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Abstract—This paper presents and gives an overview of the
recently emerging field of Neuro-Symbolic Robotics. With the
advances in computational resources, robust neural architectures,
and big data, Neural Networks have become the natural so-
lution to all robotic problems that require emergence, learn-
ing, adaptation, and, recently, reasoning and communication.
However, to ensure the safe deployment of robots in the real
world, they lack crucial properties like verifiability, explainability,
and interpretability. Additionally, neural network-based systems
suffer from generalization and extrapolation problems, which
limit their scalability. Symbolic systems have been used since the
birth of intelligent robotics, offering verifiability, explainability,
and scalability; however, their manually coded implementations
could not cope with the richness and wide varieties of the
continuous and high-dimensional world of the robots. In this
paper, we review the robotic architectures that integrate neural
networks and symbolic systems in different ways, benefiting
from their advantages. We categorize the robotic systems into
four broad categories, namely, intertwined, coupled, non-uniform
neuro-robotic systems, and neuro-symbolic translation, discussed
in detail the capabilities and limitations of these systems and
discussed the future challenges in this field.

Index Terms—Neuro-Symbolic AI, Neuro-symbolic Artificial
Intelligence

I. INTRODUCTION

Intelligent Robotics can be defined as the intersection of
artificial intelligence and robotics, aiming to build machines
capable of learning, reasoning and performing complex tasks
autonomously in dynamic environments. The key challenges
in intelligent robotics include learning robust yet flexible
representations that facilitate not only complex task execution
but also reasoning for safety and explainability.

In contrast to domain-specific machine learning problems
such as classification and regression, a robot needs to process
a continuous stream of sensorimotor data but yet act on a
world that is structured as a network of discrete entities with
a range of relations among them. Thus, intelligent robots
need cognitive mechanisms to work with continuous sensory
input and abstract symbolic structures [1]. In the following,
we first address them separately under Learning Systems and
Symbolic Systems and later discuss how the two worlds can
be intertwined together.

Learning Systems. The groundbreaking advances in deep
neural networks and their effective application in artificial
intelligence raise the question of whether deep learning with
big data is the solution that Intelligent Robotics is seeking. The
recent state-of-the-art robotic learning studies employ some
form of (deep) neural network architecture, delivering superior
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performance compared to earlier traditional machine learning
methods. Yet, the lack of transparency in neural networks
poses serious concerns about their reliability, robustness, and
safety [1].

Another significant criticism pertains to the brittleness (be-
ing susceptible to adversarial attacks) of the models [2], as well
as the data-efficiency and computational expense associated
with robotic implementations [3]. While the computing cost
can potentially be mitigated by suggesting a central pre-
training that is performed once and subsequently deployed
across various locations with minimal or no further training,
addressing the black-box issues remains challenging, because
post-hoc explanations of neural network outputs may lack
the reliability needed to persuade end-users to integrate these
technologies into actual robots. For example, although recent
large language model (LLM) based systems allow pseudo-
reasoning, their reasoning capabilities are not verifiable or
reliable [4], even though they may be optimized through
data fine-tuning and/or reinforcement learning with human
reward labeling for valid chain-of-thought generation. Thus, in
intelligent robotics, the reasoning capabilities of these systems
are limited to constrained laboratory settings.

Computationally, neural networks can represent proposi-
tional logic and a restricted subset of first-order logic, but
cannot represent full functionality and representational power
of first-order logic, according to Marcus 2020 [3]. Thus, albeit
the impressive reasoning-like abilities of LLMs it is not clear
how formally defined computational semantics can be neurally
embedded in the operation of LLMs to address the questions
of reliability, trustworthiness and safety in robotics.

Symbolic Systems. Symbolic systems are reliable in terms
of planning and reasoning abilities, as computation steps can
be explained and proved for correctness [5], [6]. However
they lack flexibility [7], for example an execution plan can
be correct but still may fail in a given environment setting
if the symbols used to capture the current setting lack the
required resolution or sensitivity. This is a classical example
of the problem of pre-defining a set of symbols and rules
to represent the sensorimotor experience of a robot, which
is often called the symbol grounding problem [8]. Regardless
of how well a symbolic system may be designed, it inevitably
becomes fragile when confronted with minor alterations in the
embodiment, environment, or task that were not anticipated
during the design phase. Another issue with symbolic systems
is that they allow reasoning only in symbolic space. However,
the robotics tasks of planning, monitoring, and validation may
require representations at multiple levels of abstraction beyond
a single symbolic level. Although the levels of abstraction that
are used in robotics literature are delineated in [7] within the
context of natural language representation, a theory of multi-
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level symbolic manipulation bridging the low-level sensory
input with higher-level representations is lacking [2].

Neuro-Symbolic Systems. With the recent advances in deep
neural networks, now it has become more possible to address
the symbol grounding problem by letting advanced neural
network architectures learn symbolic representations. These
representations can be not only used in symbolic manipulation
systems for reasoning and planning, but also equip the robot
with different capabilities, or improve the existing ones.

Although there are very preliminary efforts for proposing
general paths for adapting neuro-symbolic approaches into,
for example, industrial [9], surgical [10] or assistive [11]
robotics, a general overview of the current studies and a
possible generic architecture that utilizes full-power of both
neural and symbolic systems are still missing. In the remaining
of the paper, we systematically analyze key robotic works from
the literature that have used symbolic and learning systems
together with a varying extent. The analysis is guided by our
proposed taxonomy of robotic studies that have exploited both
symbolic and learning systems ranging from loosely coupled
ones to tightly coupled neuro-symbolic robotic systems.

II. DEFINITIONS

Symbol Representation corresponds to encoding of robot
perception, action or state in discrete space. Continuous
Representation corresponds to continuous encoding of robot

perception, action or state, that might be used as input and/or
output of a Neural Network system.

Symbol Engine corresponds to the methods and algorithms
used for manipulating symbols. It might corresponds to clas-
sifiers such as decision trees, Monte-Carlo search trees used
for multi-step prediction, operations over Domain Specific
Language (DSL) or full-fledged off-the-shelf AI planning
in standard symbolic languages such as Planning Domain
Description Language (PDDL) [12].

Neural Engine corresponds to Neural Network used in
discriminatory or generation tasks. The inputs and outputs of
the Neural Engine, as well as the intermediate representations
might be symbolic or continuous, depending on the task.

III. A. INTERTWINED NEURO-SYMBOLIC ROBOTICS

In this category, the representations, rules, or programs used
by the Symbolic Engine are generated by the Neural Engine.
A key distinction among these types of approaches is whether
program generation is at the core, or the symbol discovery is
undertaken by the neural system or not. Accordingly, we have
three main subcategories which are detailed next.

A.1 Neural Engine Learns for Pre-defined Symbols

In this category, the symbols and the operators used by
the Symbol Engine are pre-defined based on the task and
domain requirements. The Neural Engine either learns the



3

mapping between these discrete symbols and the continuous
sensorimotor experience of the robot or the set of symbolic
pre-conditions and effects of the operators from the robot’s
experience.

A.1.a Symbol grounding: For constrained domains and
tasks, planning is possible with pre-defined sets of predicates,
operators, and pre-conditions and effects of these operators. In
these situations, the representational gap between the symbols
and the continuous representation the robot faces should be
addressed. For this, given pre-defined predicates in pre- and
post-conditions of manually designed transition rules, the robot
learned the mapping from its own percepts to the correspond-
ing predicates post-conditions using kernel perceptrons [13].
More recently, [14] learned to process RGB image patches
conditioned on canonical object views into embeddings that
can be classified to single and relational object-object logical
predicates encoded in action preconditions from demonstra-
tions to be used in planning. Given a robot interaction video
dataset with annotated actions and manually implemented pre-
conditions and effects, [15] trained classifiers that map the
bounding boxes of objects to the corresponding symbols. How-
ever, the long-horizon planning was left as future work. When
applicable, the approach taken in this category is effective,
but the fixed set of predicates and pre-defined rigid rules and
operators make the practical deployment of the method limited
to well structured environments and tasks.

A.1.b Pre-condition and effect learning: The rigidity in the
pre-defined transition rules used can be relaxed by learning the
set of predicates for the pre-conditions and post-conditions of
the operators used by the Symbol Engine. In this category, the
mapping between the sensorimotor space of the robot and the
symbols has been established before, and the robot basically
learns the set of predicates for pre-conditions and effects of
actions. [16] learned a list of pre-condition and effect predi-
cates, first segmenting the human demonstrations into actions,
then extracting the relevant pre-conditions and post-conditions
based on counting heuristic, and finally generating the related
planning operators. In the end, an externally given goal can
be satisfied by a sequence of actions using Fast Downward
PDDL planner [17]. [18] learned action pre-conditions and
effects in the form of lists of symbolic predicates from
provided human demonstrations in manipulation domain and
verified through PDDL planner. Given pre-defined symbolic
predicates, [19] learns a set of parameterized actions, with
their corresponding pre-condition and effect predicates in a
manipulation domain. [20], on the other hand, proposed to
learn the planning domains from the observed traces using
Behavior Trees as intermediate human-readable structures.
Given a symbolic goal, [21] learned the necessary symbolic
operators to be able to synthesize a plan and its low-level
controller implementation in an RL framework. Following a
different approach, [22] used preconditions and effect symbols
to detect task-specific deficiencies and support humans in
action feasibility, rather than plan generation. These studies
are constrained with pre-defined set of symbols, which will
be addressed in the next section.

A.2. Neural Engine Discovers Symbols
In this section, we cover the studies where Neural Engine is

used to discover perceptual (e.g. [23]), action (e.g. [24], [25])
or sensorimotor (e.g. [26]) symbols that are directly used by
the Symbol Engines for planning and for other purposes.

A.2.a Emergence of perceptual symbols: Neural Engines,
in this category, find/form/discover symbols [27] in the con-
tinuous sensory/perceptual space of the robot. These symbols
are typically employed as predicates in the preconditions and
post-conditions of action operators in planning. These studies
optimize the process of the organization of the continuous
perceptual space to find discrete symbolic categories using
different approaches and metrics as follows.

a) A.2.a.1 Optimize for reconstruction: The most
straightforward way to find discrete categories from con-
tinuous representation is to apply unsupervised clustering
algorithms. In this way, each cluster would correspond to a
symbol. Early studies such as [28] used probabilistic gen-
erative models, such as Latent Dirichlet Allocation (LDA),
to learn multi-modal symbols from sound and observation
of objects during physical grasp actions of the robot and
from provided words. In a follow-up study [29], the robot
acquired object concepts utilizing the word sequences, which
are segmented in an unsupervised way, in addition to the
multimodal information obtained from object observations. In
[30], the online version of this algorithm is provided. In [31], a
similar unsupervised multimodal categorization method (prob-
abilistic Latent Semantic Analysis) that used haptic, audio, and
visual information was proposed. In these experiments, a robot
interacted with objects through various actions, listening to the
sound and also observing the object from different viewpoints.
[32] discovered object categories and multi-modal symbols
using modal latent Dirichlet allocation (MLDA) and varia-
tional auto-encoders. [33] extended this approach to symbol
formation through interpersonal interactions. These methods
were used for probabilistic inference rather than long-horizon
planning. For example, [34] studied whether a deep reinforce-
ment learning system could entail the development of high-
level neural encodings that might be viewed as antecedents
of symbolic representations. They showed that even without
explicit design or engineering, neural responses that resemble
abstract symbol-like representations might emerge in their
system. Recently [35] proposed first discovering skill segments
from demonstration trajectories, then applying unsupervised
clustering and SVM classification to identify and learn the
mapping of the potential termination states of each learned
skill, and finally learning the relation between natural language
sentences and sequences of the learned abstract symbols using
Seq2Seq recurrent neural network.

A.2.a.2 Optimize for action effect prediction: The unsu-
pervised clustering approach finds discrete symbols, without
any guarantee to be useful for the Symbol Engine. To address
this problem, a number of research groups investigated how
to discover symbols that are guaranteed to be useful for the
most basic step of symbolic planning, for one-step action effect
prediction.

[23] proposed and realized a general neural framework
that translates the robot’s raw sensorimotor experience into
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the symbolic domain. With this architecture, given continuous
interaction experience, the robot can discover object and effect
symbols that can be automatically translated to Probabilistic
Problem Domain Definition Language for making symbolic
high-level plans. A predictive deep encoded-decoder network
with a binary bottleneck layer was trained with initial and
outcome scene images to extract action and effect-grounded
object and outcome categories, which in turn were used to
make single-step action predictions. As an intermediate step,
a decision tree was trained from robot’s interactions, now
represented with the corresponding symbolic object and effect
categories. Each path in the decision tree was converted to an
operator in PPDDL format, allowing the use of the off-the-
shelf planners as Symbol Engines. The system was verified
in a table-top environment, where symbols such as pushable,
rollable, or insertable were discovered and used to make
effective plans, for example, to build towers from objects at
different heights. [23] could learn symbols only for single
or paired objects, and the preconditions and effects in the
planning operators include single or paired object predicates.
On the other hand, many complex actions involve interactions
with varying numbers of objects, or the effects of actions
influence multiple objects in complex environments such as
cluttered or articulated settings. [36], [37] extended DeepSym
by adding a transformer structure to learn the attention weights
of object features. These weights again go through a discrete
activation layer, which generates the relational symbols. The
relational symbols between objects are combined with the
discovered single-object symbols to predict the outcomes of
the actions of the robot for each object. The continuous
interactions are converted to symbolic interactions using this
attention mechanism and later transformed to PDDL operators
in [38]. Their system was again verified in a table-top setting,
showing that the system can use off-the-shelf AI planners to
generate plans that require the use of symbolic operators with
multiple objects. However, the objects did not have complex
shapes in this study, loosely addressing object affordances.

A.2.a.3 Optimize for planning: The symbols that are
effective in single step action prediction do not necessar-
ily guarantee to be optimal in their planning performance.
Therefore, the most recent studies in the Symbol Discovery
category aimed to discover symbols to maximize their plan-
ning performance. [39] learned abstract relational symbolic
object representations from raw visual observations in an
unsupervised way and used them to make multi-step plans.
The groundings were evaluated and refined in the rollouts
of a planning loop. Neural Engine output was used as the
parameters of the probabilistic models, which in turn can be
used as the Symbol Engine. The model was used for model-
based RL in simulated tower-building tasks for simple blocks,
given images of goal and initial blocks.

A.2.b Emergence of action symbols: The previous studies
where perceptual symbols were discovered assumed the exis-
tence of discrete actions. However, a truly lifelong cognitive
robotic system should have the capability to learn discrete
actions as well [40]. In this section, we review the studies
where action symbols were discovered and used in Symbol
Engines.

A.2.b.1 Optimize for action effect prediction: [25] pro-
posed formalizing operator learning problem in task and
motion planning (TAMP) framework, where their system
learns operators on previously acquired symbols which can
be defined as lossy abstractions of the transition model of
a domain. Followinge [25], [41] proposed neuro-symbolic
relational transition models (NSRTs) in which a task plan
skeleton is generated using a symbolic engine that describes
the high-level transitions, and then the neural engine searches
for low-level operator parameters. If the plan skeleton is not
downward refinable, i.e., if there is no parameterization of
the lower-level skill that makes the plan successful, a new
plan skeleton is generated, providing bilevel planning in both
discrete and continuous levels, which allows the robot to make
detailed plans considering the geometric information. NSRTs
are learned from a given set of parameterized skills. [42],
on the other hand, learns these skills as well from low-level
demonstrations, providing a complete bilevel operator learning
stack. [43], in a hierarchical RL framework, discovered a
diverse set of actions and simultaneously learned symbolic
forward models through intrinsic motivation signals given pre-
defined state abstractions. As Symbol Engine, the system used
the breadth-first search method where each expansion corre-
sponded to the learned symbolic forward model and executed
one-by-one in order to reach the goal. [44], [45] proposed to
learn constraints that address the effectiveness of actions using
Gaussian Processes. They proposed a sampling method for
creating a rich set of potential action parameters along with the
skills. Given a goal and learned parametric motion primitives,
the planning system receives perceptual state estimates from
the Neural Engine to generate a plan using their so-called
PDDLStream framework [46], [47]. Last but not least, [48]
discovers action symbols from human demonstrations and
exploits VLMs not only to label those actions but also to
generate plans through their scene interpretation and reasoning
capabilities.

A.2.b.2 Optimize for planning: While many previ-
ous approaches either used unsupervised clustering or self-
supervision based on single-step effect prediction to learn
predicates, [49] learned symbolic predicates with a surrogate
objective for multi-step planning. They used interactions ob-
tained from demonstrations rather than the robot’s own self-
exploration experience of the world. In follow-up work, [50]
reduced the complexity of the learned operators by focusing
on a subset of abstract effects. These studies not only learn
action symbols but also find the motion parameters that would
allow task and motion planning (TAMP). Although symbolic
predicates are learned as well, these are defined over already
available high-level predicates, which might not be realistic to
assume in life-long scenarios. Following [49], [51] proposed to
learn predicates by actively collecting information by query-
ing an expert. [52] jointly learned a set of symbolic action
abstractions and their low-level controllers utilizing LLMs in
an interactive planning loop.

Studies mentioned in this section either assume an existence
of high-level predicates or a set of demonstrations from which
a good set of state symbols can be learned. As such, the low-
level policies of operators are learned with supervision, either
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in the form of state symbols or demonstrations that solve the
task. It is also worth mentioning option discovery methods
[53]–[57] that focus on learning these low-level policies di-
rectly from raw sensory space by exploration. While these
methods do not directly use a symbol engine, they provide
a finite number of low-level policies with their initiation and
termination conditions overlapped in the state-space, which, in
essence, bootstraps most of the state-symbol learning methods.

A.2.c Emergence of Percept-Action Symbols: While the
previous studies focused on discovering either perceptual or
action symbols, some recent studies addressed the challenge
of discovering both perceptual and action symbols from the
sensorimotor experience of the robot. [26], [58], [59] used
critical regions [60], [61], which are high density parts in
the state-space, as state abstraction targets, and learned action
abstractions on top of them. The provided low-level demon-
strations, which are generated by motion planners, defines a
density in the state-space. More recently, [62], [63] extended
[49] by first learning high-level predicates directly from raw
state representations using visual language models (VLMs)
and then learning operators defined over these predicates.

A.3 Neural Engine learns Symbolic Programs

In this category, the complete program, processed by the
Symbol Engine, is generated by the Neural Engine, mostly
by the Large Language Models (LLMs). In [64], a Neural
Engine (LLM) generated parallel plans through a sequence
of transformations, which were translated into the behavior
trees and executed by the robot. Here, the Neural Engine was
used to transform symbols (in natural language) into Prolog
programs first and behavior trees later. [65] trained LLMs to
produce neuro-symbolic task planners, which are consistent
with PDDL. With this, they obtained better scalability when
the domain complexity was increased. This approach also
enabled producing actions without waiting for the generation
of the whole plan. In [66], a pre-trained Neural Engine (LLM)
was used to learn symbolic predicates, in the form of Python
program segments, from human language feedback during
robot interactions. Next, symbolic operators were learned
through a clustering algorithm, enabling plan generation.
Last but not least, [67] provided interpretability in symbolic
decision-making in autonomous driving by combining neural
and symbolic approaches, also achieving safe and stable
behavior. A Neural Engine was trained to select operations
from a set of symbolic pre-defined operations. This allowed
generating a sequence of operations given goals in Domain
Specific Language (DSL), which was consumed by the Symbol
Engine for planning and control. With the recent advanced in
LLMs, we expect to see more studies in this category.

IV. B. COUPLED NEURO-SYMBOLIC ROBOTICS

In this section, we overview the robotic systems where
Neural Engine and Symbol Engine modules interact with each
other, by combining their outputs or by supporting the each
other.

B.1 Balanced Neural and Symbol Engines

Say-Can [68] has been one of the first studies that benefited
from the reasoning capabilities of LLMs for robot control. For
this, given a goal, they used a language model (PALM [69]),
which provides high-level semantic knowledge about the task
and provides a list of actions to achieve the corresponding
task. In order to ground the corresponding actions in the actual
world of the robot, an affordance-based value function module
was implemented, which was used to weigh and filter the
actions produced by the language model. This method can be
considered to be the first LLM based model capable of com-
pleting long-horizon natural language instructions on a manip-
ulator with mobility. Neural and Symbol Engines were used
as building blocks in [70], which presents a modular approach
where action primitives are defined to handle independent sub-
tasks. The input query was processed by a language parser,
transforming it into an executable program composed of such
primitives. Note that some primitives were symbolic (e.g.
counting), and others were implemented with neural networks
(e.g. visual grounding). [71] used a Symbol Engine to select a
list of safe actions in each RL exploration step, and a Neural
Engine, which approximates the Q value function, to select
the action to execute following the learned policy. With this,
they ensured safety and also enabled control in the continuous
state and action space. [72] integrated logical rules, ontologies,
and LLM-based planners, and exploited symbolic information
to improve the ability of LLMs to generate recovery plans.
Given an instruction, their robot started executing the actions
for the plan generated by LLM. The effect of each action
was observed, and provided as input to the sub-goal verifier,
which used an ontology and decided whether the action was
successful or not. In case of failure, the ontology was again
used to decide the recovery strategy which was provided to
the LLM-planner for replanning. In [73], human instructions
were translated into executable robot plans by using LLMs
to decompose the tasks into sub-goal descriptions that were
executed by the planner sequentially. They use scene graphs
as the intermediate representations. [74] combined symbolic
and geometric scene graphs for vision-based long-horizon
hierarchical planning. A symbolic scene graph is used to find
the next sub-goal from the goal description, and the geometric
scene graph is used to predict the motion parameters.

B.2 Neural Engines supporting Symbol Engines

In this category, the main control is on the Symbol Engine,
and the Neural Engine is used to support the Symbol Engine
in executing the tasks. [75] proposed to train neural network
classifiers to forecast the viable motions and employ the
classifier as a learned heuristic, steering the TAMP search
toward possible motions and decreasing the total amount
of motion planning trials. [76] proposed a Neural Engine
that uses an initial image of the environment, predicting
the promising sequence of discrete actions providing runtime
improvements of several magnitudes. Given expert demonstra-
tions, [77] applied learning techniques to efficiently search in
the high-level task planning space, taking into account the
possible infeasibilities and, as a result, significantly increasing
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the planning speed of the Symbol Engine. [78] proposed a
learning system that improves symbol grounding functions and
a high-level planning method to optimize the total performance
of the existing hierarchical planner in generating suitable
plans. [79] learned relational state representations, transition
function, grounding function, and action-value functions to
support the planning experience of a robot. PDDL planning
was used in the exploration of the agent. Learning allowed the
agent to scale up larger environments. [80] used the predicted
confidence values from a Neural Engine to infer probabilistic
belief states that were used by the Symbol Engine.

B.3 Symbol Engines supporting Neural Engines

In this category, the Symbol Engine is used to support the
Neural Engine, which acts as the main controller. [81] used the
principles of maximum information compression and slowly
varying signals to extract symbol-like representations that
enable fast skill transfer. The activations on the the last hidden
layers of the Neural Engines were used for this purpose. While
the symbols enabled fast transfer, an explicit Symbol Engine
was not fully utilized in this work. [82] leveraged the symbolic
representation from the high-level planner to direct trial-and-
error-based skill learning. Their system learns temporally-
extended actions to achieve the desired outcomes of the sym-
bolic operators by using a reward taking into account the post-
condition of the operator within the Reinforcement Learning
loop. [83] also proposed a method that used Symbol Engine to
decide exploratory actions for training the Neural Engine in a
simulated mobile robot. [84] proposed to use PDDL Symbol
Engine to improve the neural perceptual capabilities of the
agent.

V. C. NEURO-SYMBOLIC TRANSFORMATION

C.1 Transform Neural Engine to Symbol Engine

The robots controlled by Neural Engines generally lack
explainability, interpretability, and verifiability, as we dis-
cussed in the Introduction section. In order to address this
problem, some studies transformed the policies encoded by
Neural Engines into symbolic representations. For example,
[85] proposed an algorithm for learning a range of compre-
hensible skills with their parametric representations derived
from the planning strategies of an agent. For explainability
and verifiability, [86] trained verifiable policies encoded with
decision trees and realized their framework in the cart-pole
task in an RL setting. Given a trained RNN, [87] learned the
abstraction and extracted a deterministic finite automaton that
encodes the state dynamics of the task For transparency, trust,
explainability, and interoperability, [88] applied clustering in
the latent space of the internal states. Using the hidden states,
they generated a finite-state automaton that captured the un-
derlying grammar, enabling the prediction of whether a given
pattern is valid or not. In order to ensure compliance with
behavioral specifications through formal guarantees, e.g. safety
and/or reachability, [89] proposed a method to autonomously
build a finite-state machine from a recurrent neural network,
accommodating existing formal verification tools in agent
benchmarks.

C.2 Transform Symbol Engine to Neural Engine

In this category, the manually encoded symbolic policies
are transformed into continuous neural policies and refined
through the robot’s experience. [90] incorporated a Symbol
Engine, which used linear temporal logic (LTL), into the train-
ing of a Neural Engine such that each neural network in the
system corresponded to a particular symbolic representation.
The resulting Neural Network-based planner in this model
inherited the symbolic model’s interpretability and correctness
assurances, with the aim of generalization to unseen tasks,
including new workspaces, novel temporal logic formulas, and
errors in the robot’s dynamical model. [91] used a Symbol En-
gine to realize symbolic policies and another Symbol Engine
for formal verification for safety in every exploration loop
of an RL-based robot learner. In their work, verifiable safe
symbolic policies were transformed into continuous policies
realized by the Neural Engine, updated using reward-based
gradient updates, and transformed back to the original symbol
space.

We expect an increase in the adoption of the methods that
transform one engine to the other one in more robotic tasks
to ensure verifiability and interoperability.

VI. NONUNIFORM NEURO-SYMBOLIC ROBOTICS

The studies use both continuous and symbolic representa-
tions. However, the full-fledged power of one of the Symbol
or Neural Engines is missing.

w/o Symbol Engine

In this category, Neural Engines are used to process (as
input and output) symbolic and continuous representations for
task understanding and robot control. However, these symbolic
representations are not exploited by the Symbol Engines.

[92] extended [93] to robotics domain and proposed a
“Neuro-Symbolic program” which process both continuous
and symbol representations using trained Neural Engines. It
trains a Neural Engine to parse natural language instructions,
transforming it into a program in Domain Specific Language
(DSL), and another Neural Engines such as a Visual Extractor
receives the visual scene and produces visual features. The
DSL description and visual features are combined as inputs
in the Neural Engine Visual Reasoner that outputs an action.
The framework is trained end-to-end. No Symbol Engine is
used in this approach.

LLM based robot control frameworks such as RT-1 [94], RT-
2 [95], and RT-X [96] bootstrap their model with pre-trained
foundational models, and use the multi-modal experience of
multiple robots in different environments in order to learn
robot controllers that can execute plans generated by the
LLMs. Given different goals and visual scene descriptions,
these LLM-based systems can both generate a chain of actions
and robot control commands, such as the target displacement
of the robot’s gripper at each step. [97] used pre-trained vision
language models by exploiting the semantic and syntactic,
better disentangling action and perception, and producing
control parameters for given manipulation primitives. [98]
implemented a transformer-based Neural Engine that takes the
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problem and domain in symbolic representation (in PDDL)
as input and generates the sequence of actions to solve the
problem.

These studies are included in this survey as the Neural
Engine takes goals represented as symbols and can generate
intermediate steps in symbolic form. On the other hand, these
studies do not benefit from Symbol Engines, therefore the
generated plans are neither explainable nor verifiable.

[99] learned graph neural network (GNN), whose nodes
encode task and domain-related entities, such as objects
and outcomes, to discover rules from demonstrations. The
long-horizon planning was performed using a gradient-based
heuristic, which does not use symbolic knowledge. However,
interestingly, in order to add interpretability, they determined
the importance of neighboring nodes in decision-making and
allowed explanations such as “this node was selected because
of its connection with this and this nodes; the most relevant
feature being this particular object feature”. [100] proposed
a developmental progression for symbolic sub-goal discovery
in a hierarchical RL framework that combines together the
states that have similarities for the given tasks. [101], [102]
extended this work to learn both spatial and temporal goal
symbols. Focusing on the reachability problem in a mobile
robot, a high-level agent finds regions in the reachability-aware
goal space, and other agents select the sub-goal symbols for
reaching goals and learn how to execute the corresponding
actions, increasing the learning speed and scalability.

w/ Non-Neural ML
Here, we review the studies that do not explicitly use generic

Neural Engines but benefit from various Machine Learning
techniques to learn/process symbols to make inferences and
plans with Symbol Engines. They do not use neural networks
and historically appeared earlier than the studies that we
reviewed so far. Still, we would like to include these studies
as they paved the way for the Neuro-Symbolic Robotics, and
we review them here as their neural counterparts have already
been categorized above.

Initial studies learned sub-symbolic structures that were
useful in planning. In a seminal work by [103], the interaction
experience of a mobile robot is used to cluster low-level
sensory data into categories through self-organizing maps.
The system made plans by predicting the next sensory state,
where each state was represented by one of the found clusters.
Similarly, [104], [105] first applied clustering in the effect
space in manipulation and mobile manipulation domains,
finding effect categories and learned SVM classifiers that map
environment features to effect categories, effectively forming
action-effect predictors that were used for planning via tree-
search algorithms. [106] learned discrete representations from
environment features and a set of predictive models based on
these discrete environment symbols. The predictive model is
represented with dynamic Bayesian networks (DBNs), which
were converted into symbolic plans to generate and execute a
sequence of actions. In these studies, symbols were discovered
through unsupervised interaction of the robot, similar to the
studies in category A.2 (Symbol Discovery), but without
Neural Engines.

[24], [107], [108] discussed that high-level planning can
be achieved by learning discrete symbols that are used to
encode the preconditions and the post-conditions of the action
repertoire of agents. Again, as a precursor of neural-network-
based approaches, they learned symbols to encode action pre-
conditions and postconditions, and used them in the operators
for building the PDDL description of the environment of an
agent. [109] extended the previous work with parametrized
motor skills, where a robot also learned how to parameterize
a skill. [110] proposed a method to form symbols from raw
images (pre-processing the image with independent compo-
nent analysis and then applying Support Vector Machines for
image to symbol mapping), following [24] and encoding the
given robot skills in Linear Temporal Logic (LTL), enabling
symbolic planning for tasks written as LTL formulas. In these
works, the state of each object was represented with a fixed-
sized vector, assuming that the number of objects was the
same across different environments and tasks. [111] extended
this approach by using an agent-centric (instead of object-
centric) encoding, allowing the discovered symbols to be
transferred across different environments. In follow-up work,
[112] showed that generalization capability can be increased
through use of object-centric representations. [113], [114]
also learned object-centric symbols used in preconditions and
effects of PDDL operators. Commonly, in order to find discrete
representation, the first step in these studies was to apply
clustering on the observed interaction instances. As such, the
quality of the learned symbols relied on the quality of the
state-space partitioning, which was an unsupervised process
with no guarantees on the latter planning performance.

[115] proposed an RL-based symbol learning framework
where learned symbolic relational abstractions are used for
encoding transition and reward model, action effect prediction,
and finally, multi-step planning. The optimization of symbol
learning focuses not only on enhancing effect prediction
performance but also on maximizing rewards. The nearest
Neighbor method was used to learn feature-symbol mapping
in this work. [116] learned preconditions of manipulation and
navigation operators by leveraging the distinction between
spatial and non-spatial state variables. Given a collection of
adaptive manipulation abstractions, they applied DBSCAN
clustering for skill clustering [117], and SVM classifier to
map state features to symbols to support planning in mobile
manipulation domains. The independence assumption between
manipulation and navigation operators allows planning using
only manipulation skills and then filling out the navigation
steps automatically.

CONCLUSION

In this paper, we reviewed the studies in the recently
emerging field of Neuro-Symbolic Robotics. We offered a
taxonomy of these studies that categorized them based on how
the role of the Neural and Symbol Engines in the respective
robotic architectures and how they interplay with each other.
While there has been significant effort in non-robotics neuro-
symbolic agent architectures [1], [2], [5], [6], [118]–[120], we
concluded that its robotics counter-part is in its initial stages.
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We also note that while each category addresses different
challenges, such as the Neural Engine discovering or learning
the symbols used by the Symbol Engine, combining outputs
of Neural and Symbol Engines for more robust control, or
translating Neural Engines to Symbol Engines to provide ver-
ifiability and interpretability, an integrated robotic architecture
that fully utilized the benefits of both neural and symbol
systems has yet to be introduced.
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