4.18. Results of probing tasks - 1. 51

Table 4.19. Results of probing tasks - 2. 52

Table A.1. NSP-Masked LM losses of lower mask architectures with mask layers

on the SQuAD1.1 validation set. 59

Table A.2. NSP-Masked LM losses of lower mask architectures with mask layers

on the SQuAD2.0 validation set. 60

Table A.3. NSP-Masked LM losses of lower mask architectures with mask layers

on the WikiText-2 validation set. 61

Table A.4. NSP-Masked LM losses of lower NSP architectures with NSP layers

on the SQuAD1.1 validation set. 62

xii

Table A.5. NSP-Masked LM losses of lower NSP architectures with NSP layers

on the SQuAD2.0 validation set. 63

Table A.6. NSP-Masked LM losses of lower NSP architectures with NSP layers

on the WikiText-2 validation set. 64

xiii

LIST OF SYMBOLS

Ci Count of ith word

cm Masked LM classifier

cn NSP classifier

cs Sentence-level classifier

ct Token-level classifier

dk Dimensionality of word vectors in transformer

e Encoder stack

e1 First (lower) encoder stack

e2 Second encoder stack

hi Last layer activation ith word for GPT and BERT

hij Hidden state of ith layer of jth word in BiLSTM

K Key matrix

Ni Number of documents where ith word occurs

pm WordPiece probabilities

pn Next sentence probabilities

ps Sentence classes probabilities

pt Token classes probabilities

Q Query matrix

T Threshold

V Value matrix

xi Input word embedding of ith word

λi Mixture parameter for ith component

−→
h ij Hidden state of ith layer of jth word in left-to-right LSTM
←−
h ij Hidden state of ith layer of jth word in right-to-left LSTM

[CLS] Start token of a segment

[MASK] Mask token

xiv

[SEP] End token of a segment

xv

LIST OF ACRONYMS/ABBREVIATIONS

ALBERT A Lite Bidirectional Encoder Representations from Trans-

formers

BERT Bidirectional Encoder Representations from Transformers

BiLSTM Bidirectional Long Short Term Memory

BoW Bag-of-words

BS Bigram Shift

CBOW Continuous Bag-of-words

CI Coordination Inversion

CR Coreference Resolution

ELMo Embeddings from Language Models

EM Exact Match

EMD Entity Mention Detection

F1 F-measure

FN False Negatives

FP False Positives

GPT Generative Pre-training

IDF Inverse Document Frequency

LM Language Model

LSTM Long Short Term Memory

MLP Multi-layer Perceptron

MTL Multitask Learning

MultiNLI Multi-Genre Natural Language Inference

NER Named Entity Recognition

NLP Natural Language Processing

NSP Next Sentence Prediction

OM Semantic Odd Man Out

ON Object Number

POS Part-of-speech

xvi

RE Relation Extraction

RNN Recurrent Neural Networks

RoBERTa Robustly Optimized Bidirectional Encoder Representations

from Transformers Approach

SL Sentence Length

SN Subject Number

SOP Sentence Order Prediction

SQuAD The Stanford Question Answering Dataset

T Tense

TC Top Constituents

TD Tree Depth

TF Term Frequency

TP True Positives

WC Word Content

1

1. INTRODUCTION

Contextualized embeddings of words are successful in various natural language

processing (NLP) problems. These are dynamic embeddings; they can be changed

depending on the words and their context. These are obtained by pre-training deep

architectures to solve different language model objectives. The knowledge encoded in

these pre-trained models can be transferred to the various problems. Bidirectional

Encoder Representations from Transformers (BERT) is one of the most successful

models which create contextualized embeddings. It learns embeddings by optimizing

two language model objectives at the same time. In this thesis, we framed BERT

pre-training as a multitask learning problem therefore we propose some modifications

to the original structure of the BERT. The multitask learning approach constructs one

model for multiple objectives with a set of parameters that satisfy all objectives.

Natural language is an abstract representation of thoughts and objects which have

similar meaning through a community. We use raw sensory information to represent

images. However, this is not possible for texts, as they have no direct physical inter-

pretation. Instead, we map texts to vector representations to indicate their differences

and similarities.

Bag-of-words (BoW) is a straightforward method to create vectors for documents.

It establishes a fixed-size vector for each text based on the usage of words in these

texts. A vector has the same length as the number of words in the vocabulary, and

each position in the vector represents a particular word. There are different methods

to calculate values in these vectors: boolean values indicating whether the word is used

in the text or not, the number of word occurrences in the text, relative frequencies

with all the words in the text. Some words are used a lot in English texts such as

“a”, “an”, “the”, and “of”; however, domain-specific terms are rarely used. When all

words have the same importance, these non-informative words might create noise in the

vector representation. As a more informative frequency calculation, term frequency-

2

inverse document frequency (TF-IDF) metric is used. TF of ith word in a document

is calculated as follows:

TF(i) =
Ci∑
j Cj

(1.1)

where Ci is the count of ith word in the document, and j iterates over all words in the

vocabulary. IDF of ith word is calculated as follows:

IDF(i) = log
N

Ni

(1.2)

where N is the number of documents, Ni is the count of documents where ith word

occurs. Therefore, rare words have higher IDF scores than common words. Then,

TF-IDF for ith word in a document is computed as follows:

TF-IDF(i) = TF(i) ∗ IDF(i) (1.3)

In this function, IDF score is responsible for reducing the effect of frequently used

words and increase the impact of rare words.

BoW is easy to implement, but it has many drawbacks. It only focuses on which

words are used in a text; their order is ignored. It assumes that documents are sim-

ilar when they have similar content. However, sequences can have different meanings

when they are arranged in different orders. For example, “apple is red” and “is apple

red” have the same BoW vector representations; however, the former is a fact, and the

latter is a question. To compensate for the lack of word order information, n-grams

can be used instead of using uni-gram. In uni-gram, each unique token in the corpus

is counted as a single token while in n-gram, n consecutive tokens are treated as a

single token. As n increases, the vocabulary size increases exponentially due to the

number of token combinations. This approach only handles the order information of

n-words while increasing the vector size. Because of the large vocabulary size, doc-

uments are represented by sparse vectors that inhibit training generalized classifiers.

3

Also, BoW creates vector representations for documents, not for words. Instead of

creating representations for documents, one can also create representations for words

and then combine these representations. There have been many studies in natural lan-

guage processing (NLP) to find suitable word representations (embeddings) that carry

information of a language. Even if finding these word representations can be compu-

tationally demanding, this can be advantageous since it is computed only once. These

learned representations can be used for various downstream tasks such as sentiment

classification and machine translation.

.

.

.

.

.

.

.

.

.

.

.

.

INPUT HIDDEN OUTPUT

W

W

W

W’

w(t)

w(t-1)

w(t+1)

w(t+2)

.

.

.

.

.

.

.

.

.

.

.

.

INPUT HIDDEN OUTPUT

w(t)

w(t-1)

w(t+1)

w(t+2)

W

W’

W’

W’

(a) CBOW (b) Skip-Gram

Figure 1.1. Word2Vec model architectures.

Word2Vec [1,2] is one of the first successful examples of creating representations

for words. Word2Vec finds word embeddings by predicting a word given its neighbor-

4

hood (Continuous Bag of Words (CBOW) Figure 1.1a) or predicting its neighborhood

given the word (Skip-gram Figure 1.1b) for a given corpus. For both models, the input

and the output are one-hot encoded vectors with vocabulary size. The output layer is a

softmax layer to get probabilities. CBOW model is trained to maximize the following:

∑
−c≤j≤c,j 6=t

log p(wt|wt+j) (1.4)

where c is the window size of the context with center word wt. Skip-Gram model is

trained to maximize the following:

∑
−c≤j≤c,j 6=t

log p(wt+j|wt) (1.5)

These models are pre-trained with large scale data. After pre-training, hidden layer

representations of words are used as the embeddings of these words for various tasks.

Words that are used together have similar word embeddings due to the training strat-

egy. For example, the vectors of “king” and “queen” have high cosine similarity while

the vectors of “king” and “internet” have low cosine similarity. Furthermore, these

vectors support algebraic operations, such as addition and subtraction. One famous

example is that the resulting vector of the operation “king” - “man” + “woman” is

most similar to the vector of “queen”. Here, we remove “man” property from “king”,

then add “woman” property. As expected, this transformation leads to somewhere near

“queen” vector. These functionalities are not possible with BoW, as it cannot create

distributed representations. However, Word2Vec embeddings do not contain word order

information and contextual information. Words can have different meanings depending

on their contexts. For example, the word apple should have different representations

for “apple versus windows” and “apple versus banana”; Word2Vec creates only one

representation for “apple”.

Contextualized embeddings are proposed to mitigate this problem. They are ob-

tained by pre-training deep architectures to solve different language model objectives.

These pre-trained architectures, which can create dynamic embeddings depending on

5

the words and their context, are used for various tasks. ELMo (Embeddings from Lan-

guage Models) [3] uses bidirectional long-short term memory (BiLSTM) [4] to predict

a word given its context. Since BiLSTM is used for creating embeddings, both left-to-

right and right-to-left contexts are implicitly encoded. With the invention of Trans-

former [5], researchers began to shift from BiLSTM-based methods to transformer-

based methods. The transformer is shown to be more appropriate for training in

large datasets due to its self-attention mechanism [6]. OpenAI GPT (Generative Pre-

training) [7] has the same objective as ELMo in the forward direction, except it uses

transformer architecture. BERT (Bidirectional Encoder Representations from Trans-

formers) [8] also uses transformer architecture with bidirectional pre-training tasks.

Training objectives affect the information encoded in embeddings. Each objective and

architecture presumes a different inductive bias.

In this thesis, we focused on BERT as it uses multiple training objectives, which

are the next sentence prediction (NSP) and the masked language model (masked LM).

These objectives can create an inhibitory effect or a regulatory effect on each other.

For this reason, we applied a hierarchical multitask learning approach to BERT by

modifying its original structure. Our motivation is to create embeddings that encode

the information from each task in a balanced way. Our contributions are as follows:

• Instead of training masked LM and NSP classifiers with the last layer embed-

dings, we trained masked LM classifiers with embeddings from lower layers of

the transformer (Lower Mask). We do the same experiment for the NSP classi-

fier as well (Lower NSP). By evaluating the performance of the embeddings on

downstream tasks, we provide insights about the hierarchy between pre-training

tasks.

• We incorporate the input or the output of the NSP classifier to the input of the

masked LM classifier in order to enrich the sentence-level embedding.

• We propose a new pre-training objective, bigram shift, in addition to masked LM

and NSP tasks to enforce embeddings also to learn word order information.

6

Our experimental results show that Lower NSP has a competitive performance

when compared with the original BERT structure. We also evaluate the learned em-

beddings on probing tasks to provide useful insights into training strategies. Results

on probing task experiments show that using bigram shift task for pre-training is useful

for specific tasks.

The remaining part of this thesis is organized as follows. In Chapter 2, we mention

preliminaries about contextual embeddings and multitask learning. In Section 3, we

explain our methods in detail. In Chapter 4, we report our experiment results. Lastly,

we give a conclusion in Chapter 5.

7

2. PRELIMINARIES

2.1. Deep Contextualized Embeddings

Understanding the usage of words is essential to solve language-related problems.

The pre-trained language models (LM) aim to learn general information about the

language. It has been shown that transferring the knowledge encoded in these mod-

els to the various tasks is useful [3, 7, 8]. These LMs are pre-trained with large-scale

data with different deep architectures and different objectives. Then, output or hidden

representations of these deep architectures are used as embeddings of words. These

embeddings can be easily fine-tuned on various downstream tasks with high perfor-

mance. As these models take words with their context as input, they can generate

dynamic embeddings depending on the context. Therefore, there is no global vector

for a given word with these models. This section explains three common models that

are shown to be successful in many tasks: ELMo, OpenAI GPT, and BERT.

2.1.1. Embeddings from Language Models

ELMo is pre-trained with the next word prediction task in a sequence with a vast

amount of data. Due to the nature of the task, preparing the data is not difficult; we

can use plain texts without any label. This task forces the model to learn the most

possible and meaningful sequences and word order rules of a language. ELMo is based

on BiLSTM. LSTM is the special type of recurrent neural network (RNN) that can cope

with long term dependencies. It has a chain-like structure to take sequential input.

Its cell state carries sequential information for long steps, and its gating mechanism

prevents vanishing or exploding gradient problem. BiLSTM (Figure 2.1) processes the

sequence from both left-to-right and right-to-left direction, then combines them. In

pre-training,
−→
hLt is used with a classifier to predict the (t+ 1)th word in the sequence

where L is the last layer index. The same is done in the reverse direction to predict

the previous word;
←−

hL(t+1) is used with a classifier to predict the (t)th word. With

8

ℎ11 ℎ12 ℎ13

ℎ21 ℎ22 ℎ23

ℎ11 ℎ12 ℎ13

ℎ21 ℎ22 ℎ23

𝑥1
apple

𝑥2
is

𝑥3
red

𝑥1
apple

𝑥2
is

𝑥3
red

LEFT-TO-RIGHT RIGHT-TO-LEFT

Figure 2.1. BiLSTM model. Each circle is an LSTM cell. x denotes initial word

embeddings and hij denotes hidden states where i is the layer index and j is the jth

word in the sequence.

this structure, ELMo creates embeddings that contain both the next and previous

word information. For downstream tasks, a linear combination of all hidden states

and initial embedding is used to get different information encoded in each layer. For

example in Figure 2.1, “apple is red” is represented as a sequence of vectors x1, x2, x3

where xi is a fixed-size word embedding (e.g. word2vec). BiLSTM takes this input and

creates hidden states. Then the embedding of “red” is created as follows:

Ered = λ1x3 + λ2[
−→
h13;

←−
h13] + λ3[

−→
h23;

←−
h23] (2.1)

where λi is trainable parameter with the constraint
∑

i λi = 1.

2.1.2. Generative Pre-training

GPT learns the LM with the same objective as ELMo that is the next word pre-

diction. Instead of BiLSTM, it uses transformer decoder architecture. ELMo encodes

both left-to-right and right-to-left information via BiLSTM. However, the transformer

decoder can only process the sequence in the forward direction. One of the biggest

9

ℎ1 ℎ2 ℎ3

Self-Attention Layer

MLP

Self-Attention Layer

MLP

𝑥1
apple

𝑥2
is

𝑥3
red

Figure 2.2. GPT model. This example model has two decoder layers, but the original

has 12 layers. xi denotes the input embedding of ith word. hi denotes the last layer

activation of ith word.

10

advantages of the transformer is its ability to model very long sequences. In BiLSTM,

backpropagating the error from the last timestep to the first timestep is problematic

for long sequences. However, the error backpropagation is independent of the sequence

size in the transformer. Also, it processes the words in the sequence in parallel, unlike

BiLSTM, which leads to faster training.

GPT model structure is shown in Figure 2.2. In pre-training, to predict the next

word, the last layer output of the current word is used with a linear layer with softmax

function. For example, to predict word “red”, h2 is used. For downstream tasks, the

last layer outputs (hi) are used as contextualized word embeddings. Later, GPT is

proceeded by GPT-2 [9] and GPT-3 [10] that have huge number of parameters with

increasing text generation performance.

2.1.3. Transformer

The transformer has two main parts: the encoder and the decoder. Both compo-

nents can have a different number of layers as in MLP. Each encoder layer includes the

self-attention layer and MLP, and each decoder layer includes the self-attention layer,

encoder-decoder attention layer, and MLP. While encoder takes all the sequence as

input, the decoder only attends to previous words. Self-attention provides attending

to the most relevant parts in the sequence to process a word. There are three special

vectors for each word in the sequence which are query, key, and value vectors. These

vectors are trainable parameters. While processing a word, the scores for each word is

calculated by taking the dot product of the query vector of the current word and the

key vectors of others. The softmax of the scores can be treated as attention scores.

The weighted average of value vectors with these attention scores is taken to cre-

ate new representations of words. These representations not only include information

about the word itself but information from all words. In multi-head attention, multi-

ple self-attention modules gather information from different segments of the sequence.

11

Multi-head attention is calculated as follows:

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V (2.2)

where Q, K, V are query, key and value matrices respectively, and dk is the dimen-

sionality of word vectors. These are calculated by multiplying the previous layer’s

activations with trainable matrices. QKT gives information about how the words re-

lated to each other. Then each word takes a convex combination of values of all words

to create its new representation.

The transformer does not process words sequentially; therefore, we need to in-

dicate the position of the words explicitly. For this reason, positional embeddings are

added to word embeddings. These positional embeddings can be either trainable or

constant.

2.1.4. Bidirectional Encoder Representations from Transformers

BERT pre-training (Figure 2.3) is done by predicting randomly masked words

(masked language model, masked LM) and predicting whether two sentences are con-

secutive or not (next sentence prediction, NSP). These two objectives are optimized

simultaneously. It uses transformer encoder architecture. As mentioned above, ELMo

can create contextual embeddings by encoding both left-to-right and right-to-left direc-

tions, while GPT can only include left-to-right information because of the pre-training

task (next word prediction) and transformer decoder structure. However, these meth-

ods do not gather information simultaneously from both the left and right contexts.

BERT handles this issue by predicting masked words with a multi-head attention mech-

anism, which allows the model to attend both previous and later words. In addition to

word embeddings, BERT also learns a sentence embedding, which helps training some

downstream tasks such as textual entailment. BERT forces the model to learn sentence

relations with the NSP task. Two different models, named BERTbase and BERTlarge,

which have different hyper-parameters, were published in the original paper. The for-

12

mer has 12 encoder layers; the latter has 24 encoder layers.

Sentence A: ‘my’ ‘apple’ ‘isn’ ’‘’ ‘t’ ‘working’

Sentence B: ‘creating’ ‘em’ ‘##bed’ ‘##ding’ ‘is’ ‘not’ ‘easy’

Sentence A: ‘my’ ‘apple’ ‘isn’ ’‘’ ‘t’ ‘[MASK]’

Sentence B: ‘creating’ ‘em’ ‘##bed’ ‘##ding’ ‘is’ ‘[MASK]’ ‘easy’

[CLS] [SEP]Sentence A Sentence B [SEP]

BERT

ℎ[CLS] ℎ[SEP] ℎ[SEP]ℎi ℎj

𝑥[CLS] 𝑥[SEP] 𝑥[SEP]𝑥i 𝑥j

Sentence A: My apple isn’t working

Sentence B: Creating embedding is not easy

Figure 2.3. BERT model. xi denotes the input embedding of ith word. hi denotes the

last layer activation of ith word.

The details of BERT training are as follows. BERT takes words of a sequence as

its input. This sequence consists of either a single segment or a pair of two segments.

Each segment includes one or more natural sentences or portions of sentences. It uses

the WordPiece [11] tokenization technique, which divides the words into commonly

used sub-words. There are additional special tokens: [CLS] as a start token and [SEP]

as an end token to indicate segment ends. The last hidden state of the [CLS] token is

the sequence embedding. Each token xi is represented by the summation of three em-

beddings: token embeddings, segment embeddings, and positional embeddings. Here,

segment embeddings represent the order of the segments, and the position embeddings

show the index of the token in the sequence. These embeddings are trainable and

updated in both pre-training and fine-tuning steps. For masked LM task, 15% of all

WordPiece tokens in each sequence are masked randomly. The data is duplicated ten

13

times; therefore, different words are masked for each sequence. Final hidden vectors

corresponding to these masked tokens are fed into a softmax layer to predict the correct

WordPiece tokens. This method is analogous to denoising autoencoders [12] where we

corrupt the input and predict its original version. In the masking step, the selected

token is replaced with [MASK] token 80% of the time or with a random token 10% of

the time or unchanged 10% of the time. Segments in the input sequence are either

consecutive sentences or two unrelated sentences. The last hidden vector correspond-

ing to [CLS] token (sequence embedding) is fed into another softmax layer to predict

“isNext” or “notNext” label. In the pre-training step, masked LM and NSP classifiers

are trained simultaneously using the same training instances. The training instances

are generated in two sizes: short length sequences (up to 128 tokens) and long length

sequences (up to 512 tokens). The model is trained with short length sequences for

90% of the steps, then with long length sequences for the rest 10% of the steps to make

faster pre-training.

There are different studies to replicate and improve BERT model architecture.

Robustly Optimized BERT Approach (RoBERTa) [13] makes some adjustments for

pre-training. The model is pre-trained longer on the more data with larger batch sizes

to have a better LM. The original BERT uses the sub-word level vocabulary with size

30K tokens, RoBERTa uses a more extensive vocabulary with size 50K tokens. The

NSP loss is removed; the model is pre-trained with only masked LM task. It takes full

sentences as input instead of partial segments. While the original BERT makes the

masking operation for once before training, RoBERTa makes it in each step randomly.

This dynamic masking operation provides the model to see different masked words for

sequences in each iteration. Also, RoBERTa does not use shorter length sequences; the

model is pre-trained with full-length sequences. A Lite BERT (ALBERT) [14] proposes

two ways to reduce the parameter size of the BERT structure. The first technique is the

factorization of the embedding parameters. Instead of using one big sized parameter

matrix to project WordPiece embeddings to the hidden representations, two different

factorized matrices with fewer parameters are used. The second technique is the cross-

layer parameter sharing. The constraint is that all layers will have the same parameters

14

in the model. They also proposed a new pre-training task, sentence order prediction

(SOP), instead of NSP. This task is predicting whether two consecutive segments are

swapped or not. SOP forces the model to evaluate the coherence between two segments,

while NSP focuses on their relatedness.

2.2. Multitask Learning

Multitask learning (MTL) [15] is an approach to construct one model for learn-

ing related tasks to achieve a better generalization performance. Each task assumes

a different inductive bias by its nature. MTL forces the model to find a hypothesis,

a set of learned parameters that should satisfy all tasks. This leads to a regularized

model that contains all inductive biases. MTL is inspired by human learning. While

trying to learn new things, we usually apply the knowledge we have gained from similar

and relative events. There are successful examples of MTL in various domains such

as computer vision [16], and reinforcement learning [17]. As there is only one model

for multiple tasks, some parameters have to be shared across tasks. In deep learning

architectures, there are different ways to design shared parameters of the model [18].

One way is to share initial layers for all tasks and keep task-specific output layers spe-

cialized for each task. This is known as hard parameter sharing. Another way is to use

different models for each task but force them to be similar by applying regularization

techniques known as soft parameter sharing. Generally, the last layer activations are

used to solve multiple tasks (Figure 2.4a). Besides this parallel structure, the hier-

archical MTL approach models tasks successively (Figure 2.4b). With this approach,

complex tasks are predicted at deeper layers to take advantage of representations that

are learned from lower-level tasks [19–21].

There are various issues about MTL. One issue is the task selection. MTL does

not guarantee an increment in the performance; in case of training a model with tasks

that do not support each other, the accuracy for each task can be lower than their single

task structures [22]. Even if the selected tasks are related to each other, their com-

plexities can be different. There is a risk that straightforward tasks might overfit the

15

Shared Layers1,2,3

TASK1 TASK2 TASK3

Shared Layers1,2,3

Shared Layers2,3

TASK3

TASK2

TASK1

(a) Parallel MTL (b) Hierarchical MTL

Figure 2.4. MTL architectures. Parameters of gray-colored layers are learned to solve

each task independently. Parameters of shared layers are learned to solve more than

one task which are indicated by task numbers.

16

data before more complex tasks have not been learned yet. This risk can be eliminated

to some extent, with some regularization techniques and by modeling task hierarchies.

Another critical issue is to decide the order of tasks during training iterations. The

model should be regularized to avoid catastrophic forgetting where previously learned

parameters are forgotten while adapting to new tasks.

There are several works for a hierarchical MTL approach on different NLP tasks.

Søgaard and Goldberg [19] applied this approach for some of the most known NLP

tasks: part-of-speech (POS) tagging, chunking, and parsing. From a linguistic perspec-

tive, POS tags can be used as features for chunking and parsing problems; therefore,

the POS tagging task is positioned as a lower-level task by predicting it at lower levels

of the deep network. Different models are trained for POS tagging+chunking and POS

tagging+parsing task combinations: single-task training (without POS tagging task),

parallel MTL (POS tagging task is learned at the outer layer, Figure 2.4a), and hier-

archical MTL (POS tagging task is learned at the inner layers, Figure 2.4b). BiLSTM

is used for these experiments. For each training iteration, a task is selected randomly

to compute the expected loss and update parameters.

Hashimoto et al. [20] have chosen the tasks depending on their linguistic hierar-

chies. Respectively, a deep network is designed for POS tagging, chunking, dependency

parsing, semantic relatedness, and textual entailment. The first two tasks are word-

level, third is syntactic, and the last two tasks are semantic. BiLSTM is used for each

task, and its number of layers is successively increased by order of the task. There are

shortcut (skip) connections from lower-level tasks to deeper-level tasks. They propose

a regularization technique to deal with the catastrophic forgetting problem. During

training, tasks are not selected randomly but selected by their hierarchy in the model.

At each epoch, the model is trained over the full dataset of a task. For the next task,

parameters are regularized not to deviate too much from the previous task. This is

known as successive regularization.

17

Sanh et al. [21] have chosen named entity recognition (NER), entity mention

detection (EMD), coreference resolution (CR) and relation extraction (RE) tasks. They

focused on semantic tasks because they thought that semantic and syntactic tasks

might not be related to being learned together. The CR and RE tasks are positioned

at the deepest level. For each task, BiLSTM is implemented as an encoder, and its

output is fed to the corresponding conditional random fields. As in [20], there are

shortcut connections from the lowest level to the deeper-level encoders. The order of

tasks during training is random.

18

3. METHODS

In the original BERT pre-training, there are two objectives: masked LM and NSP.

These are optimized simultaneously to learn a language model (LM). From a multitask

learning point of view, minimizing the loss of two objectives at the same time should

enhance the performance if these two tasks are related to each other [22]. In this work,

we focus on BERT as it uses multiple training objectives. We aim to apply successful

approaches from multitask learning to LM learning. To our knowledge, there is no

prior work that analyzes the relation between these two tasks. As the relation of tasks

is an essential factor, another important factor is the task complexity. For example,

if one of these tasks is more straightforward than the other, the model may overfit to

easier task while the training for the other task is not complete. This is an unwanted

consequence since a part of the model memorizes the task instead of generalizing it.

This could have been prevented by early stopping; however, it is hard to decide when

to stop even for one task [23].

In order to describe the contributions of this thesis, we first define BERT in a

formal way. Let s be the example sequence:

s = [x[CLS], x1, x2, . . . , x[SEP], xk, xk+1, . . . , x[MASK], . . . , x[SEP]] (3.1)

where xi is the summation of token, segment and position embeddings of ith token

in the sequence. [CLS], [SEP], and [MASK] are special tokens: x[CLS] embedding

represents the start of the sequence, x[SEP] embedding indicates the end of each segment,

x[MASK] embedding indicates the masked tokens. Each xi embedding and x[CLS], x[SEP],

x[MASK] embeddings are trainable input vectors. In the original BERTbase architecture,

there is an encoder stack with 12 encoder layers. Let us denote this encoder stack by

E. E takes the whole sequence s as input, and creates the last layer activation oi for

19

ith word in the sequence:

[o[CLS], o1, o2, . . . , o[SEP], ok, ok+1, . . . , o[MASK], . . . , o[SEP]] = E(s) (3.2)

For downstream tasks, oi is used as contextualized embedding of ith word. For pre-

training, o[CLS] and o[MASK] are used to train masked LM and NSP classifiers:

pm = Cm(o[MASK]) (3.3)

pn = Cn(o[CLS]) (3.4)

where Cm is the masked LM classifier, Cn is the NSP classifier, pm and pn are output

probabilities of WordPiece tokens and the next sentence probability, respectively.

3.1. Changes in Pre-training

We experimented a multitask learning approach to BERT pre-training in several

ways:

(i) NSP classifier is trained with [CLS] embedding from a selected lower layer instead

of the last layer. We refer to this model as Lower NSP (Figure 3.1a). Here [CLS]

is the start token of the input. This embedding is considered to be a sentence-

level embedding [8]. Since we do not exactly know the task hierarchy, we also do

the opposite where the masked LM classifier is trained with the embeddings from

a selected lower layer, which correspond to masked tokens in the input. We refer

to this model as Lower Mask (Figure 3.1b).

Motivation: Modeling task hierarchies might be beneficial for a better LM. Learn-

ing the hierarchy between these tasks can shed light on other studies from a lin-

guistic perspective.

Definition: In Lower NSP and Lower Mask, there are two encoder stacks instead

of one. These encoder stacks are represented by E1 and E2. E1 is called the first

or lower encoder, E2 is called the second encoder. To have a fair comparison with

20

the BERTbase, the total number of encoder layers in these stacks is equal to 12.

For example, if E1 has five layers, then E2 has seven layers. Let us denote the

last layer activations of E1 and E2 as hi and oi for ith token, respectively:

h = [h[CLS], h1, h2, . . . , h[SEP], hk, hk+1, . . . , h[MASK], . . . , h[SEP]] = E1(s) (3.5)

[o[CLS], o1, o2, . . . , o[SEP], ok, ok+1, . . . , o[MASK], . . . , o[SEP]] = E2(h) (3.6)

where s is the input sequence as in Equation 3.1. Instead of computing E(s) as in

the original BERT model, here E2(E1(s)) is computed. In the original structure,

errors of both tasks are backpropagated from the last layer activations, E(s). In

our proposed structure, the error for one task is backpropagated from E1(s) and

the error for the other task is backpropagated from E2(h). This forces encoder

stacks to specialize for different tasks. For Lower NSP, [CLS] embedding from

E1(s) is used to train NSP classifier. For Lower Mask, [MASK] embeddings from

E1(s) are used to train masked LM classifier. These are summarized in Table 3.1.

Table 3.1. Inputs to NSP and masked LM classifiers for different models.

Models NSP classifier Masked LM classifier

Original BERT o[CLS] o[MASK]

Lower NSP h[CLS] o[MASK]

Lower Mask o[CLS] h[MASK]

(ii) We concatenate [CLS] embedding, (Figure 3.2a), or the output of the NSP clas-

sifier to the input of masked LM classifier (Figure 3.2b). This will (1) indirectly

regularize the sentence-level embedding since it will be used for both NSP and

masked LM tasks (2) explicitly provide sentence-level information to masked LM

classifier.

Motivation: Regularization of the sentence-level embedding.

Definition: There is no change in the inputs of the NSP classifier for all models.

However, [CLS] embedding, which is used to train the NSP classifier, is also used

21

as an additional input to masked LM classifier. These changes are summarized

in Table 3.2.

Table 3.2. Inputs to masked LM classifier for concatenated models.

Models No concat. CLS concat. NSP concat.

Original BERT o[MASK] [o[CLS]; o[MASK]] [pn; o[MASK]]

Lower NSP o[MASK] [h[CLS]; o[MASK]] [pn; o[MASK]]

Lower Mask h[MASK] [o[CLS];h[MASK]] [pn;h[MASK]]

(iii) Motivated from probing tasks [24], we randomly swap the order of bigrams 15%

of the time for each input. We use an additional classifier, which predicts whether

a token is in the right position in the sentence or not. This will force embeddings

to encapsulate the word order information.

(iv) In our experiments for Lower NSP models, we see that the NSP classifier fits

faster than the masked LM classifier. Further training will cause overfitting for

the NSP classifier. Therefore we do experiments on freezing all parts that affect

the NSP classifier. We refer to this model as Lower NSP-freeze.

. . .

[CLS]
TOK 1

.

.
[SEP]
TOK 1

.

.
[SEP]

.

.

.

TRANSFORMER

M
AS

KE
D

LM
N
SP

. . .

[CLS]
TOK 1

.

.
[SEP]
TOK 1

.

.
[SEP]

.

.

.

TRANSFORMER

.

.

.

M
AS

KE
D

LM
N
SP

(a) Lower NSP (b) Lower Mask

Figure 3.1. Hierarchical BERT architectures. (a) using lower level embedding of

[CLS] token for NSP classifier; (b) using lower level embeddings of masked tokens for

masked LM classifier.

22

. . .

[CLS]
TOK 1

.

.
[SEP]
TOK 1

.

.
[SEP]

.

.

.

TRANSFORMER

M
AS

KE
D

LM
N
SP

. . .

[CLS]
TOK 1

.

.
[SEP]
TOK 1

.

.
[SEP]

.

.

.

TRANSFORMER

N
SP

M
AS

KE
D

LM

(a) CLS concatenation (b) NSP concatenation

Figure 3.2. Concatenation techniques. (a) concatenation of [CLS] embedding to each

input of masked LM classifier; (b) concatenation of the output of NSP classifier to

each input of masked LM classifier.

3.2. Changes in Fine-tuning

There are several changes in the fine-tuning for downstream tasks to accommodate

the changes in the pre-training. In the original BERT structure, last layer embeddings

are used for both sentence-level tasks (Figure 3.3a) and token-level tasks (Figure 3.3b):

ps = Cs(o[CLS]) (3.7)

pt = Ct(oi) (3.8)

where Cs is the sentence-level classifier, Ct is the token-level classifier, ps and pt are

output probabilities of sentence and token classes, respectively. Sentence-level task

means there is only one output label for a sentence (sequence). For example, the

prediction of the sentiment of a given sequence can be considered as a sentence-level

task. Token-level task means each token in a sequence is labeled. For instance, in

POS-tagging problem, each token in the sequence has to be predicted.

With our hierarchical approach, [CLS] embedding is selected from the layer which

we train NSP classifier (Figure 3.1a); token embeddings are selected from the layer

23

CCL
S

em
be

dd
in

g

C

To
ke

n
em

be
dd

in
gs

(a) Sentence-level task (b) Token-level task

Figure 3.3. Downstream architectures. c is a classifier. (a) [CLS] embedding from

NSP level is used for sentence-level tasks. (b) Embeddings from masked LM level are

used for token-level tasks.

which we train masked LM classifier (Figure 3.1b). For Lower NSP, [CLS] embedding

from E1(s) is used to train Cs and token embeddings from E2(h) are used to train

Ct. For Lower Mask, [CLS] embedding from E2(h) is used to train Cs and token

embeddings from E1(s) are used to train Ct. These changes are summarized in Table

3.3.

Table 3.3. Inputs for sentence-level and token-level downstream tasks.

Models Sentence-level task Token-level task

Original BERT o[CLS] oi

Lower NSP h[CLS] oi

Lower Mask o[CLS] hi

If [CLS] embedding or NSP output is included in the pre-training, we also include

this extra information in the fine-tuning for token-level tasks (Figure 3.4a, 3.4b). Since

they are trained together in the pre-training step, token embeddings may depend on

this extra information. There is no change in the input for sentence-level tasks. These

are summarized in Table 3.4.

24

C
CL

S
+

To
ke

n
em

be
dd

in
gs

C

N
SP

 +
 T

ok
en

em

be
dd

in
gs

(a) CLS concatenation (b) NSP concatenation

Figure 3.4. Downstream architectures with concatenated parts. c is a classifier. In

(a), [CLS] embedding from NSP level is concatenated to each input. In (b), NSP

classifier output is concatenated to each input.

Table 3.4. Inputs for token-level downstream tasks for concatenated models.

Models No concat. CLS concat. NSP concat.

Original BERT oi [o[CLS]; oi] [pn; oi]

Lower NSP oi [h[CLS]; oi] [pn; oi]

Lower Mask hi [o[CLS];hi] [pn;hi]

25

4. EXPERIMENTS AND RESULTS

4.1. Datasets

We tested different proposed architectures on several datasets. Due to computa-

tional issues, we make pre-training on small datasets as opposed to the original BERT.

For this, we have two different approaches. First, we used the raw text data of the

downstream task for pre-training. In the second approach, we use a different raw text

with similar size of the first data. We experimented on two downstream tasks: question

answering (token-level task) and textual entailment (sentence-level task).

For question answering, we used SQuAD1.1 (The Standford Question Answering

Dataset) [25] and SQuAD2.0 [26] datasets. These two datasets are used for both pre-

training and fine-tuning on downstream tasks. Additionally, we used WikiText-2 for

pre-training. We followed the same strategy as in BERT to create pre-training data

from paragraphs of these three datasets separately. We pre-train the model with inputs

that contain less than 128 tokens for 90% of steps, as in BERT. However, for the rest

of 10% of steps, we used inputs containing less than 384 tokens instead of 512.

For textual entailment, we used Multi-Genre Natural Language Inference corpus

[27] (MultiNLI). This dataset does not contain paragraphs but independent sentences.

Therefore we did not use this dataset for pre-training. Instead, we used the models

pre-trained on the WikiText-2 dataset.

4.1.1. Pre-training Data Preparation

For SQuAD1.1, SQuAD2.0, WikiText-2, each paragraph is treated as a separate

document while creating pre-training data. As a first step, these documents are split

into segments by some punctuations, e.g. “.”, “:”, “?”, “!”, “?”. The separated seg-

ments are pre-processed by an uncased tokenizer, making tokens lowercase and dividing

26

them into WordPiece tokens. Generating pre-training sequences from these processed

documents is duplicated ten times to create more diverse training examples. As men-

tioned above, the training examples are created with two different maximum combined

sequence lengths: 128 and 384. For both sequence lengths, shorter sequences are cre-

ated with a 10% probability. To prepare instances for the NSP task, a random number

of consecutive segments are received as the first sequence for each document. The

second sequence is taken from the remaining segments in the same document with a

50% probability (NSP positive). Different consecutive segments are taken from another

randomly selected document with a 50% probability (NSP negative). After these two

sequences are randomly truncated form the beginning or end based on the maximum

sequence length, they are combined with specific tokens [CLS] and [SEP]. Except for

these specific tokens, the tokens are randomly masked with the same percentages as in

the original BERT.

Table 4.1. The number of pre-training examples in the train sets. Short column

represents the sequences with a maximum length of 128 tokens. Long column

represents the sequences with a maximum length of 384 tokens.

Train Data
SQuAD1.1 SQuAD2.0 WikiText-2

Short Long Short Long Short Long

NSP-Positive 151,099 129,960 151,968 130,887 125,093 104,099

NSP-Negative 252,206 197,469 254,986 198,905 229,304 183,603

Table 4.2. The number of pre-training examples in the validation sets.

Validation Data
SQuAD1.1 SQuAD2.0 WikiText-2

Short Long Short Long Short Long

NSP-Positive 17,096 14,469 10,355 8,589 13,017 11,083

NSP-Negative 28,457 21,758 16,845 12,895 23,696 19,138

Dataset information regarding SQuAD1.1, SQuAD2.0 and WikiText-2 datasets

are shown in Tables 4.1 and 4.2 for train and validation sets, respectively. Notice

27

that there are more NSP-negative examples for all datasets. This is because there are

documents that consist of a single segment that prevents the dataset creation procedure

from generating an NSP-positive example.

4.1.2. Downstream Data Preparation

Question answering is a token-level task, where the model predicts the start and

end index of the answer in the paragraph when a question-paragraph pair is given. It

is mainly an extractive question answering. The answer is direct in the paragraph; it

is not formed with different words. SQuAD datasets include paragraphs and different

questions related to these paragraphs. SQuAD2.0 is an extended version of SQuAD1.1.

It contains questions that do not have a possible answer in the given context.

Table 4.3. The number of examples in the SQuAD sets.

SQuAD1.1 SQuAD2.0

Train Validation Train Validation

Total examples 87,599 10,570 130,319 11,873

No-answer examples 0 0 43,498 5,945

SQuAD dataset information is given in Table 4.3. These question-paragraph pairs

are pre-processed to train two classifiers: one predicts which token is the start, and the

other predicts which token is the end of the answer, with BERT embeddings as their

inputs. As mentioned above, the maximum combined sequence length for pre-training

a BERT model is 384 in our architecture. Therefore, the question-paragraph pairs

are processed to have a maximum of 384 WordPiece tokens. The question is treated

as the first sequence and the paragraph as the second sequence for each example.

The maximum length of 64 WordPiece tokens is set for the first sequence. Firstly, the

question and the paragraph are tokenized separately. If the tokenized question is longer

than 64, the first 64 WordPiece tokens are taken. The tokenized paragraph is divided

into alternative small pieces containing the answer with 128 stride size. Thus, it is

28

possible to create more than one training instance from a single question-paragraph

pair. These two tokenized and truncated sequences are combined with the specific

tokens [CLS] and [SEP]. In Table 4.4, an example question-paragraph pair is shown.

Different from SQuAD1.1, the start and end indices of the no-answer instances are

labeled as 0 in SQuAD2.0. The number of examples to train QA classifiers regarding

SQuAD1.1 and SQuAD2.0 datasets are shown in Table 4.5.

Table 4.4. Data preparation example from SQuAD1.1 dataset.

Question: What could a teacher help in organizing?

Paragraph: A teacher’s professional duties may extend beyond formal teaching. Out-

side of the classroom teachers may accompany students on field trips, supervise study

halls, help with the organization of school functions, and serve as supervisors for ex-

tracurricular activities. In some education systems, teachers may have responsibility

for student discipline.

Answer: school functions

TOKENIZATION

Question: [‘what’, ‘could’, ‘a’, ‘teacher’, ‘help’, ‘in’, ‘organizing’, ‘?’]

Paragraph: [‘a’, ‘teacher’, ‘”, ‘s’, ‘professional’, ‘duties’, ‘may’, ‘extend’, ‘beyond’,

‘formal’, ‘teaching’, ‘.’, ‘outside’, ‘of’, ‘the’, ‘classroom’, ‘teachers’, ‘may’, ‘accompany’,

‘students’, ‘on’, ‘field’, ‘trips’, ‘,’, ‘supervise’, ‘study’, ‘halls’, ‘,’, ‘help’, ‘with’, ‘the’, ‘or-

ganization’, ‘of’, ‘school’, ‘functions’, ‘,’, ‘and’, ‘serve’, ‘as’, ‘supervisors’, ‘for’, ‘extra’,

‘##cu’, ‘##rricular’, ‘activities’, ‘.’, ‘in’, ‘some’, ‘education’, ‘systems’, ‘,’, ‘teachers’,

‘may’, ‘have’, ‘responsibility’, ‘for’, ‘student’, ‘discipline’, ‘.’]

COMBINATION

[[CLS] ‘what’, ‘could’, ‘a’, ‘teacher’, ‘help’, ‘in’, ‘organizing’, ‘?’ [SEP] ‘a’, ‘teacher’, ‘”,

‘s’, ‘professional’, ‘duties’, ‘may’, ‘extend’, ‘beyond’, ‘formal’, ‘teaching’, ‘.’, ‘outside’,

‘of’, ‘the’, ‘classroom’, ‘teachers’, ‘may’, ‘accompany’, ‘students’, ‘on’, ‘field’, ‘trips’, ‘,’,

‘supervise’, ‘study’, ‘halls’, ‘,’, ‘help’, ‘with’, ‘the’, ‘organization’, ‘of’, ‘school’, ‘func-

tions’, ‘,’, ‘and’, ‘serve’, ‘as’, ‘supervisors’, ‘for’, ‘extra’, ‘##cu’, ‘##rricular’, ‘activi-

ties’, ‘.’, ‘in’, ‘some’, ‘education’, ‘systems’, ‘,’, ‘teachers’, ‘may’, ‘have’, ‘responsibility’,

‘for’, ‘student’, ‘discipline’, ‘.’ [SEP]]

29

Table 4.5. The number of fine-tuning examples for question-answering task.

SQuAD1.1 SQuAD2.0

Train Validation Train Validation

Total examples 87,995 10,671 131,944 12,232

No-answer examples 0 0 44,732 6,244

Textual entailment is a sentence-level classification task which predicts the re-

lation of two sentences: premise and hypothesis. There are three classes: entailment

(the premise entails the hypothesis), contradiction (the premise contradicts the hypoth-

esis), and neutral. MultiNLI has two validation sets: matched set and mismatched set.

The matched set contains examples from the same source as the training set; the

mismatched set includes examples from different sources.

Table 4.6. The number of examples in the MultiNLI sets.

Train Matched Validation Mismatched Validation

Total examples 392,702 9,815 9,832

MultiNLI dataset information is given in Table 4.6. Each premise-hypothesis pair

is pre-processed for the BERT input structure. Firstly, they are tokenized separately.

If the total length of these tokenized sequences is longer than 384, they are truncated

randomly until 384. Finally, they are combined with [CLS] and [SEP] tokens. In Table

4.7, an example premise-hypothesis pair is shown. The processed data size is equal to

the original MultiNLI dataset.

4.1.3. Probing Tasks

To evaluate the quality of the learned embeddings, we used probing tasks in [24].

We only assess embeddings that are pre-trained on the WikiText-2 dataset since these

are used for both question answering and textual entailment tasks. Probing tasks are

30

Table 4.7. Data preparation example from MultiNLI dataset.

Premise: At the other end of Pennsylvania Avenue, people began to line up for a White

House tour.

Hypothesis: People formed a line at the end of Pennsylvania Avenue.

Label: entailment

TOKENIZATION

Premise: [‘at’, ‘the’, ‘other’, ‘end’, ‘of’, ‘pennsylvania’, ‘avenue’, ‘,’, ‘people’, ‘began’,

‘to’, ‘line’, ‘up’, ‘for’, ‘a’, ‘white’, ‘house’, ‘tour’, ‘.’]

Hypothesis: [‘people’, ‘formed’, ‘a’, ‘line’, ‘at’, ‘the’, ‘end’, ‘of’, ‘pennsylvania’, ‘avenue’,

‘.’]

COMBINATION

[[CLS] ‘at’, ‘the’, ‘other’, ‘end’, ‘of’, ‘pennsylvania’, ‘avenue’, ‘,’, ‘people’, ‘began’, ‘to’,

‘line’, ‘up’, ‘for’, ‘a’, ‘white’, ‘house’, ‘tour’, ‘.’ [SEP] ‘people’, ‘formed’, ‘a’, ‘line’, ‘at’,

‘the’, ‘end’, ‘of’, ‘pennsylvania’, ‘avenue’, ‘.’ [SEP]]

sentence-level classification problems that require different linguistic properties. If a

classifier trained by the sentence embeddings is successful for a probing task, it can be

said that these embeddings encode the linguistic property that the task focuses on. It

is a valuable method for the interpretation of the learned embeddings.

Ten different probing tasks are categorized into three groups: surface information

tasks, syntactic information tasks, and semantic information tasks. Surface information

tasks are sentence length (SL) and word content (WC). Syntactic information tasks are

tree depth (TD), bigram shift (BS), and top constituents (TC). Semantic information

tasks are tense (T), subject number (SN), object number (ON), semantic odd man out

(OM) and coordination inversion (CI). For each task, there is a train set with 100K

examples, a validation set with 10K examples, and a test set with 10K examples. In

these sets, the number of classes is balanced. These sets are pre-processed for the

BERT input structure. Each example is tokenized with a WordPiece tokenizer. Then,

[CLS] token is added to the beginning of the tokenized sentence, [SEP] token added

to the end. Definitions of the tasks are as follows:

31

• Sentence Length (SL): Predict the length of the sentences. Sentences are divided

into six categories based on the number of tokens they contain. These categories

are determined by the following ranges: 5-8, 9-12, 13-16, 17-20, 21-25, 26-28. It

is to test if the sentence embedding includes the count of the tokens that form

the sentence.

• Word Content (WC): Predict whether a sentence contains one of the most fre-

quently used words or not. 1000 common words are chosen. It is to test if the

sentence embedding can extract information about the words used in the sentence.

• Tree Depth (TD): Predict the maximum depth of the phrase structure tree. It

is to test if the sentence embedding encodes the information about the syntactic

structure of the sentence.

• Bigram Shift (BS): Predict whether a sentence contains swapped bigram or not.

It is to test if the sentence embedding can capture the knowledge of the natural

word orders.

• Top Constituents (TC): Predict the sentence’s top constituents sequence. It is to

test if the sentence embedding encodes the information about the construction of

the sentence.

• Tense (T): Predict the main verb of the sentence is past or present. It is to test

if the sentence embedding carries information regarding time.

• Subject Number (SN): Predict the number of the subject is singular or plural. It

is to test if the sentence embedding contains information about the subject.

• Object Number (ON): Predict the number of the direct object is singular or

plural. It is to test if the sentence embedding contains information about the

object.

• Semantic Odd Man Out (OM): Predict whether there is a word in the sentence

replaced with a randomly selected word. It is to test if the sentence embedding

includes information about the consistency of the sentence.

• Coordination Inversion (CI): Predict the sentence with a conjunction is inverted

or not. It is to test if the sentence embedding includes information about the

integrity of the whole sentence.

32

4.2. Training Details

We made modifications that are explained in Section 3 to the BERTbase archi-

tecture. We pre-trained all variants of architectures in our pre-training datasets and

fine-tuned them on downstream tasks. We select 1e-4 as the learning rate with 1e-4

weight decay for pre-training, and 1e-5 as the learning rate with no weight decay for

fine-tuning. These hyperparameters are found by grid search done on BERTbase ar-

chitecture. We set the batch size to be 32 for inputs with length up to 128 tokens

and one for longer inputs in the pre-training. Batch size for fine-tuning is set to be

one for all downstream tasks. We set dropout rate to 0.1. For all experiments, Adam

optimizer [28] is used with default beta parameters and AMSGrad [29] option. All

experiments are implemented with PyTorch automatic differentiation library [30]. We

trained our models with NVIDIA V100 GPU. We used TRUBA computation facilities

for our computations. In this architecture, pre-training took around one and a half-

day for one model, and fine-tuning took around 20 hours for one model. The codes are

available at https://github.com/caksoy/master thesis.

4.3. Pre-training Results

BERTbase and our modified architectures are pre-trained to minimize the sum of

NSP binary cross-entropy loss and masked LM cross-entropy loss. For Lower NSP and

Lower Mask architectures, we experimented with all intermediate layers to choose the

best level of selected embeddings for the lower classifier. As we used BERTbase archi-

tecture, which has 12 encoder layers, there are 11 different intermediate layers to select

the lower classifier level. As an additional experiment, we use [CLS] concatenation or

NSP concatenation for BERT and lower architectures. Figure 4.1 shows the relation

between masked LM loss and NSP loss with the mask layer for Lower Mask architec-

tures. Firstly, we see that as the mask layer increases, the masked LM performance

increases as well. This shows that the masked LM task indeed requires deeper layers.

Secondly, there is a sweet spot for the NSP task (fourth or fifth mask layer), where it

performs the best for most of the models. At this spot, deeper layers can specialize in

33

the NSP task. When we go left from this spot, the under-performance of the masked

LM task harms the NSP performance. On the other hand, when we go right, the model

focuses on the masked LM task and cannot specialize in the NSP task.

Figure 4.2 shows the effect of the NSP layer on the masked LM loss and NSP

loss for Lower NSP architectures. Unlike masked LM task, fewer layers are sufficient to

train NSP task (second column). This gives a clue about task complexities: the masked

LM task is more complicated because it requires deeper layers. In the first column, we

see that the masked LM performance decreases as we increase the NSP layer; there is

no sweet spot as in Lower Mask architectures. Numerical results of Figure 4.1 and 4.2

are given in Table A.1, A.2, A.3, A.4, A.5, A.6.

Apart from these models, we freeze NSP related parts of the model for cases in

which Lower NSP classifier overfitted to data before masked LM training. In addition,

to see the NSP task’s importance, we removed the NSP classifier as in RoBERTa.

Table 4.8 shows the selected layers for the lower architectures. Layers with the

minimum total loss are selected, except when one of the tasks performs very poorly.

Generally, deeper layers are selected in Lower Mask architectures compared to Lower

NSP architectures.

Tables 4.9 and 4.10 show NSP and mask accuracy of the selected pre-trained

models on validation sets. We see that pre-trained BERT embeddings in Vaswani et

al. [5] outperform all approaches except NSP accuracy on WikiText-2. This is because

there are more NSP-negative examples in WikiText-2 than SQuAD sets, and the pre-

trained BERT is biased to predict NSP as positive. However, we note that we do not

compare our models with the pre-trained BERT since we only pre-train our models with

small datasets. In tables, BERT is the replica, except it is pre-trained on the small

data. Therefore, we compare our approaches with this model. There is no significant

difference between pre-training performances. We should note that we evaluate models

based on their fine-tuning performances instead of pre-training results.

34

1 2 3 4 5 6 7 8 9 10 11
Mask Layer

4.0

4.1

4.2

4.3

4.4

M
as

ke
d

LM
 L

os
s

BASE
+ CLS
+ NSP

1 2 3 4 5 6 7 8 9 10 11
Mask Layer

0.32

0.33

0.34

0.35

0.36

0.37

0.38

NS
P

Lo
ss

BASE
+ CLS
+ NSP

(a) SQuAD1.1

1 2 3 4 5 6 7 8 9 10 11
Mask Layer

3.9

4.0

4.1

4.2

4.3

M
as

ke
d

LM
 L

os
s

BASE
+ CLS
+ NSP

1 2 3 4 5 6 7 8 9 10 11
Mask Layer

0.32

0.34

0.36

0.38

0.40

0.42

0.44
NS

P
Lo

ss
BASE
+ CLS
+ NSP

(b) SQuAD2.0

1 2 3 4 5 6 7 8 9 10 11
Mask Layer

3.60
3.65
3.70
3.75
3.80
3.85
3.90
3.95
4.00

M
as

ke
d

LM
 L

os
s

BASE
+ CLS
+ NSP

1 2 3 4 5 6 7 8 9 10 11
Mask Layer

0.34

0.35

0.36

0.37

0.38

0.39

0.40

NS
P

Lo
ss BASE

+ CLS
+ NSP

(c) WikiText-2

Figure 4.1. NSP-Masked LM loss curves versus mask layer for lower mask

architectures for each validation set. For BASE, neither [CLS] embedding nor NSP

output is used. + [CLS] and + NSP indicate the concatenated parts.

35

1 2 3 4 5 6 7 8 9 10 11
NSP Layer

4.0

4.2

4.4

4.6

4.8

5.0

5.2

5.4
M

as
ke

d
LM

 L
os

s

BASE
+ CLS
+ NSP

1 2 3 4 5 6 7 8 9 10 11
NSP Layer

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

NS
P

Lo
ss

BASE
+ CLS
+ NSP

(a) SQuAD1.1

1 2 3 4 5 6 7 8 9 10 11
NSP Layer

4.0

4.5

5.0

5.5

6.0

6.5

7.0

M
as

ke
d

LM
 L

os
s

BASE
+ CLS
+ NSP

1 2 3 4 5 6 7 8 9 10 11
NSP Layer

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65
NS

P
Lo

ss
BASE
+ CLS
+ NSP

(b) SQuAD2.0

1 2 3 4 5 6 7 8 9 10 11
NSP Layer

3.6

3.7

3.8

3.9

4.0

4.1

M
as

ke
d

LM
 L

os
s

BASE
+ CLS
+ NSP

1 2 3 4 5 6 7 8 9 10 11
NSP Layer

0.300

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

NS
P

Lo
ss

BASE
+ CLS
+ NSP

(c) WikiText-2

Figure 4.2. NSP-Masked LM loss curves versus NSP layer for lower NSP architectures

for each validation set. For BASE, neither [CLS] embedding nor NSP output is used.

+ [CLS] and + NSP indicate the concatenated parts.

36

Table 4.8. Selected layers for lower architectures. PT (pre-training) column

represents whether [CLS] embedding or NSP output is used in pre-training.

Models
PT

SQuAD1.1 SQuAD2.0 WikiText-2
CLS NSP

Lower NSP

- - 9 10 3

+ - 3 3 3

- + 4 4 4

Lower Mask

- - 9 11 11

+ - 9 4 4

- + 10 5 4

Lower NSP-Freeze - - 9 10 3

4.4. Fine-tuning Results

The best models for each architecture are fine-tuned on downstream tasks (ques-

tion answering and textual entailment). We add three baselines:

(i) Pre-trained BERTbase model is fine-tuned.

(ii) BERTbase architecture without any pre-training is directly fine-tuned to under-

stand whether the performance is due to architecture or large-scale training.

(iii) Another modern architecture due to its success, BiLSTM, is fine-tuned with fast-

Text [31] word embeddings.

Fine-tuning results of QA classifiers on SQuAD1.1 and SQuAD2.0 validation sets

are shown in Table 4.11 and 4.12. Here, exact match (EM) measures whether the

prediction overlaps with the truth exactly. F-measure (F1) evaluates partial overlaps

[25]. An example of the calculations of these metrics is shown in Table 4.13. In this

example, the first prediction is the same with the truth, so its EM score is equal to 1.

37

Table 4.9. Accuracies of pre-trained models on validation sets. SQuAD column

represents the pre-training set. Pre-training column represents whether [CLS]

embedding or NSP output is used in pre-training.

Models

Pre-training SQuAD

CLS NSP
SQuAD1.1 SQuAD2.0

NSP / Mask NSP / Mask

Pre-trained BERT - - 95.9 / 60.8 94.7 / 61.0

BERT

- - 90.4 / 35.6 90.0 / 36.7

+ - 89.2 / 33.7 89.2 / 36.3

- + 87.7 / 35.0 91.0 / 36.5

Lower NSP

- - 85.8 / 34.5 86.3 / 34.6

+ - 88.4 / 33.7 89.0 / 36.6

- + 90.1 / 35.2 88.7 / 32.6

Lower Mask

- - 87.1 / 36.6 87.1 / 37.9

+ - 79.3 / 34.8 87.1 / 36.1

- + 85.9 / 36.1 89.1 / 36.0

Lower NSP-Freeze - - 88.8 / 34.2 89.4 / 34.4

Without NSP - - - / 38.7 - / 39.3

Bigram Shift - - 89.2 / 34.4 87.7 / 32.7

38

Table 4.10. Accuracies of pre-trained models on validation set. WikiText-2 column

represents the pre-training set. Pre-training column represents whether [CLS]

embedding or NSP output is used in pre-training.

Models
Pre-training WikiText-2

CLS NSP NSP Mask

Pre-trained BERT - - 79.8 56.0

BERT

- - 87.7 38.7

+ - 86.8 38.5

- + 84.7 38.0

Lower NSP

- - 87.1 40.5

+ - 87.4 40.6

- + 87.1 38.7

Lower Mask

- - 84.1 38.1

+ - 85.6 37.8

- + 85.6 38.0

Lower NSP-Freeze - - 87.9 41.3

Bigram Shift - - 84.3 33.5

39

Table 4.11. Exact Match (EM) and F-measure (F1) results of QA classifiers on

validation sets. SQuAD represents pre-training set. Conc. (concatenation) indicates

whether [CLS] embedding or NSP output is used in both pre-training and fine-tuning.

Models

Conc. SQuAD

CLS NSP
SQuAD1.1 SQuAD2.0

EM / F1 EM / F1

Pre-trained BERT - - 75.9 / 85.4 71.1 / 73.8

BERT

- - 49.5 / 60.6 54.8 / 57.4

+ - 48.1 / 59.1 56.7 / 59.7

- + 48.7 / 60.2 55.5 / 58.5

Lower NSP

- - 47.2 / 58.3 56.3 / 58.8

+ - 47.0 / 58.5 55.8 / 58.3

- + 52.1 / 63.4 54.8 / 57.3

Lower Mask

- - 27.5 / 34.0 48.1 / 48.8

+ - 43.3 / 53.5 47.6 / 48.2

- + 45.5 / 56.3 51.2 / 53.4

Lower NSP-Freeze - - 40.9 / 51.4 51.7 / 53.4

Without NSP - - 30.2 / 37.5 46.9 / 47.5

Bigram Shift - - 47.0 / 57.6 55.6 / 58.0

BiLSTM - - 22.9 / 29.3 46.4 / 46.7

Without Pre-training - - 7.4 / 12.1 51.0 / 51.0

40

Table 4.12. Exact Match (EM) and F-measure (F1) results of QA classifiers on

validation sets. WikiText-2 is the pre-training set. Conc. (concatenation) indicates

whether [CLS] embedding or NSP output is used in both pre-training and fine-tuning.

Models

Conc. WikiText-2

CLS NSP
SQuAD1.1 SQuAD2.0

EM / F1 EM / F1

Pre-trained BERT - - 75.9 / 85.4 71.1 / 73.8

BERT

- - 48.1 / 60.5 54.7 / 57.9

+ - 48.8 / 60.6 55.0 / 58.0

- + 48.2 / 59.7 51.2 / 53.2

Lower NSP

- - 51.4 / 62.7 54.1 / 55.9

+ - 46.8 / 57.6 53.6 / 56.6

- + 46.0 / 57.6 54.7 / 57.8

Lower Mask

- - 41.8 / 52.2 47.1 / 47.4

+ - 25.0 / 31.8 46.9 / 47.4

- + 23.7 / 30.2 48.1 / 48.6

Lower NSP-Freeze - - 39.7 / 49.5 50.2 / 52.3

Bigram Shift - - 34.5 / 45.7 46.0 / 48.4

BiLSTM - - 22.9 / 29.3 46.4 / 46.7

Without Pre-training - - 7.4 / 12.1 51.0 / 51.0

41

Table 4.13. Example for exact match and F-measure calculation. TP, FP, FN are

used for true positives, false positives, and false negatives respectively.

Question: What could a teacher help in organizing?

Paragraph: A teacher’s professional duties may extend beyond formal teaching. Out-

side of the classroom teachers may accompany students on field trips, supervise study

halls, help with the organization of school functions, and serve as supervisors for ex-

tracurricular activities. In some education systems, teachers may have responsibility

for student discipline.

Truth: school functions

Prediction 1: school functions (start prediction: school, end prediction: functions)

Prediction 2: the organization of school (start prediction: the, end prediction: school)

Evaluate Prediction 1

EM1 = 1

TP = 2, FP = 0, FN = 0, recall = 1, precision = 1, F11 = 1

Evaluate Prediction 2

EM2 = 0

TP = 1, FP = 3, FN = 1, recall = 0.5, precision = 0.25, F12 = 0.33

42

F1 is calculated for each truth-prediction pair based on the counts of true positives,

false positives, and false negatives. True positives are common tokens between truth

and prediction. False positives are tokens in prediction, not in truth. False negatives

are tokens in truth, not in prediction. F1 is calculated as follows:

F1 =
2 ∗ recall ∗ precision

recall + precision
(4.1)

recall =
TP

TP + FN
(4.2)

precision =
TP

TP + FP
(4.3)

where TP, FN, FP are counts of true positives, false negatives, and false positives,

respectively. Recall is the ratio of truly predicted tokens to the truth tokens. Precision

is the ratio of truly predicted tokens to the predicted tokens. The EM and F1 scores

for the whole dataset are calculated by taking the average of the scores for the samples.

To test the stability of proposed architectures, we made three runs for some of

the most successful classifiers which are BERT and Lower NSP architectures. Due to

the computational issues, we could not do this for other models. Table 4.14 shows the

average EM and F1 scores of BERT and Lower NSP models which are pre-trained on

the WikiText-2 set. While SQuAD1.1 results do not differ in performance too much,

SQuAD2.0 results have larger standard deviations, most probably due to no-answer

examples as they increase the variation.

One obvious result is the underperformance of Lower Mask models. However,

Lower NSP models show competitive performance with BERT, even better in some

datasets. This might give a clue about the task hierarchy between masked LM and

NSP tasks. One might expect that the masked LM task is more straightforward than

the NSP task because the former makes predictions in the word-level while the latter

makes predictions in the sentence-level. However, the results suggest that the masked

LM task is complicated as it requires deeper layers to perform successfully. NSP task

can be done without encoding the full knowledge of each word. Unlike RoBERTa,

43

Table 4.14. Average results of QA classifiers on validation sets. EM and F1 stand for

Exact Match and F-measure, respectively. WikiText-2 is the pre-training set. Conc.

(concatenation) indicates whether [CLS] embedding or NSP output is used.

Models

Conc. WikiText-2

CLS NSP
SQuAD1.1 SQuAD2.0

EM / F1 EM / F1

BERT

- - 47. 9 ± 0.2 / 60.3 ± 0.3 54.2 ± 1.0 / 57.6 ± 1.2

+ - 49.5 ± 0.6 / 60.6 ± 0.2 54.7 ± 0.5 / 57.4 ± 0.6

- + 48.0 ± 0.2 / 59.4 ± 0.3 52.0 ± 1.2 / 53.9 ± 1.4

Lower NSP

- - 51.7 ± 0.4 / 62.9 ± 0.3 55.5 ± 1.3 / 57.8 ± 1.6

+ - 47.1 ± 0.3 / 57.8 ± 0.6 54.4 ± 0.7 / 56.8 ± 0.3

- + 46.2 ± 0.2 / 57.7 ± 0.4 54.8 ± 0.3 / 57.6 ± 0.2

the performance drops when we remove NSP loss. The reason for this might be pre-

training with small data; the model may not need sentence-level task when it has access

to many word combinations. Instead of removing NSP loss, one promising direction can

be training NSP task at lower layers for the large-scale training. As in Table 4.9, when

we remove NSP loss, the masked LM performance increases in pre-training. However,

the language model, which is trained with only masked LM objective, is not sufficient

for question answering task. NSP task forces the embeddings to contain sentence-level

information to make them more effective in fine-tuning.

Bigram Shift model performs slightly worse than other models when the pre-

training is done on SQuAD datasets. One possible explanation is that the question

answering problem does not require the word order information. On WikiText-2, the

results are dramatically worse. This might be due to optimization; a better hyperpa-

rameter search can increment the performance. We will show that the Bigram Shift

model is more effective for specific NLP tasks in later experiments.

44

Self-supervised pre-training shows its contribution once more. Even when pre-

training is done on the downstream data with a poorly constructed architecture (Lower

Mask), it performs better than the original transformer without any pre-training. In

Table 4.11, without pre-training model has 51.0 F1 score on SQuAD2.0. However, this

is not a good model as it predicts that all question-paragraph pairs have no answer

(51% of examples in the validation set have no answer). [CLS] token is labeled as the

start token and end token for the samples with no answer. Therefore, start and end

indices for these samples are 0. To improve the model scores (EM and F1), we set a

threshold T = 1.0 by grid search as in the original BERT. The sum of the classifiers’

maximum logits is compared to the sum of the logits for the [CLS] token. If [CLS]

logits are lower than the maximum logits by at least T , the classifiers predict the indices

with the maximum logits; otherwise, the model will predict the sample has no answer.

Furthermore, all models outperform BiLSTM with fastText. For this model,

the data is created differently. Firstly, samples are tokenized with a basic tokenizer

instead of a WordPiece tokenizer. Then, each token is converted into its fastText

vector with 300 dimensions. Notice that, fastText is also a model pre-trained on

large-scale data. A transformer pre-trained directly on downstream data has better

representations for the specific downstream tasks than BiLSTM with fastText. This

shows that the transformer learns better language models than BiLSTM with fastText,

probably due to its architecture.

Results on the MultiNLI corpus for both matched and mismatched validation sets

are shown in Table 4.15. We cannot use concatenated parts for fine-tuning, as we do in

question answering. Only [CLS] embedding from NSP level is used for fine-tuning. As

in QA results, pre-training on small data has a bootstrapping effect compared with the

model without pre-training. All models except Lower NSP-Freeze outperforms BiL-

STM. This shows that the transformer aggregates sentence-level information better

than BiLSTM. This is an interesting result since BiLSTM sees each word explicitly

to encode sentence-level embedding while the transformer encodes this implicitly via

the NSP task. While BERT has the best performance, Lower NSP is also compet-

45

Table 4.15. Accuracies on MultiNLI validation sets. Pre-training column represents

whether [CLS] embedding or NSP output is used in pre-training.

Models
Pre-training Accuracy

CLS NSP Matched Mismatched

Pre-trained BERT - - 84.4 84.9

BERT

- - 71.7 72.5

+ - 70.2 70.8

- + 71.1 71.3

Lower Mask

- - 69.9 70.7

+ - 68.5 69.2

- + 67.1 67.9

Lower NSP

- - 69.1 70.2

+ - 70.3 71.9

- + 70.5 71.3

Lower NSP-Freeze - - 45.2 45.3

Bigram Shift - - 69.8 70.7

BiLSTM - - 66.8 67.3

Without Pre-training - - 61.2 61.4

46

itive. Unlike question answering, Lower Mask and Bigram Shift models have better

performance.

34.0 34.5 35.0 35.5 36.0 36.5
Masked LM Accuracy

35

40

45

50

55

60

65

F1

80 82 84 86 88 90
NSP Accuracy

10

20

30

40

50

60

F1

(a) SQuAD1.1

33 34 35 36 37 38
Masked LM Accuracy

48

50

52

54

56

58

60

F1

87 88 89 90 91
NSP Accuracy

47.5

50.0

52.5

55.0

57.5

60.0

62.5

F1

(b) SQuAD2.0

Figure 4.3. Pre-training results versus fine-tuning results for QA classifiers which are

pre-trained on SQuAD sets.

Figure 4.3 and 4.4 show the relation between pre-training results and fine-tuning

results for QA classifiers. Masked LM accuracy is slightly negatively correlated to the

QA classifier score when it is pre-trained on SQuAD sets. However, it is opposite when

the model is pre-trained on the WikiText-2 set. The second column in both figures

shows that NSP performance positively affects the performance of the QA classifiers.

This highlights the importance of the NSP task for a language model.

47

34 36 38 40
Masked LM Accuracy

0

10

20

30

40

50

60

70

F1

84 85 86 87 88
NSP Accuracy

25
30
35
40
45
50
55
60
65

F1

(a) WikiText-2 - SQuAD1.1

34 36 38 40
Masked LM Accuracy

40

45

50

55

60

F1

84 85 86 87 88
NSP Accuracy

44
46
48
50
52
54
56
58
60

F1

(b) WikiText-2 - SQuAD2.0

Figure 4.4. Pre-training results versus fine-tuning results for QA classifiers which are

pre-trained on WikiText-2 set.

48

4.5. Ablation Studies

Table 4.16. Exact Match (EM) and F-measure (F1) results about using concatenated

parts in pre-training (PT) and/or fine-tuning (FT).

Models

PT FT SQuAD

CLS NSP CLS NSP SQuAD1.1 SQuAD2.0

EM / F1 EM / F1

BERT

- - - - 49.5 / 60.6 54.8 / 57.4

- - + - 50.0 / 61.6 55.1 / 58.4

- - - + 50.4 / 61.7 56.5 / 59.5

+ - + - 48.1 / 59.1 56.7 / 59.7

- + - + 48.7 / 60.2 55.5 / 58.5

Lower NSP

- - - - 47.2 / 58.3 56.3 / 58.8

- - + - 47.9 / 59.5 56.7 / 59.6

- - - + 48.3 / 59.4 56.3 / 59.3

+ - + - 47.0 / 58.5 55.8 / 58.3

- + - + 52.1 / 63.4 54.8 / 57.3

+ - - - 47.1 / 58.3 55.6 / 58.3

- + - - 51.0 / 62.8 54.2 / 56.9

To evaluate the effect of concatenated parts ([CLS] embedding or NSP output),

we also test the following architectures: (1) use in pre-training (2) use in fine-tuning (3)

use in both pre-training and fine-tuning (4) not using. QA classifier results for these

experiments are shown in Table 4.16 and 4.17. Ablation studies are done for BERT

and Lower NSP architectures since these architectures have better performance in

fine-tuning. Even if the model is pre-trained without using concatenated parts, using

these extra inputs in fine-tuning slightly increases the performance. While the QA

classifiers predict whether tokens are the start and end of an answer, using condensed

information about the whole sequence may increase the performance. In some cases,

the peak performance is achieved by using the concatenated parts in both pre-training

49

Table 4.17. Exact Match (EM) and F-measure (F1) results about using concatenated

parts in pre-training (PT) and/or fine-tuning (FT).

Models

PT FT WikiText-2

CLS NSP CLS NSP SQuAD1.1 SQuAD2.0

EM / F1 EM / F1

BERT

- - - - 48.1 / 60.5 54.7 / 57.9

- - + - 48.0 / 60.7 54.9 / 58.2

- - - + 47.4 / 60.1 55.6 / 58.9

+ - + - 48.8 / 60.6 55.0 / 58.0

- + - + 48.2 / 59.7 51.2 / 53.2

Lower NSP

- - - - 51.4 / 62.7 54.1 / 55.9

- - + - 50.7 / 62.1 54.0 / 57.1

- - - + 50.6 / 62.3 54.6 / 57.7

+ - + - 46.8 / 57.6 53.6 / 56.6

- + - + 46.0 / 57.6 54.7 / 57.8

+ - - - 46.9 / 58.0 53.4 / 56.3

- + - - 46.5 / 58.1 55.7 / 58.4

50

and fine-tuning. Removing concatenated parts during fine-tuning when used in pre-

training, does not change the performance too much. This may be because the token

embeddings contain enough information about the whole sequence and do not need

explicit sequence-level information.

4.6. Probing Tasks

For probing tasks, a multi-layer perceptron (MLP) with two hidden layers with

128 units is used. Here, the transformer part is frozen, and we only train the probing

task classifier. The learning rate is set to be 1e-3 with no weight decay. The batch size

is 32. The classifier uses [CLS] embedding from the NSP level as input.

The results of probing tasks are shown in Table 4.18 and 4.19. These results

suggest the followings:

• In sentence length and tree depth tasks, pre-trained BERT performs worse than

some models. These models can create sentence-level embeddings with better

syntactic information: the count of tokens and the sentence structure. This is

quite surprising considering pre-trained BERT’s large-scale training.

• Our models cannot handle the word content task. The models may not be able to

distinguish 1000 words determined since they are pre-trained on a small dataset.

Another reason is that it may not be possible to retrieve word information from

a sentence embedding for our models. Besides, the models are not successful at

semantic odd man out task (close to random guess). This may also indicate that

sentence embeddings do not contain detailed information about individual words.

• Bigram shift model achieves good results for tasks that require order information

(tree depth, bigram shift, coordination inversion). While it is not as good as other

models in downstream tasks, including order information might be beneficial for

other tasks.

• Lower NSP models perform better than Lower Mask models and better than

BERT for some tasks. We can say that Lower NSP constructs more informative

51

sentence-level representation than the others.

Table 4.18. Accuracies of probing tasks. PT (pre-training) column represents whether

[CLS] embedding or NSP output is used in pre-training.

Models
PT

SL WC TD BS TC
CLS NSP

PT. BERT - - 68.3 32.4 34.3 86.5 75.2

BERT

- - 83.8 9.6 36.0 62.5 70.1

+ - 75.7 10.1 34.6 57.9 63.6

- + 84.9 12.4 34.9 60.4 60.7

Lower Mask

- - 73.2 2.2 29.0 56.1 61.3

+ - 43.8 1.8 23.5 54.1 30.7

- + 41.7 0.8 21.3 52.1 26.7

Lower NSP

- - 91.0 5.6 31.7 52.9 57.5

+ - 86.1 11.1 34.5 60.0 67.9

- + 90.1 1.1 31.0 57.6 71.8

L. NSP-Freeze - - 93.2 1.5 33.7 53.8 72.3

Bigram Shift - - 88.6 3.8 37.2 70.3 65.6

52

Table 4.19. Accuracies of probing tasks. PT (pre-training) column represents whether

[CLS] embedding or NSP output is used in pre-training.

Models
PT

T SN ON OM CI
CLS NSP

PT. BERT - - 88.7 83.0 77.8 64.3 74.4

BERT

- - 75.9 74.7 69.9 49.7 59.8

+ - 70.2 73.8 68.9 50.5 55.6

- + 72.2 73.2 69.2 49.9 58.6

Lower Mask

- - 73.6 73.0 67.1 50.2 56.8

+ - 70.5 62.2 58.2 49.8 51.5

- + 66.6 62.3 58.0 49.9 51.7

Lower NSP

- - 71.7 71.9 66.4 51.1 56.0

+ - 74.9 75.4 71.5 50.8 57.2

- + 70.9 72.7 65.5 50.3 57.6

L. NSP-Freeze - - 75.9 75.2 68.8 50.3 57.2

Bigram Shift - - 70.5 72.7 68.2 49.9 59.8

53

5. CONCLUSIONS

• We propose to pre-train BERT with a hierarchical multitask learning approach.

Our results on restricted data (due to computational resources) show that this

approach achieves better or equal performance. To provide detailed insights about

the pre-training task hierarchies and complexities, all intermediate layers are

experimented to choose the best level for lower classifiers. The results show that

the masked LM task requires more layers, while the NSP task can be learned

with fewer layers.

• Lower NSP models are more successful than the Lower Mask models, and com-

petitive with the original BERT in downstream tasks. Training the NSP classifier

with lower-level embeddings leads to better contextualized embeddings for these

tasks.

• We incorporate sentence-level information to solve word-level tasks in both pre-

training and fine-tuning on question answering task. This also shows a slight

increment in performance. For pre-training, it regularizes the sentence-level em-

beddings with masked LM task. For fine-tuning, it provides information about

the whole sequence while making predictions on token-level.

• We propose an additional pre-training task, bigram shift, which causes embed-

dings to contain word order information. We show that the model pre-trained

with this objective performs better than the pre-trained BERT in some probing

tasks. Bigram Shift might be beneficial for some specific NLP tasks that require

order information.

• According to the results, higher NSP accuracy provides slightly better QA clas-

sifiers. Besides, removing the NSP loss during pre-training has a negative effect

on question answering task when we have limited data. It shows the importance

of the NSP task for pre-training a language model.

• Even if the models are pre-trained with small data, they perform better than the

original transformer without any pre-training. It shows the benefit of learning a

language model.

54

• Generally, our models for both question answering and textual entailment out-

perform BiLSTM with fastText. Transformer architecture is more suitable than

BiLSTM to learn a better language model.

• Probing tasks are used to evaluate different types of learned embeddings. These

tasks show that different training techniques lead embeddings to contain different

linguistic properties. This is an essential point since there are various problems in

the NLP domain that require different needs. Therefore selecting an appropriate

pre-training strategy is an important factor. For example, for a downstream

task that requires word order information, the model which is pre-trained with

bigram shift task can be fine-tuned. One surprising result is that some of our

proposed models perform better than the pre-trained BERT for some probing

tasks. This supports our motivation to frame BERT pre-training as a multitask

learning problem.

• Although the English language has vast amounts of data, this is not the case for

other languages such as Turkish. For some languages with restricted sources, our

proposed Lower NSP architecture and its variants can be used to construct better

token and sentence embeddings. Furthermore, for domain-specific problems, the

Lower NSP model can be pre-trained directly on the downstream data.

We believe that implementing these techniques to large-scale training will further

advance the state-of-the-art. One promising future work is to find a strategy that

automatically analyzes task hierarchies and complexities to create a more effective

model architecture. This strategy can be tested on training masked LM, NSP, and

bigram shift classifiers at the same time. Another future direction is to fine-tune our

proposed architectures on various downstream tasks to make a more comprehensive

evaluation.

55

REFERENCES

1. Mikolov, T., K. Chen, G. Corrado and J. Dean, “Efficient estimation of word

representations in vector space”, arXiv preprint arXiv:1301.3781 , 2013.

2. Mikolov, T., I. Sutskever, K. Chen, G. S. Corrado and J. Dean, “Distributed

representations of words and phrases and their compositionality”, Advances in

Neural Information Processing Systems , pp. 3111–3119, 2013.

3. Peters, M. E., M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee and

L. Zettlemoyer, “Deep contextualized word representations”, arXiv preprint

arXiv:1802.05365 , 2018.

4. Hochreiter, S. and J. Schmidhuber, “Long short-term memory”, Neural Computa-

tion, Vol. 9, No. 8, pp. 1735–1780, 1997.

5. Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser

and I. Polosukhin, “Attention is all you need”, Advances in Neural Information

Processing Systems , pp. 5998–6008, 2017.

6. Lin, Z., M. Feng, C. N. d. Santos, M. Yu, B. Xiang, B. Zhou and Y. Bengio, “A

structured self-attentive sentence embedding”, arXiv preprint arXiv:1703.03130 ,

2017.

7. Radford, A., K. Narasimhan, T. Salimans and I. Sutskever, “Improv-

ing language understanding by generative pre-training”, OpenAI Blog

https://openai.com/blog/language-unsupervised , last accessed on 2018.

8. Devlin, J., M.-W. Chang, K. Lee and K. Toutanova, “BERT: Pre-training

of deep bidirectional transformers for language understanding”, arXiv preprint

arXiv:1810.04805 , 2018.

56

9. Radford, A., J. Wu, D. Amodei, D. Amodei, J. Clark, M. Brundage and

I. Sutskever, “Better language models and their implications”, OpenAI Blog

https://openai. com/blog/better-language-models , last accessed on 2019.

10. Brown, T. B., B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Nee-

lakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models are few-shot

learners”, arXiv preprint arXiv:2005.14165 , 2020.

11. Wu, Y., M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun

et al., “Google’s neural machine translation system: Bridging the gap between

human and machine translation”, arXiv preprint arXiv:1609.08144 , 2016.

12. Hinton, G. E. and R. R. Salakhutdinov, “Reducing the dimensionality of data with

neural networks”, Science, Vol. 313, No. 5786, pp. 504–507, 2006.

13. Liu, Y., M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettle-

moyer and V. Stoyanov, “RoBERTa: A robustly optimized BERT pretraining ap-

proach”, arXiv preprint arXiv:1907.11692 , 2019.

14. Lan, Z., M. Chen, S. Goodman, K. Gimpel, P. Sharma and R. Soricut, “AL-

BERT: A lite BERT for self-supervised learning of language representations”, arXiv

preprint arXiv:1909.11942 , 2019.

15. Caruana, R., “Multitask learning”, Machine Learning , Vol. 28, No. 1, pp. 41–75,

1997.

16. Zamir, A. R., A. Sax, W. Shen, L. J. Guibas, J. Malik and S. Savarese, “Taskon-

omy: Disentangling task transfer learning”, Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pp. 3712–3722, 2018.

17. Yang, Z., K. Merrick, H. Abbass and L. Jin, “Multi-task deep reinforcement learn-

ing for continuous action control”, Proceedings of the 26th International Joint Con-

ference on Artificial Intelligence, pp. 3301–3307, 2017.

57

18. Ruder, S., “An overview of multi-task learning in deep neural networks”, arXiv

preprint arXiv:1706.05098 , 2017.

19. Søgaard, A. and Y. Goldberg, “Deep multi-task learning with low level tasks super-

vised at lower layers”, Proceedings of the 54th Annual Meeting of the Association

for Computational Linguistics (Volume 2: Short Papers), pp. 231–235, 2016.

20. Hashimoto, K., C. Xiong, Y. Tsuruoka and R. Socher, “A joint many-task

model: Growing a neural network for multiple NLP tasks”, arXiv preprint

arXiv:1611.01587 , 2016.

21. Sanh, V., T. Wolf and S. Ruder, “A hierarchical multi-task approach for learning

embeddings from semantic tasks”, Proceedings of the AAAI Conference on Artifi-

cial Intelligence, Vol. 33, pp. 6949–6956, 2019.

22. Bingel, J. and A. Søgaard, “Identifying beneficial task relations for multi-task

learning in deep neural networks”, arXiv preprint arXiv:1702.08303 , 2017.

23. Prechelt, L., “Early stopping-but when?”, Neural Networks: Tricks of the Trade,

pp. 55–69, Springer, 1998.

24. Conneau, A., G. Kruszewski, G. Lample, L. Barrault and M. Baroni, “What you

can cram into a single vector: Probing sentence embeddings for linguistic proper-

ties”, arXiv preprint arXiv:1805.01070 , 2018.

25. Rajpurkar, P., J. Zhang, K. Lopyrev and P. Liang, “SQuAD: 100,000+ questions

for machine comprehension of text”, arXiv preprint arXiv:1606.05250 , 2016.

26. Rajpurkar, P., R. Jia and P. Liang, “Know what you don’t know: Unanswerable

questions for SQuAD”, arXiv preprint arXiv:1806.03822 , 2018.

27. Williams, A., N. Nangia and S. R. Bowman, “A broad-coverage challenge corpus

for sentence understanding through inference”, arXiv preprint arXiv:1704.05426 ,

58

2017.

28. Kingma, D. P. and J. Ba, “Adam: A method for stochastic optimization”, arXiv

preprint arXiv:1412.6980 , 2014.

29. Reddi, S. J., S. Kale and S. Kumar, “On the convergence of Adam and beyond”,

arXiv preprint arXiv:1904.09237 , 2019.

30. Paszke, A., S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen et al.,

“PyTorch: An imperative style, high-performance deep learning library”, Advances

in Neural Information Processing Systems , pp. 8026–8037, 2019.

31. Bojanowski, P., E. Grave, A. Joulin and T. Mikolov, “Enriching word vectors

with subword information”, Transactions of the Association for Computational

Linguistics , Vol. 5, pp. 135–146, 2017.

59

APPENDIX A: Results of Lower Architectures

Table A.1. NSP-Masked LM losses of lower mask models with mask layers on the

SQuAD1.1 validation set. BASE indicates the models in which neither [CLS] nor

NSP output is used. + CLS and + NSP indicates the models with these extra inputs.

Mask Layer
Base + CLS + NSP

NSP Masked LM NSP Masked LM NSP Masked LM

1 0.354 4.452 0.364 4.425 0.384 4.416

2 0.351 4.101 0.373 4.197 0.349 4.122

3 0.324 4.068 0.355 4.082 0.353 4.017

4 0.34 4.039 0.34 4.073 0.338 4.03

5 0.326 4.043 0.332 4.145 0.322 4.008

6 0.345 4.093 0.334 4.079 0.339 4.083

7 0.338 4.064 0.361 4.153 0.352 4.034

8 0.351 3.997 0.373 4.103 0.347 3.997

9 0.37 3.958 0.339 4.047 0.367 3.954

10 0.365 4.14 0.352 4.049 0.334 3.956

11 0.326 4.03 0.347 4.057 0.346 3.97

60

Table A.2. NSP-Masked LM losses of lower mask models with mask layers on the

SQuAD2.0 validation set. BASE indicates the models in which neither [CLS] nor

NSP output is used. + CLS and + NSP indicates the models with these extra inputs.

Mask Layer
Base + CLS + NSP

NSP Masked LM NSP Masked LM NSP Masked LM

1 0.382 4.337 0.438 4.32 0.405 4.342

2 0.359 4.078 0.384 4.094 0.364 4.076

3 0.352 3.95 0.356 3.994 0.341 3.968

4 0.348 3.942 0.351 3.968 0.337 3.937

5 0.363 3.999 0.317 4.011 0.322 3.963

6 0.355 3.937 0.344 4.008 0.341 3.996

7 0.363 3.946 0.366 4.037 0.38 3.873

8 0.368 3.921 0.397 4.008 0.383 3.869

9 0.371 3.888 0.394 3.956 0.379 3.876

10 0.349 3.904 0.366 3.976 0.352 3.895

11 0.334 3.857 0.451 4.159 0.363 3.898

61

Table A.3. NSP-Masked LM losses of lower mask models with mask layers on the

WikiText-2 validation set. BASE indicates the models in which neither [CLS] nor

NSP output is used. + CLS and + NSP indicates the models with these extra inputs.

Mask Layer
Base + CLS + NSP

NSP Masked LM NSP Masked LM NSP Masked LM

1 0.389 4.018 0.391 4.021 0.401 4.014

2 0.349 3.803 0.349 3.764 0.374 3.773

3 0.367 3.769 0.39 3.777 0.378 3.748

4 0.336 3.753 0.335 3.781 0.343 3.716

5 0.356 3.771 0.34 3.774 0.394 3.721

6 0.381 3.704 0.363 3.771 0.378 3.744

7 0.393 3.76 0.391 3.721 0.365 3.755

8 0.396 3.711 0.369 3.77 0.361 3.764

9 0.398 3.672 0.397 3.712 0.348 3.729

10 0.382 3.73 0.39 3.703 0.395 3.665

11 0.34 3.666 0.397 3.767 0.359 3.617

62

Table A.4. NSP-Masked LM losses of lower NSP models with NSP layers on the

SQuAD1.1 validation set. BASE indicates the models in which neither [CLS] nor

NSP output is used. + CLS and + NSP indicates the models with these extra inputs.

NSP Layer
Base + CLS + NSP

NSP Masked LM NSP Masked LM NSP Masked LM

1 0.642 3.879 0.539 3.941 0.644 3.894

2 0.409 4.201 0.45 3.971 0.375 4.131

3 0.355 4.753 0.302 4.2 0.332 4.335

4 0.334 4.46 0.323 4.369 0.319 4.164

5 0.353 4.442 0.34 4.402 0.316 4.343

6 0.351 4.355 0.367 4.341 0.382 4.577

7 0.331 4.251 0.45 4.578 0.361 4.247

8 0.341 4.406 0.532 4.542 0.326 4.235

9 0.336 4.182 0.427 4.63 0.329 4.38

10 0.356 4.444 0.358 5.335 0.366 4.326

11 0.325 4.335 0.382 5.092 0.297 4.256

63

Table A.5. NSP-Masked LM losses of lower NSP models with NSP layers on the

SQuAD2.0 validation set. BASE indicates the models in which neither [CLS] nor

NSP output is used. + CLS and + NSP indicates the models with these extra inputs.

NSP Layer
Base + CLS + NSP

NSP Masked LM NSP Masked LM NSP Masked LM

1 0.64 3.787 0.638 3.817 0.639 3.791

2 0.475 3.88 0.454 3.907 0.404 4.927

3 0.322 4.125 0.272 3.904 0.511 7.258

4 0.316 4.113 0.342 4.365 0.326 4.228

5 0.382 4.334 0.318 4.414 0.354 4.253

6 0.349 4.124 0.349 4.606 0.353 4.446

7 0.413 4.166 0.531 4.422 0.376 4.194

8 0.313 4.18 0.53 4.498 0.337 4.426

9 0.365 4.162 0.439 6.322 0.348 4.288

10 0.279 4.099 0.381 4.396 0.344 4.36

11 0.308 4.258 0.305 4.261 0.333 4.299

64

Table A.6. NSP-Masked LM losses of lower NSP models with NSP layers on the

WikiText-2 validation set. BASE indicates the models in which neither [CLS] nor

NSP output is used. + CLS and + NSP indicates the models with these extra inputs.

NSP Layer
Base + CLS + NSP

NSP Masked LM NSP Masked LM NSP Masked LM

1 0.492 3.595 0.474 3.602 0.418 3.63

2 0.395 3.532 0.416 3.597 0.391 3.558

3 0.319 3.574 0.333 3.658 0.35 3.74

4 0.308 3.688 0.313 3.7 0.321 3.678

5 0.316 3.746 0.342 3.806 0.398 3.77

6 0.356 3.778 0.334 3.827 0.334 3.938

7 0.342 3.704 0.406 4.113 0.393 3.757

8 0.362 3.683 0.434 4.06 0.362 3.853

9 0.396 3.704 0.428 3.975 0.441 3.737

10 0.401 3.7 0.35 3.909 0.384 3.807

11 0.321 3.651 0.343 3.781 0.396 3.756

