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Abstract— In this paper an adaptive shared control frame-
work for human agent collaboration is introduced. In this
framework the agent predicts the human intention with a
confidence factor that also serves as the control blending
parameter, that is used to combine the human and agent
control commands to drive a robot or a manipulator. While
performing a given task, the blending parameter is dynamically
updated as the result of the interplay between human and agent
control. In a scenario where additional trajectories need to be
taught to the agent, either new human demonstrations can be
generated and given to the learning system, or alternatively the
aforementioned shared control system can be used to generate
new demonstrations. The simulation study conducted in this
study shows that the latter approach is more beneficial. The
latter approach creates improved collaboration between the
human and the agent, by decreasing the human effort and
increasing the compatibility of the human and agent control
commands.

I. INTRODUCTION
Autonomous agents have found their way into our daily

life and their encounters with humans are increasing rapidly.
A common form of this encounter is in form of a col-
laboration where humans and agents are working together
to achieve a common goal. This form of collaboration has
important challenges compared to a multi-agent collaboration
scenario [1], because human behavior and its creativity,
irregularity, and unpredictability should be considered to
achieve a successful collaboration. One way that humans and
agents can collaborate is through sharing the control of any
manipulator to accomplish a task. When the control is given
both to a human and an intelligent system, an ideal strategy
is to use the commands of both controllers to decrease the
human effort in order to achieve a better performance than
single agents. One of the simplest strategies is called traded
control [2], where the control authority can be transferred
completely either to the human or to the agent. This strategy
is applied in aircraft autopilot systems where the control is
given to the computer while cruising, and more complex
situations such as taking-off and landing the control are
handled by the human pilot. In earlier literature of human-
agent shared control, a leader-follower strategy was used
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frequently [3], where the agent was taking the role of the
follower and the human was taking the role of the leader.
This strategy has become popular again because it can reduce
human effort and increase task performance, and is now
being widely used in robotic-assisted surgeries [4]. Another
strategy is tactile shared control [5], in which the input of
the agent is transmitted to the operator through the force
of the user interface. Operators can obey or resist these
forces. This strategy has been applied in [6] for wheelchair
control. Among other popular strategies for shared control
is to use the integration of human and agent commands.
The arbitration can be done via a policy blending approach
[7], [8], where a task weight coefficient is assigned between
human and agent commands.

In general, shared control methods are supposed to reduce
the workload and improve operation efficiency by combin-
ing manual teleoperation with autonomous assistance where
human intervention is still indispensable. As human actions
are often goal-directed [9], it is important for the agent to
know the goal of the human in order to assist the human
in accomplishing the corresponding goal. Therefore the goal
of the human can explicitly be given to the agent [10]. In
some scenarios the agent does not know the goal specifically
but assumes that the human is following a predefined path
or behavior [11], [12], [13]. Alternatively, the agent can
estimate and update the human goal as the task execution
continues and sufficient information for human goal estima-
tion is collected [14], [15].

Recently, in shared control frameworks, more studies
have focused on a more effective and safer human-agent
interaction. In [16] a heuristic-based prospective method
adapting the triplet Competence-Availability-Possibility-to-
act (CAP) is proposed to discover possible conflicts of
shared control between humans and autonomous system.
In [17] an indirect shared control method is proposed to
model the situation where the autonomous agent and human
have different intentions, which can cause severe conflicts
during the cooperation, using a Nash equilibria strategy the
best response for the automated system is obtained, which
can guide the automated controller to act more safely and
comfortably. In another study [18] inspired by sensorimotor
mechanisms of the primate brain, object affordances were
utilized for both intention estimation and task execution, to
generate an altruistic model. To assess how human partners
interact with such an altruistic model a study with naive
human subject was conducted, which resulted in engaging
human partners to exploit the behavior.

In this paper a shared control framework is proposed,



where human and agent are coupled to control a manipulator
for accomplishing a task. This framework has the potential to
be used where full comprehensive sensing of the environment
is impractical, and where quick decision making ability of
the human when unseen or unexpected events may happen
is needed to provide a level of robustness that is difficult
to encode. In the next section, the proposed shared control
framework is introduced and its components are explained
from a general perspective. In the third section, the imple-
mentation and setup are explained, and then the results of
experiments are reported. The fourth section concludes this
study and provides discussions for the potential future work.

II. FRAMEWORK

Below is the general description of the proposed adaptive
shared control framework which is illustrated in the Fig.1.
This framework can be adopted for different teleoperation
tasks for human-agent collaboration, and its components
(particularly the feedforward and feedback interfaces) can
be chosen based on the specifications of the given task.

A. Feedforward interface

The main job of the feedforward interface is to com-
municate information from human to the system. In this
framework, this unit is responsible for taking the input of
the human operator via an interface and converting it to the
control commands to run the manipulator.

B. Feedback interface

The feedback interface unit is responsible for communi-
cating information from the system to the human operator.
In shared control systems, this feedback interface is usually
in form of visual information about the environment and
manipulator [15]. The human operator can observe the scene
either directly or through a live video recording. Since
teleoperating tasks involve interacting with a physical setup,
taking advantage of the sense of touch can also provide an
effective force-feedback for the human operator [19].

C. Autonomous controller

The autonomous controller component of this framework
has two main jobs; estimating the human intention and gen-
erating control commands accordingly. Agents can interact
and collaborate closely with humans while reasoning and
learning about human intentions. Enabling the agents to learn
the human intention is a challenging but a critical issue to
address.Usually the agents do not have extensive knowledge
about the environment and they assess it with perception,
prediction and creating a general model of the environment.
Predicting human intention accurately in all circumstances
does not seem feasible because of the complex nature of
human behaviors. Human behaviors are very stochastic, not
only different human operators can have different strategies
for accomplishing the same task, but also the same human
operator can apply different strategies when repeating that
same task.Nonetheless, assisting the human operator and an
efficient collaboration, without knowing the human intent

is not possible, so the system first needs to estimate the
human intention through some measurement and probabilis-
tic inference. Some of the common methods for human
motion and intention prediction use visual information[20],
and some require wearing sensing devices[21]. Without the
help of wearing sensing devices or visual systems, collecting
human demonstrations and observing human behavior when
performing a task can facilitate human intention estimation.

D. Shared controller

The shared controller unit is responsible for taking the
autonomous command and human command and blending
them. This unit is adaptive and able to give the appropriate
portion of the control at the right time to the right party while
keeping the task trajectory smooth and seamless. This shared
controller unit uses a blending parameter that is obtained
based on the autonomous controller confidence in estimating
the human intention.In the proposed adaptive shared control
framework, as the task starts by the human operator sending
the control command, the agent estimates the human inten-
tion by observing the task state; and based on this estimation,
the corresponding autonomous command is generated. The
confidence in the estimation of human intention determines
a blending parameter. The blending parameter is used for
combining the control commands and decides how much
weight should be assigned to the human command and
autonomous command when calculating the shared command
that drives the manipulator. The human intention estimation
and the blending parameter update processes run at each step
until the task is accomplished. The implementation detail of
this adaptive shared control framework is explained in detail
in the following section.

III. IMPLEMENTATION AND EXPERIMENTS

A. Learning from weighted demonstration

The autonomous controller works based on learning from
demonstrations. In order to teach to the autonomous con-
troller, an extended model of Conditional Neural Movement
Primitives (CNMPs)[22] is used. CNMPs are originally used
for learning from demonstrations and are built on top of
Conditional Neural Processes (CNPs) [23]. After learning,
CNMPs can be conditioned on single or multiple desired
trajectory points at specific time-steps, to produce trajec-
tory distributions that satisfy the given conditions. Since
CNMPs work was formulated for learning from perfect
demonstrations, their demonstration data quality affected
the estimations directly. On the other hand, assuming that
different demonstrations of a task is given to the network
to learn, some of these demonstrations could be better than
other ones, and each of the given demonstrations can yield
a different performance level. In the original formulation of
CNMPs, given a condition, the network aims to generate a
trajectory that satisfies the corresponding condition, without
considering the performance factor. Different from the origi-
nal CNMPs, in cases where different demonstrations have
different levels of performances, we propose to take into
account the performance factor and lead the network towards



Fig. 1: The human and the agent share the control to accomplish a task via a manipulator. the agent estimates the human
intention and generates control commands accordingly. Human commands and autonomous commands are then combined
using a blending parameter that is obtained based on how confident the agent is in its estimation of the human intention.

the estimating trajectories that perform better while making
sure that the conditions are still satisfied. When training a
CNMP network, at each training iteration a demonstration is
selected form the demonstrations data set. From that demon-
stration a number of observation points and a target point are
sampled. Each observation is in a form of a tuple consisting
of the time step and the features of the demonstration for the
corresponding time step. The network outputs the mean and
the variance of features of the demonstration at the target
point allowing the calculation of a loss with respect to the
ground truth feature. The loss is then minimized by stochastic
gradient descent [24].

In this study, the demonstrations are evaluated before
being used for training the network. Demonstrations can be
evaluated based on different factors, and the evaluation may
be task specific. After the demonstrations are evaluated, their
evaluation score is used to weigh the demonstration impact
on the network estimations. Using the evaluation score, a
normal distribution is formed, which is centered around the
demonstrations with higher scores. As stated in Algorithm 1,
training starts by selecting a demonstration using the formed
normal distribution, from the selected demonstration, some
observation and query points are sampled randomly, the
network then estimates The mean µ and variance σ2 at the
query point, having the ground truth of the query, the loss
value is calculated and minimized by gradient descent.

Considering that demonstrations with higher scores have
more chance of being selected during training, it is ex-
pected that they will have a greater influence on network
estimations. In order to examine the impact of weighting the
demonstrations and compare the outputs of CNMP with the
modified network, we generated three movement trajectories
as shown in Fig. 2. Two models were designed to learn and
generate these trajectories from a start point to a target point
while avoiding the obstacles on the way. The trajectories with
longer distance to the obstacles were more desired hence

Algorithm 1 Neural Network Training

1: Demonstrations ← Load the demonstrations
2: Scores ← Evaluation(demonstrations)
3: Pd ← NormalDistribution(demonstrations, scores)
4: Initialize threshold Lt and number of observations m
5: while loss≤ Lt do
6: Select a Demonstration D using Pd
7: n = randint(m)
8: pick n observation point from D in form of [ti; f (ti)]
9: Pick a query in form of [tq; f (tq)]

10: Estimate(µ,σ2)
11: Pn = N (µ, σ2)
12: loss =−log(Pn( f (tq)))
13: loss is minimized by stochastic gradient descent

they got higher scores. After the models are trained, both
models generated trajectories given one single observation
as a condition point. It is expected that both models should
generate a trajectory that satisfies the given condition. Fig.
2 shows the generated trajectories by these two models.
The results show that given a common condition (where all
the given demonstrations satisfy that condition), the CNMP
model generates an average trajectory, while the modified
model generates a more desired trajectory.

B. Human Intention Estimation

We also propose to use the aforementioned neural network
model for human intention estimation by directly condi-
tioning it in real-time based on human behavior and the
current state of the task. Consider a scenario in which
the human operator starts moving the manipulator to a
desired position and orientation at time t. The neural network
model is already trained, and and when being conditioned
on the current state of the task (that is led by human
and autonomous command), it generates a trajectory that



Fig. 2: Generated trajectory; x(m) and y(m) position; by
CNMP (blue line) vs weighted model (green line). The light
blue and light green color show the standard deviation of
the estimation. sub figure (1) shows the generated trajec-
tories when being conditioned on a common point, which
shows when both models are uncertain, the weighted model
generates a more desired trajectory.In (2) and (3), models
are conditioned on an uncommon point (satisfying only one
seen trajectory) and generate similar trajectories. Simulation
scene is depicted in (4).

satisfies the given condition for accomplishing the task.
This generated trajectory is considered as the estimate of
human intention. The estimate of human intention µ and
the variance of the estimation σ2 are obtained by the neural
network. Based on these estimations, the autonomous control
commands will be generated.

C. Adaptive shared controller policy

Having the human and autonomous control commands,
the adaptive shared controller should blend the commands
and drive the manipulator. When estimating human intention,
human’s desired trajectory µ and the variance of estimation
σ2 are generated. At each time-step of the task t, the model
estimates µt(i = t +1 : T ) and σ2

t (i = t +1 : T ), for the next
time-steps (i = t+1 : T ), where T is the last time-step of the
task. The mean of estimation’s variance starting at time-step
t +1 continuing till task completion time T taken as σ2

t (i =
t +1 : T ) can be used to define a confidence factor c f . The
confidence factor c f (t) is calculated with (1) and indicates
how confident the autonomous controller is in estimation of
the human intention at time t.

c f (t) = 1/(K
∑

T
i=t+1 σ2

t (i)
T − t

) (1)

Where K is a scalar that was tuned manually. When the value
of c f (t) is large, meaning that the autonomous controller is
confident in its estimation of human intention, the human
effort can be decreased and the autonomous controller can
take a larger portion of control. For this, the weight of human
control command can be obtained by w(t) = 1−c f (t), where
0≤w(t)≤ 1 is the adaptive blending parameter that indicates
the weight of human control command at t. The blending
parameter is sensitive to the value of K, and K is tuned based

on σ of the estimation, such that c f is close to 0 when the σ

reaches its maximum value. Ultimately the shared command
that drives the manipulator at t is calculated by (2):

Csh(t) = w(t)Ch(t)+(1−w(t))Ca(t) (2)

Where Csh(t), Ch(t), Ca(t) are shared command, human com-
mand and autonomous command at time-step t, respectively.

D. Experiment

To examine this shared control setup, a simple task was
designed and simulated in CoppeliaSim Edu [25]. In this task
a mobile robot (Pioneer p3dx) should reach a given target
point in a determined fixed time (15 secs in the experiments
reported) while avoiding the obstacles along the way. The
simulation scene is shown in Fig.2. For this task human
input was taken via a computer mouse as a feedforward
interface. Mouse displacements in x and y axis were used to
first calculate the linear and angular velocity of the mobile
robot, and the obtained velocities were converted to right
and left wheel motor commands. The feedback to human
was visual through the computer screen.

The neural network in the autonomous controller was
first trained using a fixed set of demonstrations (3 in the
reported experiments) as shown in Fig.2 and evaluations cor-
responding to the demonstration were given to the learning
algorithm (see Algorithm. 1. The evaluations assessed how
well the trajectories cleared the obstacles, by monitoring the
closest distance to the obstacles. The network was designed
to estimate x and y position of the mobile robot, given single
or multiple observations as conditions. Observation(s) are
given to the network in form of a tuple o = [t,x(t),y(t)], and
then the network estimates the mean and the variance of x(q)
and y(q) for any query point.(In this experiment the whole
range of time-step (q = 0 : T ) was used for queries. As the
human behavior may change along the way, the intention
estimation is done at every time-step continuously. µt is the
human intention estimation at t and µt(t + 1) depicts the
desired mobile robot position at the next time-step t + 1.
Having the confidence factor c f (t) and blending parameter
w(t) obtained by (1) and (??), the shared command Csh is
formed with (2). The steps taken in this shared control loop
are shown in Algorithm. 2.

Algorithm 2 Shared Control Loop

1: Model ← Load the trained model
2: Initialize K
3: while t ≤ T do
4: Rx,Ry ← Read robot state
5: Ch ← GetHumanCommand(Interface)
6: condition = [t , Rx , Ry]
7: µ,σ ← Model(condition)
8: Ca← GetAutoCommand(µ)
9: c f ← Confidence(σ ,K)

10: w← GetBlendingParameter(c f )
11: Csh = wCh +(1−w)Ca
12: Send the Csh to robot



Fig. 3: Mobile robot trajectory and the intention estimation.
In here the human intention refers to estimated desired robot
position at the next time steps. Red, orange and green dots
are starting point, obstacles, and target point respectively.

Using this framework a human operator collaborated with
the agent to accomplish the designed task in the simulated
environment. The intention estimation method’s performance
is shown in Fig.3. Also the obtained blending parameter,
human and autonomous commands, and task state for the
whole duration of the task are shown in Fig.4. As we can
see in Fig. 4, the blending parameter that denotes the human
share in control increases where the mobile robot is in
some common points of the task (such as the beginning and
in between the obstacles), since the agent cannot estimate
the human intention with high confidence in these points.
This is due to the fact that there are different trajectories
demonstrated to the agent during training, that match these
common points.

E. Feeding back shared trajectories to agent

When using this framework to accomplish a task, new
trajectories are formedvia the shared control established by
the combined human and autonomous control commands.
These trajectories could be beneficial in the sense of making
the agent more adapted to the human operator, and vice versa,
which can eventually lead to a stronger collaboration. To
assess this idea, two setups where designed. In the first setup,
three shared demonstrations with evaluations were added to
the demonstration data set, and in the second setup, three
pure human demonstrations were added to the demonstration
data with evaluations. These data sets and their probability
distribution for selection (based on their evaluation scores)
are shown in Fig.5. Having these two data sets, two new
models were trained. To compare the performance of these
two models, a human operator tried each model 10 times,
to accomplish the designed task. The sum of absolute dif-
ference between the human commands and the autonomous
commands was considered as a metric for the effectiveness
of the collaboration. As the blending parameter depicts the
human share in control, it was chosen as the metric for
showing the human effort in the collaboration. The means of
these two metrics in 10 trials for each setup were computed
and compared (see Fig.6). The comparison indicates that the
difference between the human and autonomous commands
was lower in Setup 1. Furthermore, the human effort was
slightly less in Setup 1 compared to Setup 2. Overall,

Fig. 4: Blending parameter, human and autonomous com-
mands for right and left wheel of the mobile robot, and task
state (robot’s position). The blending parameter that denotes
the human share in control increases where the mobile robot
is in some common condition points of the task (such as the
beginning and in between the obstacles)

these data suggests that adding the shared trajectories to the
knowledge of the agent induces an abler collaboration and
reduces the human effort.

IV. CONCLUSION

We proposed an adaptive shared control framework for
human-agent collaboration. In this framework the agent
learns the task with learning from demonstrations, where
the given demonstrations are evaluated so that the training
uses these demonstrations in weighted manner to obtain an
overall action model for the robot. The robot also estimates
the human intention with a confidence factor, and with
the estimated intention, autonomous command is generated.
Using the confidence factor, the shared blending parameter is
obtained. Having the blending parameter, the shared control
command is formed by the convex combination of human
and autonomous command. The shared control command
drives a manipulator to accomplish a task. Using this frame-
work new trajectories are formed as the result of human and
autonomous controller’s commands. These trajectories are
fed back to the agent and are used as new demonstrations



Fig. 5: Adding new demonstrations to the network. First row:
previous and new shared trajectories. Second row: previous
and new human trajectories.

Fig. 6: Sum of absolute difference between human and
autonomous commands, and mean of blending parameters in
10 trials for each setup. Error bars are standard deviations.

for learning. This framework was tested on a simulated
environment for a designed task where a mobile robot was
to reach a target while avoiding the obstacles. The results
suggest that using this framework, we can (i) teach the
agent to generate more desired trajectories based on their
evaluated scores; (ii) assist and decrease the human effort
by estimating human intention and obtaining a blending
parameter adaptively; (iii) build a stronger collaboration
by using the generated trajectories by this shared control
framework as new demonstrations and adding them to the
knowledge of the agent.

In the next phase of this study we will test this framework
with dynamic tasks in uncertain environments. Further, we
will employ different human operators to capture their indi-
vidual strategies in the network so as to equip the network
the ability to adapt to different operators seamlessly.
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