
ENHANCING RELATION CLASSIFICATION BY USING SHORTEST

DEPENDENCY PATHS BETWEEN ENTITIES WITH PRE-TRAINED

LANGUAGE MODELS

by

Haluk Alper Karaevli

B.S., Computer Engineering, Boğaziçi University, 2018

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2022

ii

ENHANCING RELATION CLASSIFICATION BY USING SHORTEST

DEPENDENCY PATHS BETWEEN ENTITIES WITH PRE-TRAINED

LANGUAGE MODELS

APPROVED BY:

Prof. Dr. Tunga Güngör

(Thesis Supervisor)

Prof. Dr. Banu Diri

Assist. Prof. Suzan Üsküdarlı

DATE OF APPROVAL: 27.01.2022

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincerest gratitude to my advisor

Tunga Güngör for his guidance, patience, and immerse knowledge. It was a great

pleasure for me to be working with him.

I am also grateful to my thesis committee members: Prof. Dr. Banu Diri and

Assist. Prof Suzan Üsküdarlı for sparing their time and their insightful questions and

comments on my thesis.

I would like to express my deepest gratitude to my lifelong friend Merih Kaner,

who singlehandedly saved my thesis by providing me with the resources I require and

more at my greatest time of need. I will always be indebted to him.

I am grateful to my mother, Neşe Karaevli, my father, Rafet Karaevli, and my

brother İzzet Levent Karaevli who always be there for me.

I would like to give special thanks to my friends Alper Ösün and Eser Murat

Kahraman for their invaluable support.

I would like to dedicate this thesis work to my beloved wife, my soulmate Ceren

Zeynep Karaevli. Thank you for believing me even the times that I don’t.

iv

ABSTRACT

ENHANCING RELATION CLASSIFICATION BY USING

SHORTEST DEPENDENCY PATHS BETWEEN ENTITIES

WITH PRE-TRAINED LANGUAGE MODELS

Relation Extraction (RE) is the task of finding the relation between entities from

a plain text. As the length of the text increases, finding the relation becomes more

challenging. The shortest dependency path (SDP) between two entities, obtained by

traversing the terms in the text’s dependency tree, provides a view focused on the

entities by pruning noisy words. In RE’s supervised form Relation Classification, the

state-of-the-art methods generally integrate a pre-trained language model (PLM) into

their approaches. However, none of them incorporates the shortest dependency paths

into their calculations to our knowledge.

In this thesis, we investigate the effects of using shortest dependency paths with

pre-trained language models by taking the R-BERT relation classification model as

our baseline and building upon it. Our novel approach enhances the baseline model by

adding the sequence representation of the shortest dependency path between entities,

collected from PLMs, as an additional embedding. In experiments, we have evaluated

the proposed model’s performance for each combination of SDPs generated from Stan-

ford, HPSG, LAL dependency parsers, and baseline with BERT and XLNet PLMs in

two datasets, SemEval-2010 Task 8 and TACRED.

We improve the baseline model by absolute 1.41% and 3.6% scores, increasing

the rankings of the model from 8th to 7th and 18th to 7th in SemEval-2010 Task 8 and

TACRED, respectively.

v

ÖZET

ÖN EĞİTİMLİ DİL MODELLERİ İLE VARLIKLAR ARASI

EN KISA BAĞLILIK YOLLARINI KULLANARAK İLİŞKİ

SINIFLANDIRMASININ GELİŞTİRİLMESİ

İlişki Çıkarma (İÇ), düz bir metinden varlıklar arasındaki ilişkiyi bulma görevidir.

Verilen metnin uzunluğu arttıkça ilişkiyi bulmak da gittikçe zorlaşmaktadır. Metnin

bağlılık ağacında iki varlık arasındaki terimleri izleyerek oluşturulan en kısa bağlılık yol-

ları, metindeki gürültü yaratan kelimeleri budayarak varlıklara odaklanmış bir gösterim

sunar. İlişki Çıkarma konusunun denetimli versiyonu olan İlişki Sınıflandırma’da, çoğu

son teknoloji metod yaklaşımlarına ön eğitimli dil modellerini entegre etmektedir. An-

cak şu ana kadar ön eğitimli dil modelleri, varlıklar arası en kısa bağlılık yolları ile

birlikte kullanılmamıştır.

Bu tez, ön eğitimli modellerin varlıklar arası en kısa bağlılık yolları ile beraber

kullanılmasının etkilerini incelemektedir. Bu inceleme için R-BERT ilişki sınıflandırma

modeli temel model olarak alınmış ve üzerine geliştirmeler yapılmıştır. Sunduğumuz

yeni yaklaşımda, temel modeli geliştirmek amacıyla, iki varlık arasındaki en kısa bağlılık

yolunun ön eğitimli dil modellerinden geçirilmesi ile elde edilmiş genel temsili, ek bir

vektör olarak temel modele eklenir. Deneylerde, temel model, Stanford, HPSG ve LAL

bağlılık ayrıştırıcılarının XLNet ve BERT ön eğitimli dil modelleri ile kombinasyon-

ları SemEval-2010 Task 8 ve TACRED veri kümelerinde değerlendirilmiştir. Deney

sonuçlarında, önerilen modelin temel modelden SemEval-2010 Task 8 veri kümesinde

1.41%, TACRED veri kümesinde 3.6% daha iyi sonuç verdiği görülmektedir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . ix

LIST OF SYMBOLS . x

LIST OF ACRONYMS/ABBREVIATIONS . xii

1. INTRODUCTION . 1

2. LITERATURE REVIEW . 4

2.1. Supervised Relation Extraction - Relation Classification 4

2.1.1. Semantic Relation Classification via Convolutional Neural Net-

works with Simple Negative Sampling 5

2.1.2. A Dependency-Based Neural Network for Relation Classification 6

2.1.3. Improved Relation Classification by Deep Recurrent Neural Net-

works . 7

2.1.4. Semantic Relation Classification via Bidirectional LSTM Net-

works with Entity-aware Attention using Latent Entity Typing . 8

2.1.5. Enriching Pre-trained Language Model with Entity Information

for Relation Classification . 8

2.2. Distantly - Weakly Supervised Relation Extraction 10

2.2.1. Neural Relation Extraction with Selective Attention over Instances 11

2.2.2. Hierarchical Relation Extraction with Coarse-to-Fine Grained

Attention . 12

2.2.3. Reinforcement Learning for Relation Classification from Noisy

Data . 13

2.2.4. Long-tail Relation Extraction via Knowledge Graph Embeddings

and Graph Convolution Networks 14

2.3. Unsupervised Relation Extraction . 15

vii

2.3.1. Unsupervised Relation Extraction by Mining Wikipedia Texts

Using Information from the Web 16

2.3.2. Discovering Relations Among Named Entities From Large Corpora 16

3. DATASETS . 19

3.1. SemEval-2010 Task 8 . 19

3.2. TACRED . 22

4. METHODOLOGY . 26

4.1. Overview . 26

4.2. Pre-Trained Language Models . 28

4.2.1. Bidirectional Encoder Representations from Transformers 29

4.2.2. Generalized Autoregressive Pretraining for Language Understand-

ing . 31

4.3. Dependency Parsing . 34

4.3.1. Stanford Neural Dependency Parser 34

4.3.2. Head-Driven Phrase Structure Grammar Parsing 36

4.3.3. Head-Driven Phrase Structure Grammar Parsing with Label At-

tention Layer . 41

4.4. Shortest Dependency Path Generation 43

4.5. Proposed Model . 44

5. EXPERIMENTS AND RESULTS . 47

5.1. Experiments in SemEval-2010 Task 8 48

5.2. Experiments in TACRED . 52

6. CONCLUSION . 57

REFERENCES . 58

viii

LIST OF FIGURES

Figure 2.1. Process of Relation Cluster Generation [1] 17

Figure 3.1. Sentence Length Histogram of SemEval-2010 Task 8 and TACRED

Datasets. 25

Figure 4.1. Constituent, dependency and two simplified HPSG tree represen-

tation of the same sentence. 37

Figure 4.2. The Architecture of the Proposed Model. The Dotted Box Shows

the Preprocessing Steps. 45

Figure 5.1. Shortest Dependency Path and Dependency Tree Representation

of a Sentence for Each Parser . 47

Figure 5.2. The Micro F1 Scores of Baseline and SDP Enhanced Models For

Each of the Pre-trained Language Model in SemEval 50

Figure 5.3. The Micro F1 Scores of Pre-trained Language Models For Each of

Baseline and SDP Enhanced Models in SemEval-2010 Task 8 . . . 51

Figure 5.4. The Accuracies of Baseline and SDP Enhanced Models for Each

Pre-trained Language Model Used in TACRED Dev Dataset . . . 53

Figure 5.5. The Accuracies of Pre-trained Language Models for Each of Base-

line and SDP Enhanced Models Used in TACRED Dev Dataset . 54

ix

LIST OF TABLES

Table 3.1. SemEval Dataset Statistics. 21

Table 3.2. Tacred Relation Statistics. 23

Table 5.1. Evaluation Results of the Trained Models Sorted by Official Macro

F1 Scores . 49

Table 5.2. Tacred Evaluation Results of the Trained Models Sorted by Micro

F1 Scores Using Best of 10 Epochs 55

Table 5.3. Tacred Evaluation Results of the Trained Models Sorted by Micro

F1 Scores Using Early Stopping 56

x

LIST OF SYMBOLS

Ax Attention coefficients matrix for the input x

b Bias vector

ci context vector

ei ith Entity in a relation sample
−→
hi forward representation of the ith word
←−
hi backward representation of the ith word

J1 loss function of span tree prediction

Jlabels loss function of dependency labels

Kx Query matrices calculated for the input x

Nl Number of dependency labels

Qx Key matrices calculated for the input x

Sw Set of words

St Set of POS tags

Sl Set of dependency labels

si ith element in the stack of the arc-standart algorithm

sij vector for a span between ith word and jth word

Vx Value matrices calculated for the input x

Ve1 first entities embedding in proposed model

Ve2 second entities embedding in proposed model

Vsent sentences embedding in proposed model

Vsdp Shortest dependency paths embedding in proposed model

WK Key weights of a self-attention layer

WQ Query weights of a self-attention layer

W V Value weights of a self-attention layer

Ww Weights matrix for words embeddings vector

W t Weights matrix for POS tags embeddings vector

W l Weights matrix for dependency labels embeddings vector

X Input matrix

xi

z The processing order of the terms in sequence

αij child-parent score for dependency prediction between ith and

jth terms

Θ Parameter set

∆ the hamming loss on the labeled spans

xii

LIST OF ACRONYMS/ABBREVIATIONS

DS Distantly Supervised

EE Event Extraction

HPSG Head-driven Phrase Structure Grammar

LAL Label Attention Layer

LAS Labeled Attachment Score

NER Named Entity Recognition

PLM Pre-trained Language Model

QA Question Answering

RE Relation Extraction

SDP Shortest Dependency Path

TE Time Extraction

1

1. INTRODUCTION

The internet is the most significant information source of our current world.

However, most of the data it contains is in an unstructured text form which requires

additional processing to be understandable by the machine. Considering this source’s

growth and its current size, a way to automatically extract information from the web

becomes a must.

The process of extracting structured, machine-understandable data from the un-

structured text is the main task of Information Extraction (IE), a subdomain of Natural

Language Processing. IE plays a key role in applications such as expanding knowledge-

bases, augmenting search queries by recognizing entities, understanding a question and

generating an answer from a text in question answering (QA) systems, scheduling an

event to calendar from a message, and much more. Information Extraction can be di-

vided into smaller tasks, including but not limited to Relation Extraction (RE), Named

Entity Recognition (NER), Time Extraction (TE), Event Extraction (EE). Each task

specializes in acquiring different information from plain text. The task this thesis

focuses on is Relation Extraction.

A relation between entities can be defined in the form of a tuple t = (e1, e2, r,D)

where the ei’s are entities with relation r within document D [2]. The objective of

relation extraction is to find the relation r between entities given the plain text of the

document D. The task is assessed in three general manners; unsupervised, distantly-

supervised, and supervised. In supervised approaches, the aim is to predict the correct

relation between entities from a fixed number of relations using a sentence that con-

tains the entities and the target relation between them. Distantly supervised methods

have the same objective as their supervised peers, but a set of sentences is taken as

input instead of one sentence. Not all sentences in a particular set represent the rela-

tion between entity pairs. In unsupervised approaches, none of the entity tuples, the

relations, or the corresponding sentences for the entities are known beforehand.

2

Dependency parsers have been used in various aspects by the models from all

approaches of Relation Extraction [3–9]. By providing a structured representation of

the raw text using contextual connections, dependency parsers enable models to focus

on the interactions between terms.

Shortest dependency path is defined as the path with minimum contextual con-

nections between two entities in the dependency tree. For example, for the sentence

”The house at the end of the street is red.” the SDP text constructed by combining

the shortest dependency path between the words ”house” and ”red” would be ”house

is red.”.

Pre-trained Language Models (PLMs) are language models trained on large cor-

pora to learn contextual semantics of words without focusing on a specific task. In

the task of relation classification, it has been observed that the state-of-art methods

generally integrate a pre-trained language model to their approaches [10–12] or train

their own [13].

This thesis investigates the effects of using shortest dependency paths with pre-

trained language models in the supervised relation extraction domain. The relation

classification model R-BERT [10] is chosen as the baseline for this task. In R-BERT,

The sentence and the entities are represented as separate vectors concatenated in the

last layer. Because of its compartmentalized architecture, adding a new feature to

the model is a considerably straightforward process. We aim to improve R-BERT’s

performance by integrating pre-trained language model representation of the shortest

dependency path between target entities to the concatenated embeddings. Three de-

pendency parsers named Stanford, HPSG, and LAL, have been used to generate the

shortest dependency paths. In the pre-trained language models aspect, in addition to

the BERT employed in the baseline model, the latest state-of-the-art method, XLNet,

is applied.

3

The experiments are conducted on SemEval-2010 Task 8 and TACRED datasets.

SemEval-2010 Task 8 is the most used dataset in relation classification, with nine

relation classes, each having two versions for the direction of the relation between

entities and no-relation classes for negative samples. TACRED is a dataset constructed

by Stanford University with 41 relations consisting of 106,264 samples.

With this thesis, our contribution to the domain is an improved R-BERT model

that surpasses the performance of the baseline system in both SemEval and TACRED

datasets. According to the results we received, in SemEval, we improve the standing of

the model from 8th place to 7th place, and in TACRED, a more significant improvement

from 18th place (unofficial) to 7th place has been observed.

The thesis is organised as follows: Chapter 2 gives a literature review on the

relation extraction domain. In Chapter 3, details of the datasets are provided. Chapter

4 consists of the structure of the proposed model, shortest dependency path generation

algorithm from dependency trees, and methodologies of dependency parsers and pre-

trained language models. In Chapter 5 the experiment environment, model parameters

and the results of the experiments are given. Lastly, with chapter 6, we summarize the

work, provide possible scope extensions and conclude the thesis.

4

2. LITERATURE REVIEW

This literature review analyzes the domain of relation extraction by its three

approaches. The approaches differ from each other in their definition of the objective

task. For example, supervised methods predict the relation class between two terms

from a sentence. In contrast, distantly supervised ones use a set of sentences instead

of one sentence as input for their predictions. In unsupervised approaches, none of the

entity tuples, the relations, or the corresponding sentences for the entities are known

beforehand.

2.1. Supervised Relation Extraction - Relation Classification

The area that attracts the most attention among the three is Supervised Relation

Extraction, also known as Relation Classification (RC). In RC, the entities, the raw

text to extract the relation, and the relation class are known beforehand. The goal is

to correctly classify the relation among predefined relations using the given raw text

and entities. Relation Classification models differ from their peers by having a fixed

number of classes. In these approaches, the quality of the instances in the datasets is

procured by human annotators.

SemEval 2010 Task 8 dataset is the most common dataset chosen for the task

of supervised relation extraction. As it is also one of the datasets we conduct our

experiments upon, we skip the details of the dataset here to come back to it in the

datasets section.

In the following sections of the chapter, summaries of the relation classification

papers investigated can be found.

5

2.1.1. Semantic Relation Classification via Convolutional Neural Networks

with Simple Negative Sampling

The depLCNN model Xu et al. [14] proposed aims to learn more robust relation

representations of the entities from feeding their shortest dependency path through

a convolutional neural network. In addition, they propose a novel negative sampling

strategy that addresses the relation directionality that finds the subject and object

entity of the relation. They found that dependency paths show the subjects and objects

via path directions. Therefore, the shortest dependency paths from objects to the

subjects are proposed as negative samples to make the model learn the assignments of

subjects and objects.

The flow of the model is as follows: first, the shortest dependency path between

entities is generated, then each item’s (word, label, or arrow) embedding has been

acquired as 50-dimensional word vectors trained by Turians model [15]. After acquiring

the embeddings, a fixed-sized window of items around each node is given as consecutive

vectors. This representation is then fed to the convolution layer, where each window

vector is multiplied by the convolution matrices. The method of max-pooling is applied

to the outputs of the convolution layer to get the most beneficial local features.

As the last layer, the tanh function has been used as the non-linearity. To classify

the inputs softmax layer is applied to the outputs of tanh. Cross entropy error between

the actual class and the softmax output is used as the loss function. Stochastic gradient

descent with the AdaGrad method is applied to train the system.

The most significant contribution to the improvement achieved by the system

comes from the negative sampling proposal. By using dependency paths from the

object to subject as negative samples (subj −→ obj have relation r but not vice versa),

the authors achieved an F1 score of 85.4 in the SemEval 2010 Task 8 dataset.

6

2.1.2. A Dependency-Based Neural Network for Relation Classification

The paper [8] focuses on using information acquired from the dependency tree of

the sentences in determining the relations between entities. Usage of dependency trees

as features has been previously explored, but the authors come up with a new rep-

resentation called Augmented Dependency Path (ADP) and dependency-based neural

network (DepNN), a neural network that combines CNN and RNN to model the ADP

representation.

The layout of the proposed system is as follows; first, each word w and dependency

relation r is associated with vector representation xw, xr ∈ Rdim. Then, an RNN is

developed for each word on the shortest path between the first and second entity,

which starts from the leaves of the subtree the word has and goes up to the root

(the word itself), generating a subtree embedding cw which is used with xw in the final

representation of word w. Next, the representations of the words and the relations in the

shortest dependency path are fed to a convolutional neural network with a max-pooling

layer. The output of the max-pooling layer is then given to a softmax layer whose

results show the probability of each relation between entities e1 and e2. Finally, cross-

entropy error between real class and predicted class is used as the objective function

to minimize.

The shortest dependency trees are generated by the Stanford Parser with the

”collapsed” option. Two kinds of embeddings are used for acquiring vector representa-

tion of words in the augmented dependency path, 50d embeddings provided by SENNA

and 200d embeddings trained on Gigaword with Word2Vec.

The F1 score the proposed model achieves is 83.2 at SemEval-2010 Task 8 dataset

with the usage of named entity recognition features.

7

2.1.3. Improved Relation Classification by Deep Recurrent Neural Net-

works

The proposal of [16] to the domain is the usage of ”deep” recurrent neural net-

works in relation extraction, believing that by using individual RNN’s in each depth

level of the dependency tree representation of the sentence, one can acquire the gran-

ular, ”whole” representation of the text.

They define the shortest dependency path between entities which the authors

proposed in a previous paper [14] as the backbone of this model. There are two ad-

vantages of using the shortest dependency path (SDP). First, it filters the information

irrelevant to entities, and second, grammatical relations between words in SDP focus

on action and players of that action, representing the relationship between entities

clearer than the whole text.

Also, to increase the amount of data -and with it, the performance- the inverse

relations between entities (r’,e2,e1 is the inverse relation of r,e1,e2) are used. With that,

more meaningful data have been generated without using any external data source.

The structure of the paper is as follows. In simple, an RNN keeps a hidden

state vector h, changing with the input word at each step accordingly. For example,

the hidden state at t depends on the hidden state of t-1 and the input x given at t.

Representation of the data consists of four information channels; words themselves,

part-of-speech tags, grammatical relations, and wordnet hypernyms. Each channel is

trained in parallel with different networks, then the outputs of all RNN’s are concate-

nated together and fed through a softmax layer.

The function to minimize to train the model is given as the standard cross-

entropy loss for (r,e1,e2) and (r’,e2,e1) summed up with the Frobenius norm of all

weight matrices as the regularization term. The proposed model gets an 86.10 F1

score in the common dataset of SemEval 2010 Task 8.

8

2.1.4. Semantic Relation Classification via Bidirectional LSTM Networks

with Entity-aware Attention using Latent Entity Typing

The model in [17] consists of four main components named word representation,

self-attention, bidirectional LSTM, and entity-aware attention. In word representation,

each word is mapped to a vector representation. Self-attention captures the meaning

correlation of the words using vectors with a multi-head attention mechanism. Bidirec-

tional LSTM takes the outputs of the self-attention layer and generates the encodings

that also represent the order information of the words in the input sentence. Finally,

entity-aware attention adds the attention weights of entity pairs to the representation

of each word by using the relative position of the words to the entities and the ”latent

types” of the entities acquired from Latent Entity Typing.

After these steps, the entity aware attention outputs are fed into a softmax layer

to generate the probabilities of relation classes. The cross-entropy is selected as the

loss function between calculated predictions and actual relations. Minimization of the

loss function is done by AdaDelta optimizer.

The model is evaluated on the SemEval-2010 Task 8 relation classification dataset.

The proposed model with the latent entity typing gets the best macro F1 score of 85.2.

The proposed model does not improve state-of-the-art but contributes to the domain

by proposing the approach of latent entity typing.

2.1.5. Enriching Pre-trained Language Model with Entity Information for

Relation Classification

The contributions of the paper [10] to the topic of Relation extraction are as

follows: Like [17] they propose a way to incorporate entity-level information into the

pre-trained language model to achieve an increase in performance of relation classifi-

cation. The differences are, one, in this paper, the entities representations are fed to

the model explicitly, and two, the architectures of the pre-trained models differ from

9

each other.

The paper proposes to use a pre-trained BERT model to represent the input string

tokens as vectors fed to a simple, fully connected neural network whose outputs are

used to predict the probabilities of each class with the softmax layer. A token [’CLS’]

is appended to each sequence’s beginning to acquire the sentence’s embedding from the

final layer of the transformer’s output. The pre-training of the BERT structure is done

with the objective defined by the ”masked language model” which masks randomly

selected tokens from the input sequence, where the objective is finding the original id

of the masked tokens from the context.

The model architecture can be summarized as follows. For a sentence s and two

target entities, unique tokens of ”$” and ”#” are inserted into the input sequence

denoting the starting and ending positions of the entities, ”$” for first entity positions,

”#” for the second. To represent the overall sentence, the token of ”[CLS]” is also

added to the start of the sequence. The sentence of ”[CLS] The $ kitchen $ is the last

renovated part of the # house # .” with entities kitchen and house can be given as an

example output of the preprocessing.

The vector representation of the relation structure consists of three embeddings:

The embedding of the sentence acquired from the token ”[CLS]” and the average of

the transformer output representations of the words that remain between the entity

position tokens for each entity. The final versions of the entity embeddings are acquired

by feeding averaged transformer vectors into a fully connected neural network. Finally,

the softmax layer, which gets the concatenation of these three embeddings as the input,

is constructed to predict the probabilities of the relation classes.

This paper is taken as the baseline model to be improved. At the time of thesis

writing, the proposed model is the eighth-best performing model in the SemEval 2010

Task 8 dataset with the macro F1 score of 89.25, omitting the other class.

10

2.2. Distantly - Weakly Supervised Relation Extraction

The distantly supervised (DS) approaches emerge with the proposal of [18]. In the

training process of distant supervision, relation and entity tuples in knowledge-bases

(KB) are used as seeds, and sentences that contain the entities given in a particular

relation in KB are fetched. The fetched texts are used as the input and the relation as

the desired output of the system. The main setback of the DS approaches is the noisy

instances which are defined as the sentences that have the correct entities but do not

represent the given relation. To solve that problem multi-instance learning method is

adopted.

NYT-Freebase aligned dataset is the most frequently used dataset in distantly su-

pervised relation extraction models. It is constructed by ”aligning” freebase knowledge-

base entity pairs with the text data of New York Times articles in [19]. Freebase is a

freely available database that stores structured semantic data. The datasets’ relations

are acquired from the 2009 December snapshot of the freebase database. Four cate-

gories named as people, business, person, and location of freebase relations are used.

The reason for selecting these categories is that the newswire corpus has a high number

of items for the relation types in these four categories.

To align these relations with their mentions in newswire texts, first, Stanford’s

named entity recognizer is applied to the corpus to get entity mentions. Second, the

entities in the corpus are associated with the ones in the freebase entities by using a

simple string match. Finally, for each pair of entities representing a relation in freebase

and found in the resulting entity association, sentences containing both entities are

extracted from the text corpus. Thus the alignment of knowledge base with NYT

corpus is done.

The constructed dataset is then divided into two as train and test. The train

part contains the entity pair sentences alignments for the years 2005 and 2006, while

the test part consists of the alignments from the texts dated 2007. Training and test

11

sets have 4700 and 1950 distinct entity pairs, respectively.

2.2.1. Neural Relation Extraction with Selective Attention over Instances

In [20] authors propose a sentence-level attention-based CNN for the task of

distantly supervised relation extraction. A sentence-level attention mechanism is built

to dynamically reduce the weights of incorrect instances. The proposed method consists

of two main parts named sentence encoder and selective attention mechanism over

instances. Instances are candidate sentences that possibly indicate a relation r, which

is known already from the knowledge-base, between entities e1 and e2.

In the sentence encoder, the first step is constructing words vector representations.

A vector representation of a word consists of three parts, a word semantic embedding

gathered from word2vec and two positional embeddings denoting the word’s position

to the target entities. After the vectorization step, a convolution layer takes place with

two types of max pooling, piecewise and default. In piecewise, each convolution filter

is divided into three segments, and max pooling is applied to each segment separately.

Assume a set s containing the sentences of the entity pair (e1,e2). In predicting

the relation r for the entity pair, the proposed model represents the set s with a real-

valued vector that is a sum of the vectors of the sentences in the set with their weights.

The weights are calculated by multiplying the input sentence vector with a trainable

diagonal matrix and a query vector associated with vector r.

In evaluation, as a measure of the system’s performance, the curve of precision

over recall and Precision@N (P@N) is given for various states.

12

2.2.2. Hierarchical Relation Extraction with Coarse-to-Fine Grained Atten-

tion

In the paper [21] a novel hierarchical attention scheme that utilizes relation hi-

erarchies the entities have instead of directly using hierarchic information as features

has been proposed.

The method, given entity-pair and its corresponding entity-pair bag (set of sen-

tences), measures the probability of each relation r between the entities in the pair.

This measurement is done by two steps: first sentence encoding and then coarse-to-fine

grained hierarchical attention. For each sentence in the entity-pair bag, its encoding

is calculated by feeding concatenation of the vector representations the words in the

sentence have to a convolutional neural network (CNN) or piecewise CNN. The word

vectors are acquired by concatenating context embeddings acquired with the skip-gram

approach and positional embeddings of the relative distances to entities.

After representations of the sentences are found, a hierarchical selective attention

mechanism is applied to the sentence set to get the weights for each sentence. A query

vector qr is assigned to each relation r that is used in the attention calculation equation:

ei =qTr Wssi

αi =
exp (ei)∑m
j=1 exp (ej)

Where Ws is the weight matrix and αi is the weight of sentence i.

In the Knowledge graphs, the common relations in the high-level set (e.g., lo-

cation) usually contain several sub-relations in the base-level set. In the paper, it is

assumed that the sub-relations of different relations are disjoint.

For evaluation, precision-recall curves are drawn for all models. Besides precision-

recall curves, Precision@N results are given as other works. The evaluation results

13

show that incorporating the inherent hierarchical structure of relations into attention

mechanisms can benefit from correlations among relations.

2.2.3. Reinforcement Learning for Relation Classification from Noisy Data

In addressing the noisy data issue, previous studies use multi-instance learning to

decrease the effects of noisy instances. The noisy instances are defined as the sentences

that have the target entities but represent another relation between the targets. In

multi-instance learning, all sentences for an entity pair are considered together as a

bag. However, the appliance of the bag approach to extract relations between entities

results in two shortcomings; one, sentence-level relation extraction cannot be done in

bag representation, and two, the results are sensitive to bags containing only noisy

sentences.

In order to solve these two shortcomings, in [22] authors propose a relation clas-

sification model with two parts: instance selector and relation classifier. The proposed

model filters all the instances in a bag if they are noisy to handle the second limitation.

However, the proposed method’s difficulty comes from training both parts together

since the instance selector does not know which instances are correctly labeled. As

a solution to this issue, the instance selection part is formulated as a reinforcement

learning problem.

The instance selector is an agent who follows a specific policy for selecting a

sentence or not according to the current state the agent is in and gets a reward according

to the selection. The state consists of three information; vector representation of the

considered sentence, representation of the chosen instances calculated by taking the

average of the selected sentences, and the embeddings of the entities acquired from a

pre-trained knowledge graph embedding table. The decision of whether selecting an

14

instance or not is made by a logistic function such that:

πΘ (si, ai) = PΘ (ai|si)

= aiσ (W ∗ F (si) + b)

+ (1− ai) (1− σ (W ∗ F (si) + b))

Where πΘ (si, ai) is the policy function, ai is the action for ith state si which

is the state for ith sentence. F (si) stands for the vector representation of the state

the instance selector is currently in. The reward function indicates the correctness or

utility of the chosen sentences. For each bag, the reward is calculated once after all the

sentences in a bag are considered, in other words, at the state S|B|+1. The reward is

calculated as the average log probability of the relation r given the sentence X among

all the selected sentences for that particular bag. The optimization task is to maximize

the expected total reward in each bag.

2.2.4. Long-tail Relation Extraction via Knowledge Graph Embeddings and

Graph Convolution Networks

The long-tailness of the relations in the corpora is the de facto reason for the per-

formance leaks in relation extraction task, whereas even the most recent models fail to

provide a solution or completely ignore this problem. For example, the frequency label

analysis of the commonly used NYT dataset shows that almost 70% of the relations it

contains are long-tailed (have less than 1000 instances).

The long-tail relations are rather hard to deal with since the number of instances

for these relations is quite limited. In paper [23], finding semantically similar head

relations, which are the relations that have lots of examples, to long-tailed ones and

transferring their knowledge onto less sampled ones is found to be beneficial for the

performance of relation extraction systems. For instance; If a pair of entities contain the

relation /people/deceased person/place of death, it is highly likely to contain /people/

15

deceased person/place of burial relation.

To learn this relational knowledge and represent the relations similar to each

other, the authors propose using class embeddings and graph convolution networks.

The proposed model consists of three parts. In the order of their application, these parts

are instance encoder, relational knowledge learning, and knowledge-aware attention.

Instance encoder generates vector representations of instances by using CNNs which

take sentence sequence and entity pairs as inputs. In relational knowledge learning, pre-

trained knowledge graph embeddings (TransE) are used as implicit relational knowledge

and fed to GCNs to learn explicit embeddings for knowledge relation, whose outputs

are concatenated to form final class embeddings. With the knowledge-aware attention

mechanism, most informative instances for the relations between entities are selected.

Experimental results on the NYT dataset show that the proposed model is more

successful in extracting relation information than other models explained in this report,

especially in long-tailed relations in terms of precision over recall and Precision@N

(P@N).

2.3. Unsupervised Relation Extraction

In unsupervised relation extraction, the only input is the vast amount of raw

text. From this text, words’ part of speech (POS) classes and the entities are extracted

using POS tagging and Named Entity Recognition approaches. With the assumption

that words representing the relation between two entities are positioned between these

two entities in text, candidate relation snippets are generated. These snippets are then

analyzed to find patterns such as ”X born in Y,” and resulting patterns are accepted

as relations.

16

2.3.1. Unsupervised Relation Extraction by Mining Wikipedia Texts Using

Information from the Web

Authors of the [24] consider integrating linguistic analysis with Web frequency

information to improve the performance of unsupervised relation extraction. However,

since deep linguistic technologies are problematic when applied in muddy text sources

(such as Reddit, Twitter), plain texts from the Web are not considered in this unsuper-

vised relation extraction model. Instead, well-written texts, texts of Wikipedia articles

in specific, are examined.

The enumeration of all potential relation types of interest for RE in a corpus as

extensive as Wikipedia and labeling the relations found in corpus via extraction are the

two most challenging tasks of the selected dataset. The proposed model aims to improve

the performance of the previous work of Davidov et al. [25] by combining frequency

information from the Web and the ”high quality” characteristics of Wikipedia text.

The model proposed in the paper consist of four main modules named as text

preprocessor and concept pair collector, web context collector, dependency pattern

extractor, and clustering algorithm. Text preprocessor and concept pair collector pre-

process Wikipedia articles and give concept pairs accompanied with their related text

as output. Web context collector generates relational terms and surfaces for each con-

cept pair. Dependency pattern extractor generates dependency patterns from sentences

related to concept pairs in Wikipedia articles. Clustering algorithm clusters concepts

according to their contexts with ”dependence clustering” and ”surface clustering” ver-

sions.

2.3.2. Discovering Relations Among Named Entities From Large Corpora

Hasegawa et al.’s work [1] is considered as one of the first unsupervised relation

extraction models. The key idea behind their proposal is that clustering pairs of entities

according to the similarity of context words between the named entities in the text

17

results in relation clusters. For this idea, the authors make several assumptions, which

also can be used to describe their methodology. These assumptions are;

• Pairs of entities occurring in a similar context can be clustered, and each pair in

a cluster is an instance of the same relation

• In cases where the contexts linking a pair of entities express multiple relations,

it is expected that the target pair of entities are clustered into the pair’s most

frequently expressed relation or could not be clustered at all.

• Useful relations’ mentions will be frequent in the text data. The relations en-

countered once or twice are unimportant. Those relations are disregarded.

!"#$%&!"!'"#$% !"#$%&# !'"#$%

()&*++),&-*&(./

!0&1,*1*0)&234.505-5*60&*+

!0&56-),)0-&56

()&6)7*-52-)&-*&234.5,)

!0&1826 1.,3920) *+

!"#$%&$"!'"#$%

"

!"#$%&% !'"#$%

02/&5-&56-)6:&-*&(./

27,))&-*&(./

!0&1.,3920) *+

1826 -*&(./"

;5<582,&3*6-)=->

! ()&*++),&

-*&(./ #

?8.0-),):& -9)&02<)&,)82-5*6!

"#&-277),$&()&*++),&

-*&(./ %

"#$$"&'$(&""

"))0121),0 (277):&6))0121),0

?*6-)=-&)*,:0

$33.<.82-):&

3*6-)=-

Figure 1: Overview of our basic idea

level. In addition, the set of types of named entities
has been extended by several research groups. For
example, Sekine proposed 150 types of named enti-
ties (Sekine et al., 2002). Extending the range of NE
types would lead to more effective relation discov-
ery. If the type ORGANIZATION could be divided
into subtypes, COMPANY, MILITARY, GOVERN-
MENT and so on, the discovery procedure could de-
tect more specific relations such as those between
COMPANY and COMPANY.
We use an extended named entity tagger (Sekine,

2001) in order to detect useful relations between ex-
tended named entities.

3.3 NE pairs and context
We define the co-occurrence of NE pairs as follows:
two named entities are considered to co-occur if
they appear within the same sentence and are sep-
arated by at most N intervening words.
We collect the intervening words between two

named entities for each co-occurrence. These
words, which are stemmed, could be regarded as
the context of the pair of named entities. Differ-
ent orders of occurrence of the named entities are
also considered as different contexts. For example,

and are collected as different con-
texts, where and represent named entities.
Less frequent pairs of NEs should be eliminated

because they might be less reliable in learning rela-

tions. So we have set a frequency threshold to re-
move those pairs.

3.4 Context similarity among NE pairs
We adopt a vector space model and cosine similarity
in order to calculate the similarities between the set
of contexts of NE pairs. We only compare NE pairs
which have the same NE types, e.g., one PERSON
– GPE pair and another PERSON – GPE pair. We
define a domain as a pair of named entity types, e.g.,
the PERSON-GPE domain. For example, we have
to detect relations between PERSON andGPE in the
PERSON-GPE domain.
Before making context vectors, we eliminate stop

words, words in parallel expressions, and expres-
sions peculiar to particular source documents (ex-
amples of these are given below), because these ex-
pressions would introduce noise in calculating sim-
ilarities.
A context vector for each NE pair consists of the

bag of words formed from all intervening words
from all co-occurrences of two named entities. Each
word of a context vector is weighed by tf*idf, the
product of term frequency and inverse document
frequency. Term frequency is the number of occur-
rences of a word in the collected context words. The
order of co-occurrence of the named entities is also
considered. If a word occurred times in con-
text and times in context , the term

Figure 2.1. Process of Relation Cluster Generation [1]

18

The approach proposed in the paper can be described by the following steps:

(i) Tagging the named entities in the text corpora.

(ii) Forming of co-occurring named entity pairs and associating their texts to con-

structed pair.

(iii) Computing context similarities among the pairs found in step (ii).

(iv) Clustering the pairs according to the similarity values computed in the previous

step.

(v) Assigning a label to each resulting cluster describing the relation type represented

by it.

A representation of the given steps can be found in Figure 2.1. The model requires a

named entity tagger to identify named entities in the text so that it focuses only on

finding pairs for these named entity mentions.

19

3. DATASETS

In this thesis work, SemEval-2010 Task 8 [26] and TACRED [27] datasets have

been selected to evaluate the performances of the proposed models.

3.1. SemEval-2010 Task 8

SemEval-2010 Task 8 is the most used dataset in the Relation Classification task

according to the number of papers associated with it in the Papers with Code website

among datasets like DocRED, TACRED, FewREL, and more.

The purpose of generating this dataset is to create a testbed that can be used

in automatic semantic relations classification. While constructing the dataset, authors

try to achieve two goals; first, all types of relations between two nominals should be

represented, and second, each nominal pair should match to one and only one relation

in the context it was given. In reality, compromises are required to be made to meet

those goals since no dataset is able to fully accomplish both.

The dataset comprises nine relations covering a broad enough area to be consid-

ered general and practical. In the process of selecting the relations, semantic overlaps

are tried to be avoided as much as possible. Nevertheless, two groups of relations with

strong semblances (entity-origin, entity-destination as one group and content-container,

component-whole, member-collection as another) are given to analyze proposed mod-

els’ ability to discern subtle differences.

20

The annotation process of the dataset samples is composed of three steps. First,

1200 sentences are manually extracted from the web using a unique set of patterns

for each relation. The number of patterns in each set ranges between one hundred

to several hundred. Second, two annotators label the sentences gathered in the first.

Finally, the disagreed candidates are reexamined. If no agreement has been reached

by the annotators, the item in consideration is discarded.

The relations available in the dataset are:

• Cause-Effect: An effect occurring because of an object or cause. Ex: Corn pops

when heated.

• Instrument-Agency: An instrument used by an agent. Ex: Pilot landed the plane.

• Product-Producer: A product comes to exist by a producer. Ex: the honey

acquired from bees nest.

• Content-Container: An physical item stored in a designated place or another

object. Ex: cookies are in the jar.

• Entity-Origin: An entity coming or derived from an origin. Ex: This pencil is

made in China.

• Entity-Destination: An entity traveling to destination. Ex: The plane will arrive

at the airport.

• Component-Whole: Entity is a part of a larger whole. The apartment has three

rooms.

• Member-Collection: A member constituting a nonfunctional part of a collection.

Ex: There are lots of trees in the forest.

• Message-Topic: The written, spoken, shown message about a topic: The president

gives a speech about animal rights.

• Other: The terms that do not fit the classes above.

The frequencies of realtions, the percentages of items selected as the represen-

tatives of relation from all candidates of the relation, and inter-annotator agreement

values of each relation class can be found in Table 3.1.

21

Table 3.1. SemEval Dataset Statistics.

Relation Freq Pos IAA

Cause-Effect 1331 (12.4%) 91.2% 79.0%

Component-Whole 1253 (11.7%) 84.3% 70.0%

Entity-Destination 1137 (10.6%) 80.1% 75.2%

Entity-Origin 974 (9.1%) 69.2% 58.2%

Product-Producer 948 (8.8%) 66.3% 84.8%

Member-Collection 923 (8.6%) 74.7% 68.2%

Message-Topic 895 (8.4%) 74.4% 72.4%

Content-Container 732 (6.8%) 59.3% 95.8%

Instrument-Agency 660 (6.2%) 60.8% 65.0%

Other 1864 (17.4%) N/A N/A

Total 10717 (100%)

Each sample consist of three parts:

(i) The sentence text where entities are enclosed with tags [e1], [/e1] and [e2], [/e2].

(ii) The relation type, along with the direction between entities as (e1,e2) or (e2,e1).

(iii) Comments that are given by annotators to explain the reason behind the selection

of relation type.

The objective of the dataset is to find the relation and the direction of the relation

between entities given the sentence and two entities. The official scoring metric have

been chosen as the macro averaged F1 score for all relations in the dataset except

Other, considering the directions.

22

3.2. TACRED

TACRED is a supervised relation extraction dataset constructed by Stanford

University to improve the performance of the models in TAC KBP tasks. It focuses

on the relations between people, organizations, and locations instead of more general

semantic relations in which SemEval-2010 Task 8 concentrates on. In means of amount

of data samples TACRED is 7 to 10 times larger than the other common datasets in

the domain, Automatic Content Extraction (ACE) and SemEval-2010 Task 8.

The samples in the dataset have been constructed from the source corpuses and

query entities of TAC KBP evaluations from years between 2009 and 2015. All entity

pairs in the dataset consist of at least one query entity. All the samples are either tagged

by a LDC annotator or collected from corpus using Stanford’s Statistical coreference

system and Illinois Wikifier which is followed with an annotation process done by

Mechanical Turk. A total of 10,691 and 110,021 annotations are acquired from two

approaches respectively. After duplicates and examples with overlapped entities are

discarded 106,264 samples left.

To predict inter-annotator agreement randomly selected 761 samples are shown

to five annotators. As a result, all five annotators are agreed on 74.2% of the samples,

90.5% of the samples have been agreed on by at least four of the annotators, and all

samples have at least 3 annotators that are in agreement.

In order to overcome the dataset bias between the train, dev and test sets, the

samples are stratified by the years of the TAC KBP challenges. Train set is constructed

from the years of 2009 to 2012 with the total of 68.124 samples where years and sample

counts are 2013, 22.631 and 2014, 15.509 for the dev and test sets respectively.

23

TACRED consist of 41 relation classes, with no relation as the 42nd class which

is used for the entity tuples which don’t have a relation between in the related text.

79.5% of the examples are in the class of no relation. All classes with their distribution

probabilities for train, dev and test sets can be seen in Table 3.2.

Table 3.2. TACRED Relation Statistics.

Relation Total Percentage
Train

2009–2012

Development

2013

Test

2014

no relation 84491 79.51% 55112 17195 12184

org:alternate names 1359 1.28% 808 338 213

org:city of

headquarters
573 0.54% 382 109 82

org:country of

headquarters
753 0.71% 468 177 108

org:dissolved 33 0.03% 23 8 2

org:founded 166 0.16% 91 38 37

org:founded by 268 0.25% 124 76 68

org:member of 171 0.16% 122 31 18

org:members 286 0.27% 170 85 31

org:number of

employees/members
121 0.11% 75 27 19

org:parents 444 0.42% 286 96 62

org:political/

religious affiliation
125 0.12% 105 10 10

org:shareholders 144 0.14% 76 55 13

org:stateorprovince

of headquarters
350 0.33% 229 70 51

org:subsidiaries 453 0.43% 296 113 44

org:top members

/employees
2770 2.61% 1890 534 346

org:website 223 0.21% 111 86 26

24

Table 3.2. TACRED Relation Statistics. (cont.)

Relation Total Percentage
Train

2009–2012

Development

2013

Test

2014

per:age 833 0.78% 390 243 200

per:alternate names 153 0.14% 104 38 11

per:cause of death 337 0.32% 117 168 52

per:charges 280 0.26% 72 105 103

per:children 347 0.33% 211 99 37

per:cities of

residence
742 0.70% 374 179 189

per:city of birth 103 0.10% 65 33 5

per:city of death 227 0.21% 81 118 28

per:countries of

residence
819 0.77% 445 226 148

per:country of birth 53 0.05% 28 20 5

per:country of

death
61 0.06% 6 46 9

per:date of birth 103 0.10% 63 31 9

per:date of death 394 0.37% 134 206 54

per:employee of 2163 2.04% 1524 375 264

per:origin 667 0.63% 325 210 132

per:other family 319 0.30% 179 80 60

per:parents 296 0.28% 152 56 88

per:religion 153 0.14% 53 53 47

per:schools

attended
229 0.22% 149 50 30

per:siblings 250 0.24% 165 30 55

per:spouse 483 0.45% 258 159 66

per:stateorprovince

of birth
72 0.07% 38 26 8

25

Table 3.2. TACRED Relation Statistics. (cont.)

Relation Total Percentage
Train

2009–2012

Development

2013

Test

2014

per:stateorprovince

of death
104 0.10% 49 41 14

per:stateorprovinces

of residence
484 0.46% 331 72 81

per:title 3862 3.63% 2443 919 500

Total 106264 100.00 68124 22631 15509

Compared to SemEval-2010 Task 8 which has the average sentence length of

19.1, TACRED dataset consist of longer sentences with the mean length of 36.4. This

has been emphasized by the authors of the dataset as an indicator of the contents

complexity. They argue that as the length of a sentence increases the complexity of

it also increases, thus a better model for real world scenarios is provided. The length

distribution of TACRED and SemEval-2010 task 8 can be seen in Figure 3.1.

Instructions

Stamford is a city
Sandra_Herold has resided in
Connecticut State 's Attorney David Cohen said Monday that there is

no evidence that Sandra Herold of Stamford was aware of risk that

her chimpanzee posed to other people and disregarded it .

Please select the first word of the phrase referring to Sandra_Herold

Your current selection:

UNSELECTED is a city UNSELECTED has resided in

Click here to reset your selection Reset

(Optional) Thank you for your help! Do you have any feedback

for us?Figure 8: Example of an LDC examples HIT
on Mechanical Turk for identifying the mention
spans. The annotator is presented with a sentence
obtained from the HIT shown in Figure 7 as well
as the corresponding extraction and asked to iden-
tify the spans of the subject and object mentions in
the extraction.

Instructions

International Amateur Boxing Association president

Anwar Chowdhry, who is from Pakistan, defended the

decision to stop the fight.

Anwar Chowdhry is an employee or member of International

Amateur Boxing Asscociation (note: politicians are employed

by their states, musicians are employed by their record

labels)

International Amateur Boxing Asscociation is a school that

Anwar Chowdhry has attended

No relation/not enough evidence

Entity is missing/sentence is invalid (happens rarely)

${sentence_1}

${subj_1}'s ${typechecked_rel_1} is ${obj_1}

No relation/not enough evidence

Entity is missing/sentence is invalid (happens rarely)

${sentence_2}

${subj_2}'s ${typechecked_rel_2} is ${obj_2}

No relation/not enough evidence

Entity is missing/sentence is invalid (happens rarely)

${sentence_3}

${subj_3}'s ${typechecked_rel_3} is ${obj_3}

No relation/not enough evidence

Entity is missing/sentence is invalid (happens rarely)

${sentence_4}

${subj_4}'s ${typechecked_rel_4} is ${obj_4}

No relation/not enough evidence

Entity is missing/sentence is invalid (happens rarely)

${sentence_5}

${subj_5}'s ${typechecked_rel_5} is ${obj_5}

No relation/not enough evidence

Entity is missing/sentence is invalid (happens rarely)

Figure 9: Example of a generated examples HIT.
The subject entity is highlighted in blue and the
object entity is highlighted in red. The annotator
is asked to select among a set of plausible relations
that are compatible with the subject and object en-
tity types, along with an option to state that none
of the presented relations hold.

mention pairs shown to five annotators. Results
are shown in Table 7.

A.3 Data Statistics

In total, we collect 10,691 annotations from the
LDC examples task and 110,021 annotations from
the generated examples task. After removing ex-
amples where the subject and object entities over-
lap, we arrive at a total of 119,474 examples.
About 78.7% of all examples are annotated as
no relation, which we showed to be crucial for
training high-precision relation extraction models
for the TAC KBP 2015 slot filling evaluation. Fur-
thermore, we find that sentences in TACRED tend
to be much longer than in the SemEval dataset

Metric Score

5 annotators agree 74.2%
� 4 annotators agree 90.5%
� 3 annotators agree 100.0%

Fleiss Kappa 54.4%

Table 7: Estimated inter-annotator agreement us-
ing 761 sampled mention pairs.

0 20 40 60 80 100
0

1

2

3

4

5

6

Sentence Length

Pe
rc

en
ta

ge
of

D
at

as
et

(%
) SemEval

TACRED

Figure 10: Distribution of sentence lengths in
SemEval 2010 task 8 and TACRED.

(Figure 10).
Table 8 presents detailed statistics on this

dataset. We also include sampled training exam-
ples in Table 9.

B Model Training Details

Here we describe the way we train our models in
detail for replicability.

Model hyperparameters. We use 200 for word
embedding size and 30 for every other embedding
(i.e., position, POS or NER) size. For CNN mod-
els, we use filter window sizes ranging from 2
to 5, and 500 filters for each window size. For
the SDP-LSTM model, in addition to POS and
NER embeddings, we also include the type of de-
pendency edges as an additional embedding chan-
nel. For our proposed position-aware neural se-
quence model, we use attention size of 200. For
all models that require LSTM layers, we find a 2-
layer stacked LSTMs works better than a single-
layer LSTM. We use one-directional LSTM lay-
ers in all of our experiments. Empirically we find
bi-directional LSTM layers give no improvement
to our proposed position-aware sequence model
and marginal improvement to the simple LSTM
model. We do not add max-pooling layers after

Figure 3.1. Sentence Length Histogram of SemEval-2010 Task 8 and TACRED

Datasets.

26

4. METHODOLOGY

4.1. Overview

R-BERT is the first paper that represents the sentence and the entities sepa-

rately as explicit embeddings from the pre-trained language model of BERT. With our

proposed model, we aim to increase the performance of the R-BERT method by inte-

grating shortest dependency paths between terms and replacing BERT with a novel

pre-trained language model XLNet.

Dependency paths of entities derived from the dependency trees have been studied

by various papers. [3,4,7–9,28] from supervised and unsupervised subdomains of rela-

tion extraction. By providing grammatical connections of terms, dependency parsers

define sentences in a structured way.

As the length of the input text increases, finding the relation between the given

entities becomes more challenging. The increase in the number of terms results in a

muddier representation of the target relation in the sentence embedding. The short-

est dependency path between two entities, obtained by traversing the terms in the

dependency tree, provides a view focused on the entities by pruning noisy words.

We propose to add the sequence representation of the shortest dependency path,

collected from pre-trained language models, as the fourth embedding to the input of

the last dense layer in the R-Bert relation classification model. We concatenate the

SDP representation to the general embedding instead of replacing the sentence’s part

to preserve the potential information coming from the noisy data. Additionally we

examine the performance change of the system by replacing the pre-trained model

with the new state-of-the-art XLNet.

27

The proposed method’s input consists of two parts:

• The raw sentence text where the entities are enclosed with special tokens [E11],

[E12], [E21], [E22] which are not available in the text otherwise. In special to-

kens, the first digit represents the entity number, and the second represents the

beginning and end of an entity. Unlike the baseline model, the beginning and

end of the entities have separate tokens.

• The SDP text where the first and last terms are first and second entities, re-

spectively, and the terms in between are the tokens in the shortest dependency

path.

Sentence text is fed to a transformer-based pre-trained language model, which

returns the general embeddings of the sentence and every token individually. The

embeddings of the tokens forming the entities, including the entity delimiters, are

averaged. The resulting vectors from the average operation are then fed to a fully-

connected layer that uses Tanh as the activation function. For both embeddings, the

same dense layer is applied.

Along with the sentence, the text for the shortest dependency path is given to

the pre-trained language model. The embedding corresponding to the [CLS] token is

taken as the SDP’s representation. In the version with XLNet, the general embeddings

are generated by running an additional layer named ’sequence summary’. It takes the

hidden layer output for the <cls> token and passes it from a fully connected layer with

the Tanh activation.

Finally, the concatenation of four inputs; sentence’s general embedding, first and

second entity’s embeddings from fully-connected layer, and the general embedding of

the SDP are fed to a softmax layer. The dimension of the softmax layer is equal

to the total number of relation classes. The loss function is chosen as the negative

log-likelihood of the correct embedding.

28

In the following sections, detailed information on pre-trained models, dependency

parsers, the flow of generating shortest dependency paths from samples’ respective

dependency trees, and the proposed model’s comprehensive explanation shall be given.

4.2. Pre-Trained Language Models

A common approach applied by the latest models in representation learning is

dividing the training process into two as pretraining and fine-tuning. In pretraining,

the model or embeddings at hand are trained using a large corpus (such as Wikipedia,

PubMed articles, New York Times articles). In fine-tuning, the model or embeddings

are further trained with the samples from the target (downstream) task. The majority

of models in the domain fall into two paradigms named autoregressive and autoencoding

according to their objective functions for generating representations.

In autoregressive models, the probability of a text sequence s = [w0, w1, w2 . . . , wn]

is modeled as a forward or backward multiplication of conditional next-term probabil-

ities based on the previous or following terms, respectively.

The main setback of the autoregressive models is their training with only one

direction (forward or backward). It hinders their performance in deducting deep bidi-

rectional connections. With the emergence of the XLNet, this setback has been solved.

The objective of pretraining models in autoencoding can be simplified as regen-

erating the original data from a distorted version. The most popular approach in the

pretraining domain based on this idea is BERT. In BERT, the training task is to find

the values of the masked terms in a text sequence.

In this thesis work, BERT and XLNet are chosen as examples for autoencoding

and autoregressive language models, respectively. In the following subsections, details

on the methodologies for the two models can be found.

29

4.2.1. Bidirectional Encoder Representations from Transformers

Bert is a multilayer bidirectional transformer encoding mechanism whose archi-

tecture is based on transformers [29]. In the following paragraphs, input structure,

embedding representation, objective functions, and overall structure of BERT are ex-

plained.

The model takes a text sequence as input that can consist of one or two sentences,

tokenizes them using WordPiece [30] in which rarer words are represented by most

frequent subwords, adds [CLS] token to the top of the tokens list and [SEP] token

between two sentences if the input consists of two sentences otherwise to the end of

the list.

In BERT, the final input embedding of a token is built by summing token, seg-

ment, and position embeddings. Token embeddings correspond to the embeddings

received from WordPiece; segments embeddings represent whether the term is in the

first sentence or in the second, and position embeddings are embeddings associated

with the index position of the token in input as its name suggests.

The process of pretraining has two tasks with different objectives. In the first one

named Masked LM, a certain percent (15% in default) of the input tokens are selected

to be replaced by [MASK] token. The objective is to predict the original token id of

the masked tokens by feeding the hidden vectors of the masked tokens into a softmax

layer whose output dimension is the number of items in the vocabulary. Unfortunately,

replacing all the selected terms with the mask token creates a discrepancy between pre-

training and fine-tuning. To solve this discrepancy issue, 80% of the items designated

to be masked are replaced with [MASK] token, while 10% of them are replaced with

random words, and the remaining 10% of them are left untouched.

The second task is Next Sentence Prediction, a process that focuses on capturing

the relationship between two sentences. In this task, the input consists of two sentences

30

following each other. In the training phase of the model, half of the time second sentence

of the input is replaced with a random one. The goal is to predict whether the second

sentence is the original one or not. To predict the outcome, the last hidden vector of

the [CLS] token is fed to a binary classifier. The output of the token [CLS] can also

be used as the general representation of the input text sequence in text classification

tasks.

The transformer structure is constructed by concatenating multiple self-attention

and position-wise feedforward layers. In a self-attention layer, the output hx is calcu-

lated by:

Qx = WQ ∗X

Kx = WK ∗X

Ax = Softmax(
qi ∗Ki√

d
)

Vx = W V ∗X

hx = (Ax ∗ Vx) + X

Where WQ, WK , and W V are the query, key, value weights of the self-attention layer,

Qx, Kx, Vx are the query, key, value matrices calculated for the input X, and Ax is the

attention coefficients matrix. As the next step, the output of the self-attention layer is

normalized and fed through the position-wise feedforward system [29].

In the paper of the proposed model, two versions named BERTbase and BERTlarge

have been analyzed. The differences between them are in hyperparameters, which

are; the sizes of the hidden state outputs (768 in base, 1024 in large), the number of

transformer layers (12 in base, 24 in large), and the number of self-attention heads in

a transformer layer (12 in base, 16 in large). In the experiments of this thesis, both

versions are used in acquiring representations.

31

4.2.2. Generalized Autoregressive Pretraining for Language Understanding

XLnet [31] is an autoregressive language model that combines the powerful as-

pects of both autoregressive and autoencoding paradigms. It surpasses the state-of-

art pretraining method BERT in various tasks, including but not limited to reading

comprehension, text classification, question answering by a margin of 5% to 10% de-

pending on the task. It is constructed with the architecture of transformer-XL [32]. In

subsequent paragraphs, the input representation, objective function, and two-stream

attention mechanism which enables the model to learn bidirectional relations are ex-

plained.

Like BERT, XLNet accepts a text sequence as an input, applies WordPiece al-

gorithm to find the most frequent subwords, and tokenizes the sequence according to

them. In the token representation of the input, <cls> token, which corresponds to the

[CLS] token in BERT, is added to the end of the tokens list. In cases where the sequence

consists of two sentences, <sep> token is added between the sentences. Otherwise, it

is added before the <cls>.

The training objective of XLNet calculates the probability of a term t whose con-

ditions are based on all permutations of terms in a sequence, not just in a forward or

backward manner like in ELMo. To elaborate on the idea, let us give an example. As-

sume that we have a sequence of terms s = [x1, x2, x3, x4]. In a common autoregressive

language model, the likelihood of sequence s is calculated by:

log(pθ(s)) =
T∑
t=1

(log(pθ(xt|xi<t))

In which the term x in position t is conditional to previous terms in sequence. This

likelihood calculation is an example of forward autoregression. In next-token probabil-

ity calculation of the modified version used by XLNet, conditional probabilities for all

permutations of tokens’ orders in a sequence are taken into account. For the sequence

s some permutation examples are [1, 2, 3, 4], [3, 2, 4, 1], [1, 4, 2, 3].

32

For the case of order z = [1, 4, 2, 3], the log-likelihood of sequence s becomes:

log(pθ(s)) = log(pθ(x1)) + log(pθ(x4|x1)) + log(pθ(x2|x4, x1)) + log(pθ(x3|x2, x4, x1))

In generalized form, the log-likelihood of a sequence for a permutation (factor-

ization) order z is:

log(pθ(s)) =

|z|∑
t=1

(log(p(xzt |xzi<t
)))

Where log(p(xzt|xzi<t
)) is the next-token probability for term xzt given the previous

terms in the permutation order z of the input sequence.

In calculating log-likelihoods of sequences, the index information of tokens are

needed. Otherwise, the probability of an item x coming after item k would be equal

for all x’s. For instance, in the scenario without the index information, the sentences

”Apple is red, not cyan” and ”Apple is cyan, not red” are equally likely. By constructing

a proper attention mask of transformers, the permutation order and the index of terms

in sequence can be integrated into the next-token distribution. Note that in the creation

of proper attention masks, the original sequence of the tokens should be preserved.

In order to calculate the next-item probability of xzt , the target-aware represen-

tations (i.e., representations in which term indexes are known) should use only the

position information of zt, not context. But for the terms coming after the xzt in the

permutation z, i.e. xzk>t
, the context of xzt should be known. In the original design of

the transformer mechanism, the index information is encoded inside the embeddings

of words. Even though the original Transformer can be used for the cases where the

context xzt is needed (in the prediction of terms xzk>t
), a new representation is required

for instances where the context information should not be known.

33

To solve this issue, two-stream self-attention is proposed. As its name suggests,

the proposed structure employs two hidden representations: query and content. The

content representation serves a similar function to the hidden states of Transformer.

It encodes both the context information Xzt and index information zt. Denoted by hz,

in the mth layer, it is calculated as:

h(m)
zt ← Attention(Q = h(m−1)

zt , KV = h(m−1)
z≤t

; θ)

The query representation uses the information of index zt but not the context infor-

mation to fit the constraints stated above. Denoted by gz, its calculation in the mth

layer is:

g(m)
zt ← Attention(Q = g(m−1)

zt , KV = h(m−1)
z<t

; θ)

Q, K, V are the query, key, value inputs in an attention process [29]. The

representation update of the two-stream self-attention follows the original attention

method. The representation of g
(m)
zt , where m is the last layer, is used in the next-

token distribution calculation. With the integration of two-stream self-attention, the

next-token probability for term xzt would be calculated by:

pθ(Xzt = x|Xzi<t
) =

exp(e(x)Tgθ(Xz<t , zt))∑
x′ exp(e(x′)Tgθ(Xz<t , zt))

where e(x) denotes the input embedding of x.

34

4.3. Dependency Parsing

To analyze the performance of the proposed system with the SDPs generated

from different dependency parsers, we have selected Stanford Neural Parser, HPSG

Parser, and LAL Parser. Stanford’s Neural Parser is one of the most commonly used

dependency parsers in the domain. Furthermore, LAL and HPSG parsers are the first

and fourth state-of-art in the dependency parsing task on Penn English Treebank,

respectively. In the following sub-sections, each one’s methodology is examined in

detail.

4.3.1. Stanford Neural Dependency Parser

Stanford dependency parser [33] solves the problems of earlier approaches caused

by their usage of numerous manually generated sparse features with a transition-based

neural network representing features as dense vectors. With dense representations, no

manual work for creating feature templates is needed, the data insufficiency is no longer

a problem, and the time for feature selection has been significantly decreased.

In transition-based dependency parsing, the objective is to predict the sequence of

transitions from a given initial configuration to a desired final configuration, generating

the dependency tree from the resulting transition sequence. The paper selects the arc-

standard transition algorithm [34] as its dependency parsing system .

In the arc-standard algorithm, a configuration c = (s, b, A) contains three parts;

a stack s, a buffer b, and a dependency arcs set A. The starting configuration of a text

input w1, w2, . . . , wn is s = [ROOT], b = [w1, w2, ..., wn], A = 0. A transition from one

configuration to another can happen in three ways:

• LEFT-ARC(l): adds s1 → s2 with label l to arcs set. Pops s2 from the stack.

More than 1 item in the stack is required.

35

• RIGHT-ARC(l): add s2 → s1 with label l to arcs set. Pops s1 from the stack.

More than 1 item in the stack is required.

• SHIFT: Removes b1 from the buffer and adds it to the top of the stack. More

than 1 item in the buffer is required.

Where si is the ith item in a stack from the top and bi is the ith item in a buffer.

A configuration is considered final if the only item in the stack is ROOT and the buffer

is empty. The parse tree then can be constructed from the arcs in set A.

The objective function of the trained neural network is to predict the correct

transition from a given configuration. The number of possible transitions is equal to

2 ∗ Nl + 1, where Nl corresponds to the number of dependency labels in the system.

The configuration representation that is the input of the neural network is generated

using embeddings of items from sets of words Sw, POS tags St, and dependency labels

Sl.

Word set consists of the top three and first three words on the stack and buffer,

the first two leftmost/rightmost children of the top two words on the stack, and the

leftmost of leftmost/rightmost of rightmost children of the top two words on the stack.

The input’s word embeddings vector is constructed by concatenating the embeddings

of the above words.

The POS set is the corresponding POS tags of the items in the word set. The

vector used by the network for POS tags is constructed in the same way as the words

vector. The items in the labels set are the labels of the relations between the words.

The embeddings of the labels are also concatenated to be used by the network. The

word, POS, and label sets have 18, 18, and 12 items. A special token NULL is given

to places in sets where an item is unavailable.

36

The structure of the neural network is quite simple. It consists of only one hidden

layer. The three concatenated embedding vectors are given to the hidden layer with d

nodes using a cube activation function:

h = (Wwxw + W txt + W lxl + b)3

On top of the hidden layer, a softmax layer with Nl dimensions is added. The

cross-entropy loss function is used with AdaGrad as the optimizer. Pre-trained embed-

dings from (Collobert et al. 2011) are chosen for English. A dropout is applied before

the softmax layer with a rate of 0.5.

The model achieves a 91.8% accuracy in unlabeled attachment score and 89.6%

accuracy in labeled attachment score on English Penn Treebank with a speed of 654

sentences per second.

4.3.2. Head-Driven Phrase Structure Grammar Parsing

This parser [35] is the first successful attempt to represent the items in the Penn

Treebank as a simplified version of Head Phrase Structure Grammar (HPSG) by com-

bining constituent and dependency parse information. HPSG is a highly lexicalized,

constraint-based grammar created by Carl Pollard and Ivan Sang.

By converting simplified HPSG to a tree representation based on a span structure

like a constituent tree, HPSG trees are made compatible with the existing parsers. The

authors define two alternative tree structures for this conversion task: division span

and joint span.

37

In the division span, a span is divided into two based on the relative position

of its head term. A special token H is added to the categories of sub spans on the

left of the head term, including the sub span containing the head as the last item, to

differentiate the two parts. This way, head information of a span is incorporated into

the standard constituent tree representation. After this operation, a span’s head term

can be found by traversing its last daughter spans with H.

The second structure, Joint span, is a recursive one, consisting of its children

phrases (which are also joint spans), category of the span, and dependency relations

between heads of those children phrases. A sentence’s tree representations of the pro-

posed structures are shown in Figure 4.1.

Federal
NNP

wood
NN

products
NNS

sells
VBZ

Paper
NNP

Board
NNP

paper
NN

and
CC

NP

NP

VP

S

1 2 3 4

5 6 7 8

9

(5,8)

(4,8)(1,3)

(1,9)

Federal
NNPROOT

sells
VBZ

Paper
NNP

Board
NNP

wood
NN

products
NNS

paper
NN

and
CC

1 2 3 4 5 6 7 8 9

(a) Constituent and dependency.

Federal
NNP

wood
NN

products
NNS

sells
VBZ

Paper
NNP

Board
NNP

paper
NN

and
CC

H-NP

NP

H-VP

H-S

H- H- H-

H-

H- #

H-

H-

1 2 3 4

5 6 7

8

9

(5,5) (6,6)

(1,1) (2,2) (3,3) (4,4)

(1,3) (4,8)

(1,9)

(9,9)

(5,8)

(8,8)(5,7)

(7,7)

(b) Division span structure.

Federal
NNP

wood
NN

products
NNS

sells
VBZ

Paper
NNP

Board
NNP

HEAD sells
Categ < S >

HEAD sells
Categ < VP >

HEAD products
Categ < NP >

HEAD paper
Categ < # >

paper
NN

and
CC

HEAD Board
Categ < NP >

ROOT

21 3 4

5 6 7

8

9

(5,7)

(5,8)

(4,8)

(1,9)

(1,3)

(c) Joint span structure.

.

.
.
.

.

.

.

.

Figure 4.1. Constituent, dependency and two simplified HPSG tree representation of

the same sentence. The dotted box shows the same phrase. [35]

38

As both representations generate their outputs in a span-like manner, constituent

tree parsers with slight alterations can be used to predict the simplified HPSG tree of

a given sentence. For this objective, the authors propose an encoding-decoding model

for each representation. The difference between the two is that while the model for

division requires only span scores, the joint model needs both span and dependency

scores.

The proposed models follow the same skeletal structure, divided into token rep-

resentation, encoder (self-attention), scoring, and decoder. The tokens are acquired

by concatenating character, word, and POS embeddings. CharLSTM [36] is used to

generate the character embeddings. Word embeddings are concatenations of random

vectors and 100 dimensional GloVe embeddings. Finally, the embeddings for POS tags

are initiated randomly.

In the encoder phase, an adaptation of the self-attention mechanism [29] is used.

The position information is explicitly given in the input matrices of the encoder by

concatenating respective position embeddings to each content embedding (token rep-

resentation).

Decoders of both representations use the same process to score spans for con-

stituent tree parsing. The span scorer is a layer feed-forward network in which normal-

ization is applied to the results before the nonlinearity operation. For nonlinearity, the

Rectified Linear Unit function is chosen. Scorer takes the vector of the span as input.

The vector for a span, starting at the ith word and ending at the jth word, denoted as

sij, is computed as:

sij = [
−→
hj −

−−→
hi−1;

←−−
hj+1 −

←−
hi]

39

where
−→
hi is the forward and

←−
hi is the backward representation of the ith word,

constructed by splitting the encoder output for the ith word to half.

hi = [
−→
hi :
←−
hi]

The function for generating the span scores S(i,j) is then:

S(i, j) = W2g(LN(W1sij + b1)) + b2

Where W1 and W2 are learnable weights, b1 and b2 are biases, LN is linear normaliza-

tion, and g is the ReLU function. The score of category l is given as:

Scateg(i, j, l) = [S(i, j)]l

where []l corresponds to the value of the span score vector at the index for category l.

The score of a constituent tree s(T) is calculated by summing up all spans in the

tree with category l:

s(T) =
∑

(i,j,l)∈T

Scateg(i, j, l)

A CKY-style algorithm is applied to find the highest scoring tree using the span

predictions. The system’s objective is to find the golden parse tree T ∗, where for all

trees T :

s(T ∗) >= s(T) + ∆(T, T ∗)

condition is fulfilled.

40

∆ is the hamming loss on the labeled spans. The loss function is defined as the

following hinge loss:

J1 = max(0,max
T

[s(T) + ∆(T, T ∗)]− s(T ∗))

In the dependency parsing part, division and joint approaches have different methods.

Division span trains a multiclass classifier to predict the dependency labels between a

head hi and its children. The classifier is optimized to minimize the cross-entropy loss

of negative log probability for the true dependency label of the head child-parent tuple

(xi, hj).

Jlabels(θ) = − logPθ(li|xi, hj)

The total loss of the division is defined as the sum of jlabels and j1.

Jdivision(θ) = J1(θ) + Jlabels(θ)

Joint span handles the dependency parsing by predicting each word’s possible head

distribution. (Dozat and Manning, 2017)’s biaffine attention mechanism is used to

calculate probability distribution. The child-parent score αij where ith word is the

child (dependent) and jth word is the parent (head), is calculated as:

αij = h
(d)T

i Wh
(h)
j + UTh

(d)
i + V Thj(h) + b

Where h
(d)
i and h

(h)
j are the dependent and head representations of the ith and jth word,

respectively, acquired by running their encoder outputs through individual one layered

perceptrons of dependent and head. W , U , and V are the learnable matrices. The

loss function for dependency prediction of the joint span is cross-entropy for the sum

of negative log probabilities of head i given dependent j, and dependency label l given

the tuple of head i and dependent j.

41

The approach achieves F1 values of 96.33% for constituent parsing and F1 values

of 97.20% and 95.72% on unlabeled attachment scores and labeled attachment scores

for dependency in English Penn Treebank. At the writing of the thesis it is the 4th

best model.

4.3.3. Head-Driven Phrase Structure Grammar Parsing with Label Atten-

tion Layer

LAL parser [37] is the state-of-the-art approach in the domains of constituent

and dependency parsing by the time this thesis is written. It is built upon the HPSG

parser by constituting self-attention with a new layer named Label Attention Layer

into the original system.

The structure of the LAL parser consists of token representation, Label Attention

Layer as encoder, scorer, and decoder parts. LAL parser follows the joint span model

of the HPSG parser (which can be found in Section 4.3.2.) since it performs better

than the division span. Furthermore, considering that token representation, scorer,

and decoder mechanisms are the same as the baseline HPSG parser, these parts’ expla-

nations are omitted here. Instead, in the following paragraphs, the details of the Label

Attention Layer, its differences to self-attention, and the performance of the model

shall be investigated.

The authors propose that the word representations can be improved by incor-

porating each label’s attention-weighted interpretation of the sentence into the infor-

mation gained from self-attention results. The Label Attention Layer is a modified

version of self-attention [29], in which only one query vector is available in place of a

query matrix that contains a different vector for each term. Additionally, no orthogo-

nality constraint is involved in training the label attention mechanism. Thus in LAL,

each dependency label can have several attention heads representing it, and also, an

attention head can be used in the representation of several labels.

42

For attention head i and input matrix X, which consists of word vectors, the

corresponding attention weights ai are calculated as:

ai = Softmax(
qi ∗Ki√

d
)

Where qi is the query vector of the attention head, Ki is the matrix of key vectors, and

d is the number of dimensions the query and key vectors have. The Ki is computed as:

Ki = WK
i ∗X

In which WK
i corresponds to the key matrix of the ith head in label attention. Attention

heads in Label Attention do not have query matrices. In lieu, each of them has a query

vector. As a consequence, each head provides a single vector instead of a matrix of

vectors as output. The output of a head, i.e. context vector ci is calculated as:

ci = ai ∗ Vi

Where ai is the attention weights calculated previously and Vi is the matrix of value

vectors acquired by multiplying the head’s value matrix W V
i with input matrix X as:

Vi = W V
i ∗X

The resulting context vector ci is added to each vector in input matrix X. The outcome

of the addition is then projected to a lower-dimensional space and normalized. Next,

the normalized output is distributed to the input words such that the representation

of a word becomes:

Wk = [H1
k : H2

k : · · · : Hn
k]

43

In which Wk is the kth word in input tokens, H i
k is the kth vector in the output of

the attention head i. After this, the word representations are fed through a position-

wise Feed-Forward Layer, which follows [vaswani et al. 2017], like in HPSG to be used

in span predictions.

In the dataset of Penn Treebank, the LAL parser achieves the state-of-the-art

results with 97.42 for unlabeled attachment score (UAS), 96.26 for labeled attachment

score (LAS) in English, 94.56 for UAS, and 89.28 for LAS in Chinese.

4.4. Shortest Dependency Path Generation

The shortest dependency path generation is handled as a preprocess. First, the

raw text of each sample in the datasets are fed to dependency parsers. In this thesis,

three different dependency parsers named Stanford Neural Dependency parser, HPSG

parser, and LAL parser are compared. The details of each parser are given in the De-

pendency Parsing section. Second, the results of the parsers are processed to generate

the shortest dependency trees. The flow of this process is as follows:

(i) Find the tokens that constitute each entity in the dependency tree.

(ii) Generate the list of parents from root to the token for each token t.

(iii) For token pairs (t1, t2) where t1 and t2 are the tokens of the first and second entity,

compare items in the same index in the parents lists of tokens until a mismatch

occurs. If no mismatch occurs and a list depletes, go to step vi.

(iv) Revert t1’s remaining parents list, not including the mismatch index.

(v) Append t2’s remaining parents list (mismatch index included) to the output of

the vth step. Go to step vii.

(vi) If the parents list of t1 is emptied, return t2’s remaining terms. If t2’s parents list

is emptied, then return the reverse of the remaining items in t1’s list. Include the

last compared item in both cases.

(vii) Apply steps iii-vi for each token pair.

(viii) Take the shortest list as the shortest dependency path.

44

(ix) Replace the first and last items with the first and second entities.

(x) Return the joined string of items with space as the separator.

4.5. Proposed Model

The general flow of the proposed model can be seen in Figure 4.2. Initially, as

a pre-training step for acquiring the shortest dependency path, the sentence is given

to a dependency parser whose outputs are fed to SDP generator with the target entities.

The shortest dependency path of a sentence s = (w1, w2 . . . wt . . . wr . . . wk . . . wm . . . wn)

is generated as SDPs = (wt . . . wr . . . wk . . . wm) where wx is the xth word, t and r are

the indexes of the first and last words that constitute the first entity, and k and m are

the respective indexes for the second one.

To identify the spans of the entities by the sentence encoder (the pre-trained

model that receives the whole sentence), special tokens of [E11],[E12], and [E21], [E22]

showing the starting and ending points of the first and second entities respectively,

are added to the sentence. With the addition of special tokens sentence s becomes

s′ = (w1, w2 . . . [E11], wt . . . wr, [E12] . . . [E21], wk . . . wm, [E22] . . . wn).

The sentence encoder tokenizes the tagged sentence, generates input mask and

entity masks (where the tokens of a particular entity are 1, others are 0), and produces

the embeddings Hi for all tokens and [CLS] which corresponds to the sentence embed-

ding. From the SDP encoder, only the [CLS]’s embedding is acquired. Note that in

the XLNet version, a module named sequence summary, a fully-connected layer with

tanh activation, is applied to the <cls>(the equivalent of [CLS]) token’s last hidden

state as an additional step.

45

The final embeddings for entities are produced by multiplying the token embed-

dings acquired from the last hidden layer of the pre-trained model with the entity

masks and dividing each term by the number of ones in the mask, in other words, by

averaging the embeddings of the entities tokens. The averaged embedding is then fed

to a fully-connected layer that uses tanh as the activation function. With all these, the

equations for entity embeddings become:

Ve1 = W1

[
tanh

(
1

r − t + 1

r∑
i=t

Hi

)]
+ b1

Ve2 = W2

[
tanh

(
1

m− k + 1

m∑
i=k

Hi

)]
+ b2

where W1, W2 and b1, b2 are equal to each other.

Pre-trained Language Model

 W1 W2 ... [E11] Wt ... Wr [E12] ... [E21] Wk ... Wm [E22] ... Wn

Dependency Parser

Shortest Dependency Path Generator

 Wt ... Wr ... Wi Wi+1 ... Wk ... Wm

Pre-trained Language Model

...

Average Average

Fully-connected

+ Tanh

Fully-connected

+ Tanh

Fully-connected

+ Tanh

Fully-connected

+ Tanh

... ...

H[CLS] Ht
 Hr
 H[CLS]Hk Hm

Concatenation

Fully-connected

+

Softmax

Relation Probabilities

Input Input

W1 W2 ... Wt ... Wr ... Wk ... Wm ... Wn
Input sentence

Shortest

Dependency

Path

Figure 4.2. The Architecture of the Proposed Model. The Dotted Box Shows the

Preprocessing Steps.

46

The sentence and SDP embeddings also pass through their respective fully-

connected layer with tanh activation:

Vsent = W0

(
tanh

(
H[CLS]sent

))
+ b0

VSDP = W3

(
tanh

(
H[CLS]SDP

))
+ b3

All W1, W2, W0, and W3 have the same dimension, Wi ∈ Rdxd where d is the dimension

of the embeddings received from the pre-trained model. Before each fully connected

layer, a dropout with 0.1 probability is applied.

The outputs from the fully-connected layers are concatenated and fed through a

softmax layer. i.e:

h′ = W4 [concat (Vsent, Ve1 , Ve2 , VSDP)] + b4

p = softmax (h′)

The dimension of the results from the softmax layer is equal to the number of relations

in the system. The loss function is chosen as the negative log-likelihood of the correct

embedding.

47

5. EXPERIMENTS AND RESULTS

The shortest dependency path texts are generated beforehand using the stanza

library for the Stanford parser and the official GitHub repositories of the parsers for

the HPSG and LAL. For the results acquired from HPSG and LAL parsers, the weights

of the best-performing models are taken from their respective repositories. Figure 5.1

shows the shortest dependency paths, and dependency tree’s of all parsers for a sample

text from the SemEval dataset.

[ROOT] the most common audits

<e1>

were about waste

<e2>

and recycling

root

det

advmod amod nsubj prep

punct

pobj cc

[ROOT] the most common audits

<e1>

were about waste

<e2>

and recycling .

root

det

advmod amod nsubj prep

punct

pobj cc

conj

[ROOT] the most common audits

<e1>

were about waste

<e2>

and recycling

root

det

advmod amod

nsubj

cop

case

conj

cc

a) Stanford Parser

b) HPSG Parser

c) LAL Parser

Figure 5.1. Shortest Dependency Path and Dependency Tree Representation of a

Sentence for Each Parser

48

In Figure 5.1, the arrows represent the dependency relation between terms from

child to parent, whose class is given just below the arrow. Entities are tagged with

<e1> and <e2> under terms. Red items are depicting the shortest dependency path

(SDP) between <e1> and <e2>. The SDP representation is constructed by following

the red arrows from <e1 > to <e2 > ignoring the directionality, only using the terms.

In our experiments we have compared the performances of each combination of

Stanford, HPSG and LAL dependency parsers with Bert and XLNet embeddings in two

datasets, SemEval and TACRED. The experiments are conducted on two GPUs. For

SemEval results, variants with base pre-trained models are trained with a GTX1060,

others are trained with an RTX3090. For TACRED, all training processes are done

with the RTX3090.

5.1. Experiments in SemEval-2010 Task 8

In SemEval experiments, both base and large versions of pre-trained language

models are used, increasing the total number of compared models to 16. Each model is

trained for ten epochs that are further divided into five checkpoints. The performance

of the models are evaluated at each checkpoint. The learning rate of 2e-5 is applied to

the models using a BERT pre-trained model, while this value is chosen as 1e-5 for the

XLNet cases. The rates of dropouts are 0.1 in every model.

Since no official validation dataset is available, the models are compared on the

test set. The calculated metrics are micro and macro F1 scores over 19 and 10 classes,

respectively. In micro F1, each tuple of relation and its direction is considered as

a separate class, increasing the number of classes to 19 (2 * number of classes +

no-relation). In the macro version, F1 scores of 9 classes are averaged without the no-

relation, taking the directionality into account instead of representing them as separate

classes. For example, (r,e2,e1) is considered as a false prediction for the gold relation

(r,e1,e2) in F1 calculation of r, even though r is the correct relation.

49

The official evaluation method of the dataset is chosen as macro F1 excluding no-

relation class by the authors of the SemEval-2010 Task 8 dataset [26]. For each model,

its best-scoring checkpoint on micro F1 measurements is taken for macro F1 evaluation.

In Table 5.1, each model’s micro F1 score over 19 classes (where each relation direction

is considered as a separate class), the training epoch and the checkpoint of the model

(given in parentheses, a value between 0 and 4, inclusive), and the corresponding

model’s macro F-score is given.

Table 5.1. Evaluation Results of the Trained Models Sorted by Official Macro F1

Scores

Model
(19 Class) Micro

F1 with no-relation

Epoch

(Checkpoint)

(9 Class) Official Macro

F1 without no-relation

stanford bert base 85.24% 6 (3) 88.53%

baseline bert base 85.13% 8 (1) 88.54%

lal xlnet base 85.54% 7 (2) 88.68%

hpsg bert large 85.90% 4 (1) 88.75%

stanford xlnet base 85.50% 5 (4) 88.75%

hpsg xlnet base 85.61% 4 (3) 88.79%

lal bert base 85.68% 8 (4) 88.80%

baseline xlnet base 85.76% 8 (3) 88.80%

hpsg xlnet large 85.72% 8 (1) 88.80%

baseline bert large 85.68% 5 (3) 89.02%

lal xlnet large 86.27% 8 (1) 89.08%

hpsg bert base 85.79% 7 (4) 89.09%

stanford xlnet large 86.20% 7 (4) 89.33%

baseline xlnet large 86.82% 8 (1) 89.83%

lal bert large 86.64% 8 (1) 89.84%

stanford bert large 86.12% 4 (1) 89.95%

50

In baseline R-BERT’s paper [10], the proposed model is trained for five epochs.

However, in our experiments, among 16 alternatives, 13 of them achieve their best micro

F1 scores in later epochs (See Table 5.1.). From this, we deduce that our proposed

structure requires more than 5 epochs to reach its best form.

Once we compare the official macro F1 scores given in Table 5.1, we see that

the best and worst performances belong to models with Stanford parsers. The most

significant performance increase obtained by changing the model size was observed in

BERT Stanford parsers. On the other hand, in BERT HPSG, the change of language

model size decreases the macro F1 score. Otherwise, increasing the PLMs size from

base to large always ensures a performance increase in both measurements.

Figure 5.2. The Micro F1 Scores of Baseline and SDP Enhanced Models For Each of

the Pre-trained Language Model in SemEval

51

In Figure 5.2, micro F1 scores of baseline and SDP enhanced models are compared

for each pre-trained language model seperately. We observe that among all the models

using BERTbase and BERTbase, the ones with the LAL parsers achieve better micro F1

scores than their peers.

Surprisingly, in the XLNet versions, the baselines were found to be the better

ones, indicating that SDPs do not increase the performance of XLNet. The reason

for that would be the term process orderings of XLNet’s transformer heads having the

SDP’s order for the terms in the SDP. The transformer heads using these orderings

incorporate the SDP information into XLNet embeddings.

Figure 5.3. The Micro F1 Scores of Pre-trained Language Models For Each of

Baseline and SDP Enhanced Models in SemEval-2010 Task 8

52

In Figure 5.3, micro F1 scores of PLMs are plotted for each SDP algorithm and

baseline. Both of Figures 5.2 and 5.3 are depicted using the same information with

different groupings of models, each providing specific information about the distinct

characteristics of the proposed model.

By comparing the plots of pre-trained language model performances in each de-

pendency parser methodologies given in Figure 5.3, we see that the models using XLNet

PLMs give better results than the models with BERT in micro F1 scores. Unfortu-

nately, the same deduction cannot be made from the official macro f1 scorings given in

Table 5.1.

Overall, we have found that for the SemEval-2010 Task 8 dataset, combining XL-

Net PLMs with dependency parsers does not increase the performance of the baseline

model with XLNet. However, integrating shortest dependency paths to the models

with BERT PLMs increases both macro and micro f1 scores of the baseline up to 1

absolute point.

5.2. Experiments in TACRED

In the experiments of the TACRED dataset, only the large versions of the pre-

trained language models are used. The dataset contains three sets to be used in train,

dev, and test. All variations are trained with a learning rate of 1e-5 and a dropout

rate of 0.1. Each model is trained for ten epochs, each divided into four checkpoints.

At each checkpoint, the model’s micro accuracy in the dev set is calculated.

The selection of the best checkpoint of the model to be evaluated in test set

is made using two methods. The first method selects the checkpoint with the best

accuracy score in the dev set among all model checkpoints. As the second method, an

early stopping mechanism based on accuracy is applied. If the accuracy of the trained

system does not surpass the current best score for five checkpoints, the training is

stopped, and the checkpoint with the best score until that moment is selected.

53

Figure 5.4. The Accuracies of Baseline and SDP Enhanced Models for Each

Pre-trained Language Model Used in TACRED Dev Dataset

In Figure 5.4 the baseline and dependency parsers’ accuracies are grouped by

their pre-trained language models. The accuracies used in plotting the Figure 5.4 and

Figure 5.5 are obtained by evaluating the dev set. In both PLMs, the models using

SDPs from the Stanford dependency parser perform worse than their peers. The LAL

parser versions acquire the lowest scores in the earlier epochs, but by the end of the

training, they perform better than the other alternatives in most cases.

54

Figure 5.5. The Accuracies of Pre-trained Language Models for Each of Baseline and

SDP Enhanced Models Used in TACRED Dev Dataset

The performances of the pre-trained models for each dependency parser version

are depicted in Figure 5.5. According to Figure 5.5, the models that apply XLNet

learns more slowly than their BERT peers in all cases. Also, the models with BERT

PLMs provide better results than their XLNet counterparts in the dev set. However,

in the test results (Table 5.2 and Table 5.3), the two of the best performing models

are found to be the ones that apply XLNet with LAL and HPSG parsers. The models

outperform the closest BERT version by 1.4% and 0.9%, respectively.

55

In Table 5.2 and Table 5.3 every model’s precision, recall, and f1 score on the test

set are given with the selected model’s epoch information. Each epoch is accompanied

by a checkpoint number in a parenthesis which can have a value between 0 and 3.

The results for the models in Table 5.2 are acquired from the best-performing

ones in the dev set, while in Table 5.3 the results come from the models selected by

applying early stopping on training. The lowest performing models are found to be

the ones with the Stanford parser which have performed worse than the baselines.

The best performance is obtained by the model that combines XLNet and LAL also

achieving the greatest recall score among all. Based on these results, we can deduct

that shortest dependency path information does not increase the performance at all

times. Nevertheless, the state-of-art approaches enables the system to acquire better

results.

Table 5.2. Tacred Evaluation Results of the Trained Models Sorted by Micro F1

Scores Using Best of 10 Epochs

Model Precision Recall F1
Epoch

(Checkpoint)

xlnet large stanford 77.88% 63.89% 70.19% 5 (2)

bert large stanford 78.00% 64.05% 70.34% 2 (3)

bert large hpsg 79.45% 65.02% 71.52% 2 (3)

xlnet large baseline 75.21% 68.17% 71.52% 4 (3)

bert large baseline 75.48% 68.09% 71.60% 3 (0)

bert large lal 76.28% 67.46% 71.60% 3 (2)

xlnet large hpsg 74.56% 70.59% 72.52% 4 (0)

xlnet large lal 74.87% 71.23% 73.01% 4 (0)

56

Table 5.3. Tacred Evaluation Results of the Trained Models Sorted by Micro F1

Scores Using Early Stopping

Model Precision Recall F1
Epoch

(Checkpoint)

bert large stanford 77.80% 64.05% 70.14% 1 (0)

xlnet large stanford 75.65% 65.58% 70.26% 2 (3)

bert large baseline 74.66% 68.10% 71.23% 1 (3)

xlnet large baseline 73.32% 69.71% 71.47% 3 (3)

bert large hpsg 79.45% 65.02% 71.52% 2 (3)

bert large lal 76.28% 67.46% 71.60% 3 (2)

xlnet large hpsg 74.56% 70.59% 72.52% 4 (0)

xlnet large lal 74.87% 71.23% 73.01% 4 (0)

In the results of Table 5.2, we see the best measurements are acquired from the check-

points of the fifth epoch or earlier, suggesting that the system is not required to run

for ten epochs. Additionally, by comparing the f1 results in Table 5.2 and Table 5.3

we notice that for half of the system variations, the checkpoints acquired with early

stopping achieve identical scores from the test set. For the other half, the decrease is

also negligible. Thus without a notable decrease in the system’s performance, we can

significantly lower the time required to train the system by applying early stopping

with five checkpoints.

We are unable to determine a method that receives the best results for both

Datasets. In SemEval-2010 Task 8, the models that apply Stanford and LAL SDPs

with BERT pre-trained language model have received the best evaluation scores, while

in TACRED, the best performing approaches are found to be the models using LAL

and HPSG parsers with XLNet. Yet, in both datasets, we achieved a better result than

the baseline method with our proposed structure. By considering all results, the most

effective dependency parser for generating the shortest dependency path is found to be

the LAL parser.

57

6. CONCLUSION

In this thesis work, we proposed an improved version of R-BERT by integrating

shortest dependency path embedding acquired from the pre-trained language model to

the relation representation embedding of the model.

We evaluate the model combinations of Stanford, HPSG, and LAL dependency

parsers with pre-trained language models BERT and XLNet. For each pre-trained lan-

guage model, base and large versions have been examined. The experiments are done in

two commonly used relation extraction datasets, SemEval-2010 Task 8 and TACRED.

In SemEval dataset proposed model achieves an F1 score of 89.90%, improving the

baseline by 0.65% and 1.41% according to the paper’s performance and our calcula-

tions. In TACRED, the proposed model achieves a 73.0% F1 score, surpassing the

unofficial performance score 69.4% of the baseline by %3.6 percent, increasing the rank

of the model from 18th to 7th in papers with code rankings.

In the experiments, we have observed that all versions of the proposed model

surpass the performance of the baseline model of BERTbase in SemEval-2010 Task 8

dataset except one case. In TACRED, LAL parser increases the performance of both

PLMs, HPSG improves the XLNet, and Stanford decreases their performance. We can

say that shortest dependency paths obtained from state-of-the-art dependency parsers

improve the results of relation extraction.

A promising future work would be the investigation of different dependency rep-

resentations, such as the augmented shortest dependency path in place of the vanilla

version. Additionally, the labels of the dependencies between the terms are not taken

into account in the extraction of the shortest dependency paths; embedding that infor-

mation into the SDP’s could further increase the performance of the proposed model.

Finally, the current system works only on English texts. Investigation of the model’s

performance in different languages could be an excellent extension.

58

REFERENCES

1. Hasegawa, T., S. Sekine and R. Grishman, “Discovering relations among named

entities from large corpora”, Proceedings of the 42nd annual meeting on association

for computational linguistics , p. 415, Association for Computational Linguistics,

2004.

2. Bach, N. and S. Badaskar, “A review of relation extraction”, .

3. Fundel, K., R. Küffner and R. Zimmer, “RelEx—Relation extraction using depen-

dency parse trees”, Bioinformatics , Vol. 23, No. 3, pp. 365–371, 2007.

4. Wang, M., “A re-examination of dependency path kernels for relation extraction”,

Proceedings of the Third International Joint Conference on Natural Language Pro-

cessing: Volume-II , 2008.

5. Liu, C., W. Sun, W. Chao and W. Che, “Convolution neural network for relation

extraction”, International Conference on Advanced Data Mining and Applications ,

pp. 231–242, Springer, 2013.

6. Miwa, M. and M. Bansal, “End-to-end relation extraction using lstms on sequences

and tree structures”, arXiv preprint arXiv:1601.00770 , 2016.

7. Zhang, Y., P. Qi and C. D. Manning, “Graph convolution over pruned dependency

trees improves relation extraction”, arXiv preprint arXiv:1809.10185 , 2018.

8. Liu, Y., F. Wei, S. Li, H. Ji, M. Zhou and H. Wang, “A dependency-based neural

network for relation classification”, arXiv preprint arXiv:1507.04646 , 2015.

9. Li, Z., Z. Yang, C. Shen, J. Xu, Y. Zhang and H. Xu, “Integrating shortest de-

pendency path and sentence sequence into a deep learning framework for relation

extraction in clinical text”, BMC medical informatics and decision making , Vol. 19,

59

No. 1, pp. 1–8, 2019.

10. Wu, S. and Y. He, “Enriching Pre-trained Language Model with Entity Information

for Relation Classification”, arXiv preprint arXiv:1905.08284 , 2019.

11. Li, C. and Y. Tian, “Downstream model design of pre-trained language model for

relation extraction task”, arXiv preprint arXiv:2004.03786 , 2020.

12. Tao, Q., X. Luo, H. Wang and R. Xu, “Enhancing relation extraction using syntac-

tic indicators and sentential contexts”, 2019 IEEE 31st International Conference

on Tools with Artificial Intelligence (ICTAI), pp. 1574–1580, IEEE, 2019.

13. Soares, L. B., N. FitzGerald, J. Ling and T. Kwiatkowski, “Matching the blanks:

Distributional similarity for relation learning”, arXiv preprint arXiv:1906.03158 ,

2019.

14. Xu, K., Y. Feng, S. Huang and D. Zhao, “Semantic relation classification via

convolutional neural networks with simple negative sampling”, arXiv preprint

arXiv:1506.07650 , 2015.

15. Turian, J., L.-A. Ratinov and Y. Bengio, “Word Representations: A Simple

and General Method for Semi-Supervised Learning”, Proceedings of the 48th

Annual Meeting of the Association for Computational Linguistics , pp. 384–

394, Association for Computational Linguistics, Uppsala, Sweden, Jul. 2010,

https://aclanthology.org/P10-1040.

16. Xu, Y., R. Jia, L. Mou, G. Li, Y. Chen, Y. Lu and Z. Jin, “Improved relation

classification by deep recurrent neural networks with data augmentation”, arXiv

preprint arXiv:1601.03651 , 2016.

17. Lee, J., S. Seo and Y. S. Choi, “Semantic Relation Classification via Bidirectional

LSTM Networks with Entity-Aware Attention Using Latent Entity Typing”, Sym-

metry , Vol. 11, No. 6, p. 785, 2019.

60

18. Mintz, M., S. Bills, R. Snow and D. Jurafsky, “Distant supervision for

relation extraction without labeled data”, Proceedings of the Joint Confer-

ence of the 47th Annual Meeting of the ACL and the 4th International

Joint Conference on Natural Language Processing of the AFNLP , pp. 1003–

1011, Association for Computational Linguistics, Suntec, Singapore, Aug. 2009,

https://www.aclweb.org/anthology/P09-1113.

19. Riedel, S., L. Yao and A. McCallum, “Modeling relations and their mentions with-

out labeled text”, Joint European Conference on Machine Learning and Knowledge

Discovery in Databases , pp. 148–163, Springer, 2010.

20. Lin, Y., S. Shen, Z. Liu, H. Luan and M. Sun, “Neural relation extraction with

selective attention over instances”, Proceedings of the 54th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), pp. 2124–

2133, 2016.

21. Han, X., P. Yu, Z. Liu, M. Sun and P. Li, “Hierarchical relation extraction with

coarse-to-fine grained attention”, Proceedings of the 2018 Conference on Empirical

Methods in Natural Language Processing , pp. 2236–2245, 2018.

22. Feng, J., M. Huang, L. Zhao, Y. Yang and X. Zhu, “Reinforcement learning for

relation classification from noisy data”, Thirty-Second AAAI Conference on Arti-

ficial Intelligence, 2018.

23. Zhang, N., S. Deng, Z. Sun, G. Wang, X. Chen, W. Zhang and H. Chen, “via

Knowledge Graph Embeddings and Graph Convolution Networks”, arXiv preprint

arXiv:1903.01306 , 2019.

24. Yan, Y., N. Okazaki, Y. Matsuo, Z. Yang and M. Ishizuka, “Unsupervised relation

extraction by mining Wikipedia texts using information from the web”, Proceed-

ings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th

International Joint Conference on Natural Language Processing of the AFNLP:

61

Volume 2-Volume 2 , pp. 1021–1029, Association for Computational Linguistics,

2009.

25. Davidov, D. and A. Rappoport, “Classification of semantic relationships between

nominals using pattern clusters”, Proceedings of ACL-08: HLT , pp. 227–235, 2008.

26. Hendrickx, I., S. N. Kim, Z. Kozareva, P. Nakov, D. Ó Séaghdha, S. Padó,

M. Pennacchiotti, L. Romano and S. Szpakowicz, “SemEval-2010 Task 8: Multi-

Way Classification of Semantic Relations between Pairs of Nominals”, Pro-

ceedings of the 5th International Workshop on Semantic Evaluation, pp. 33–

38, Association for Computational Linguistics, Uppsala, Sweden, Jul. 2010,

https://aclanthology.org/S10-1006.

27. Zhang, Y., V. Zhong, D. Chen, G. Angeli and C. D. Manning, “Position-aware

Attention and Supervised Data Improve Slot Filling”, Proceedings of the 2017

Conference on Empirical Methods in Natural Language Processing (EMNLP 2017),

pp. 35–45, 2017, https://nlp.stanford.edu/pubs/zhang2017tacred.pdf.

28. Bunescu, R. and R. Mooney, “A shortest path dependency kernel for relation ex-

traction”, Proceedings of Human Language Technology Conference and Conference

on Empirical Methods in Natural Language Processing , pp. 724–731, 2005.

29. Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser

and I. Polosukhin, “Attention is all you need”, Advances in neural information

processing systems , pp. 5998–6008, 2017.

30. Wu, Y., M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun,

Y. Cao, Q. Gao, K. Macherey et al., “Google’s neural machine translation sys-

tem: Bridging the gap between human and machine translation”, arXiv preprint

arXiv:1609.08144 , 2016.

31. Yang, Z., Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov and Q. V. Le, “Xlnet:

62

Generalized autoregressive pretraining for language understanding”, Advances in

neural information processing systems , Vol. 32, 2019.

32. Dai, Z., Z. Yang, Y. Yang, J. Carbonell, Q. Le and R. Salakhutdinov, “Transformer-

XL: Attentive Language Models beyond a Fixed-Length Context”, Proceedings of

the 57th Annual Meeting of the Association for Computational Linguistics , pp.

2978–2988, Association for Computational Linguistics, Florence, Italy, Jul. 2019,

https://aclanthology.org/P19-1285.

33. Chen, D. and C. D. Manning, “A fast and accurate dependency parser using neural

networks”, Proceedings of the 2014 conference on empirical methods in natural

language processing (EMNLP), pp. 740–750, 2014.

34. Nivre, J., “Incrementality in Deterministic Dependency Parsing”, Proceedings of

the Workshop on Incremental Parsing: Bringing Engineering and Cognition To-

gether , pp. 50–57, Association for Computational Linguistics, Barcelona, Spain,

Jul. 2004, https://aclanthology.org/W04-0308.

35. Zhou, J. and H. Zhao, “Head-driven phrase structure grammar parsing on Penn

treebank”, arXiv preprint arXiv:1907.02684 , 2019.

36. Kitaev, N. and D. Klein, “Constituency Parsing with a Self-Attentive Encoder”,

CoRR, Vol. abs/1805.01052, 2018, http://arxiv.org/abs/1805.01052.

37. Mrini, K., F. Dernoncourt, Q. Tran, T. Bui, W. Chang and N. Nakashole, “Re-

thinking self-attention: Towards interpretability in neural parsing”, arXiv preprint

arXiv:1911.03875 , 2019.

