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Preface

The state-of-the-art robots designed for specific tasks exhibit abilities
that surpass those of human. However, no robot can pass the motor and
cognitive capabilities of a 3 years old child. To create machines that parallel
or even pass the motor and cognitive capabilities of humans, the Develop-
mental Robotics field was born as an alternative to previous robot-learning
or AI programming approaches. This new approach argued that the con-
tinual development of an embodied robotic agent following the development
steps of a human is key to achieve motor and cognitive skills that of a hu-
man. Consequently research efforts based on this view produced impressive
results by focusing on different developmental stages of the embodied “infant
robots” that develop through interaction with the environment.

The aim of this one-day workshop is two-fold. First, we provide an
overview of the current state-of-the-art in this field, and remind ourselves
about the promises of the developmental robotics and the achievements ob-
tained until now. Our speakers from developmental psychology also discuss
cognitive capabilities of human infants in different stages of their develop-
ment and the possible mechanisms of acquiring these capabilities.

Second, we motivate our speakers to comment on (1) how different devel-
opmental stages and computational models developed so far can be combined
to achieve a coherent model that explains all different developmental stages,
and (2) how higher-level cognitive competence can emerge in this develop-
mental progression. The majority of computational models and learning
methods developed until now correspond to skills of infants 2 years old or
younger. We try to answer the question what is needed for developmental
robotics to make the leap to enable infant robots to acquire the higher-level
cognitive abilities, such as complex reasoning, symbolic planning and mental
state inference.

Five regular papers and four extended abstracts were accepted as contri-
butions to the workshop after peer-reviewing. We expect that the six invited
talks from distinguished scientists on developmental robotics and psychol-
ogy, together with the contributed talks will elucidate initial answers for the
questions posed above, and emphasize the challenges ahead.

We thank all submitting authors for choosing this workshop to dissemi-
nate their work. We thank keynote speakers who considerably contributed
to the quality and the impact of the workshop. Needless to say, the program
committee members have a big role in making the workshop a success; we
thank them for their fine reviewing efforts. Finally, we would like to thank
the Humanoids 2012 Organization Committee for facilitating the workshop



execution, and Prof. Shin Ishii, Kyoto University and head of Dynamic
Brain Imaging Department, ATR for giving support to the preparation of
the workshop.

November 2012 Emre Ugur
Yukie Nagai

Erhan Oztop
Minoru Asada
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Invited Talk I

Action as a founding principle of cognitive development in
humans and robots

Prof. Claes von Hofsten

Uppsala University, Uppsala, Sweden

Abstract: It is argued that action constitutes the foundation for cog-
nitive development. It reflects the motives of the child, the problems to be
solved, the goals to be attained, and the constraints and possibilities of the
childs body and sensory-motor system. Actions are directed into the future
and their control is based on knowledge of what is going to happen next.
This is possible because the stream of events in the world is governed by
rules and regularities. Infants are endowed with innate predispositions that
make them able to use those rules to their advantage. However, the most
important developmental principle is a set of motives that makes infants do
certain things rather than others. These motives provide the goals of actions
and the urge to fulfill them. In early development, infants rapidly acquire
knowledge about external events, their own body, and other peoples actions
that enable them to interact intelligently with the outside world. By act-
ing on the world, infants develop their cognition. If robots can be endowed
with similar motives, they could, in principle, develop human-like cognitive
abilities.

Speaker Bio: Dr. Claes von Hofsten is a Full Professor of Psychology
at the University of Oslo and the University of Uppsala. He received his
PhD in psychology at Uppsala University in Sweden in 1973. Between 1998
and 2011 he was a professor in perception at Uppsala. He has spent several
extended periods at American universities; as visiting professor at University
of Minnesota and University of Virginia and as visiting scientist at MIT and
the Center for Advanced Study in the Behavioral Sciences at Stanford. He
is also Honoris Causa at University of Normandy in France and honorary
member of the American Academy of Arts and Sciences. Dr von Hofsten
research interests are focused on the development of action in young children.
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Invited Talk II

Developmental Approach to Robotic Intelligence

Prof. Alexander Stoytchev

Iowa State University, Iowa, USA

Abstract: This talk will focus on recent research results that show how
a robot can solve multiple tasks based on what it learns during a develop-
mental period similar to a childs play. During this period the robot actively
tries to grasp, lift, shake, touch, scratch, tap, push, drop, and crush objects.
At the end of this period the robot knows what different objects sound like
when they are dropped, feel like when they are squeezed, etc. Because these
properties are grounded in the robots sensorimotor repertoire the robot can
autonomously learn, test, and verify its own representations without human
intervention. The talk will demonstrate how the robot can use this infor-
mation to recognize objects, separate objects into functional categories, and
even find the odd-one-out in a set of objects. The talk will also demonstrate
how the robot can use sensorimotor interactions to bootstrap the develop-
ment of its visual system in the context of a button-pressing task. Results
and videos will be presented for two different humanoid platforms.

Speaker Bio: Dr. Alexander Stoytchev is an Assistant Professor of
Electrical and Computer Engineering and the Director of the Developmen-
tal Robotics Laboratory at Iowa State University, USA. He received his MS
and PhD degrees in computer science from the Georgia Institute of Tech-
nology in 2001 and 2007, respectively. His research interests are in the areas
of developmental robotics, autonomous robotics, computational perception,
and machine learning.
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Invited Talk III

Developmental Robotics: Where from and Where to (a
personal view).

Prof. Giulio Sandini

Italian Institute of Technology (IIT), Genova, Italy

Speaker Bio: Dr. Giulio Sandini Director of Research at the Italian
Institute of Technology and full professor of bioengineering at the Univer-
sity of Genoa. Main research activities are in the fields of computational
and cognitive neuroscience and robotics with the objective of understanding
the neural mechanisms of human sensory-motor coordination and cognitive
development. After graduating in Electronic Engineering (Bioengineering)
he was research fellow and assistant professor at the Scuola Normale Supe-
riore in Pisa and at the Laboratorio di Neurofisiologia of the CNR where
he investigated aspects of visual processing at the level of single neurons as
well as aspects of visual perception in human adults and children. He has
been Visiting Research Associate at the Department of Neurology of the
Harvard Medical School and Visiting Scientist at the Artificial Intelligence
Lab of MIT. Since July 2006 he has been appointed Director of Research at
the Italian Institute of Technology where he has established and is currently
directing the department of Robotics, Brain and Cognitive Sciences.
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Invited Talk IV

Integrating visual perception and manipulation for
autonomous learning of object representations

Dr. Ales Ude

Jozef Stefan Institute, Ljubljana, Slovenia

Abstract: The human ability to discern objects in the scene is not
innate but rather acquired during the early development. From birth on,
children are constantly exposed to events caused by the effects of their own
actions. The information thus gained can be used to evolve the agents per-
ceptual judgements, including the way how objects are perceived. Reliable
object perception is still difficult to achieve in artificial systems because it
is not clear how to define the concept of objectness in its full generality.
In our research we follow the paradigm that integrates the development of
perceptual representations with the robots manipulation capabilities and
tactile sensing. In this way the robot can introduce additional information
that can be utilized to reliably separate previously unknown objects from
the background and learn their representations and affordances.

Speaker Bio: Ale Ude studied applied mathematics at the University
of Ljubljana, Slovenia. He received the Ph.D. degree for work on robot
programming by demonstration from the University of Karlsruhe, Germany.
He was an STA fellow in the Kawato Dynamic Brain Project, which was
conducted at ATR in Kyoto, Japan. Currently he is the head of Humanoid
and Cognitive Robotics Lab at Joef Stefan Institute, Ljubljana, Slovenia and
is also associated with the ATR Computational Neuroscience Laboratories
in Kyoto, Japan. His current research interests include learning in humanoid
systems, especially imitation learning and learning by exploration, humanoid
robot vision, and humanoid cognition.
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Invited Talk V

Development of functional hierarchy for actions and
motor imageries: a synthetic neurorobotics experiment

Prof. Jun Tani

Korean Advanced Science and Technology (KAIST), Korea

Abstract: In this talk I introduce a neuro-robotics experiment on de-
velopmental learning of goal-directed actions. The robot was trained to pre-
dict visuo-proprioceptive flow of achieving a set of goal-directed behaviors
through iterative tutor training processes. The learning was conducted by
employing a dynamic neural network model which is characterized by their
multiple time-scales dynamics. The experimental results showed that func-
tional hierarchical structures emerge through stages of developments where
behavior primitives are generated in earlier stages and their sequences of
achieving goals appear later stages. It was also observed that motor imagery
is generated in earlier stages compared to actual behaviors. Our claim that
manipulable inner representation should emerge through the sensory-motor
interactions is corresponded to Piaget’s constructivist view.

Speaker Bio: Jun Tani received a B.S. in Mechanical Engineering from
Waseda University, a dual M.S. in Electrical Engineering and Mechanical
Engineering from the University of Michigan, and a Dr. Eng. from Sophia
University. He started his research career in Sony Computer Science Labo-
ratory in 1990. He worked as a PI of the Lab. for Behavior and Dynamic
Cognition, Brain Science Institute, RIKEN in Tokyo from 2001 to 2012. He
also held the position of Visiting Associate Professor at the Univ. of Tokyo
between 1997 and 2002. He became a full professor in Electrical Engineer-
ing Dept. in KAIST 2012 where he started cognitive neurorobotics. He
is interested in neuroscience, psychology, phenomenology, complex adaptive
systems, and robotics.
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Invited Talk VI

Constructive Developmental Science Based on
Understanding the Process from Neuro-Dynamics to

Social Interaction

Prof. Minoru Asada

Adaptive Machine Systems, Graduate School of Engineering, Osaka
University, Japan

Speaker Bio: Minoru Asada is Professor of the department of Adaptive
Machine Systems at the Graduate School of Engineering, Osaka University
(Suita, Japan). He received his Ph.D. in control engineering from Osaka Uni-
versity in 1982. Professor Asada was elected to and served as General Chair
of the IEEE/RSJ 1996 International Conference on Intelligent Robots and
Systems (IROS96). Since early 1990, Professor Asada has been involved in
RoboCup activities and his team was the inaugural champion (shared with
USC), in the mid- sized league of the first RoboCup competition held in
conjunction with IJCAI-97 (Nagoya, Japan). Since 2002, Professor Asada
has served as President of the International RoboCup Federation. In 2005,
Professor Asada was elected Fellow of the IEEE for Contributions to Robot
Learning and Applications. Also in 2005, Professor Asada was elected to
serve as Research Director of the ASADA Synergistic Intelligence Project
of ERATO (Exploratory Research for Advanced Technology) by the Japan
Science and Technology Agency and he continued to serve as Research Di-
rector until the Project was completed in 2012. In 2007, Professor Asada
was awarded The Okawa Publications Prize (The Okawa Foundation) and,
in 2008, he received The Good Designs Award for VoCal - Vivid Oral Con-
versation through Acquiring Language (Japan Industrial Design Promotion
Organization) . In 2009, Professor Asada again received the Best Paper
Award of the Robotics Society of Japan. And, in 2012, The Japan Society
for Promotion of Science (JSPS) named Professor Asada to serve as Re-
search Leader for the Specially Promoted Research Project (Tokusui) on
Constructive Developmental Science Based on Understanding the Process
From Neuro-Dynamics to Social Interaction.
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The Object Pairing and Matching Task:

Toward Montessori Tests for Robots
Connor Schenck and Alexander Stoytchev

Developmental Robotics Laboratory

Iowa State University

{cschenck, alexs}@iastate.edu

Abstract—The Montessori method is a popular approach to
education that emphasizes student-directed learning in a con-
trolled environment. Object matching is one common task that
children perform in Montessori classrooms. Matching tasks also
occur quite frequently on intelligence tests for humans, which
suggests that intelligence correlates with the skills required to
solve these tasks. This paper describes robotic experiments with
four Montessori matching tasks: sound cylinders, sound boxes,
weight cylinders, and pressure cylinders. The robot grounded
its representation for the twelve objects in each task in terms of
the auditory and proprioceptive outcomes that they produced in
response to a set of ten exploratory behaviors. The results show
that based on this representation, it is possible to identify task-
relevant sensorimotor contexts (i.e., exploratory behavior and
sensory modality combinations) that are useful for performing
matching on a given set of objects. Furthermore, the results
show that as the number of sensorimotor contexts used to
perform matching increases, the robot’s ability to match the
objects also increases.

I. INTRODUCTION

The Montessori method is a 100-year-old method of

schooling that was developed by Maria Montessori (1870-

1952), an influential Italian educator. It is characterized by

a special set of educational materials and student-directed

learning activities [1] [2] [3]. One of its core principles is

that of embodied cognition, tying movement of the body and

learning together. It focuses on stimulating the development

of different skill sets, including sensory development, lan-

guage development, and numeracy skills. Most Montessori

tasks require that the children actively touch, move, relate,

and compare objects [2].

One task typical for a Montessori classroom is object

matching. Children are given two sets of objects and asked

to find the matches from one set to another. Sample tasks in-

clude matching colored tiles, matching 3-dimensional shapes,

and matching pieces of textured cloth [4]. All these tasks

are designed to stimulate a child’s ability to perceive object

properties and to allow the child to learn about the nature of

objects and their similarities.

The skills required to perform matching are also useful for

other tasks such as object grouping, category recognition,

and object ordering. At a fundamental level, these skills

require the ability to find differences between similar objects

and similarities between different objects. Recent work in

robotics has found that robots are able to recognize objects

and their categories [5], [6], group objects in an unsupervised

Fig. 1. The robot and the four Montessori matching tasks that were used
in the experiments. In clockwise order, the four tasks were: sound cylinders,
weight cylinders, pressure cylinders, and sound boxes.

manner [7], and find the odd one out in a set of objects [8].

These studies all strongly suggest that a robot should be able

to solve object pairing tasks.

This paper describes a method that allows a robot to

identify and match object pairs within a set of objects

based on their sensorimotor properties. To do this, the robot

first interacted with the objects using a set of exploratory

behaviors (grasp, lift, hold, shake, rattle, drop, tap, poke,

push, and press) in order to ground the properties of the

objects in the robot’s behavioral repertoire. After interacting

with the objects, the robot performed feature extraction on

the raw sensory data to create sensory feedback sequences

for each interaction. For each object, the robot recorded both

proprioceptive feedback in the form of joint torques and

auditory feedback in the form of an audio spectrogram. Next,

the robot generated similarity scores for all possible object

pairs and used these scores to match the objects. To com-

bine information from different sensorimotor contexts (e.g.,

Ugur, E., Nagai, Y., Oztop, E., and Asada, M. (Eds) Proceedings of
Humanoids 2012 Workshop on Developmental Robotics: Can
developmental robotics yield human-like cognitive abilities?
November 29, 2012. Osaka, Japan
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audio-drop and proprioception-shake), the robot used three

different methods: uniform-weight combination, recognition

accuracy based weight combination, and pairing accuracy

based combination. These methods were evaluated for their

ability to match standard Montessori objects.

This study used four typical Montessori matching tasks.

In each task there were two groups of six objects and the

goal was to find the matching pairs of objects between the

two groups. The results indicate that the estimated object

similarities were sufficient to adequately pair objects. The

robot was able to solve the object matching task with a

high degree of accuracy. Furthermore, the robot was able to

identify the functionally meaningful sensorimotor contexts in

which it can distinguish between objects. To the best of our

knowledge, this is the first study that has applied Montessori

learning techniques in a robotic setting.

II. RELATED WORK

A. Psychology

Recent studies have found that students educated using

the Montessori method often outperform students educated

by traditional methods. For example, one study found that

middle school students from Montessori schools had higher

intrinsic motivation when it came to academic activities as

compared to students from traditional schools [9]. This sug-

gests that the Montessori method is more effective at foster-

ing learning in young children than the traditional methods.

This conclusion was supported by another study [3], which

found that, by the end of kindergarten, Montessori students

outperformed traditional students on standardized tests of

reading and math and also showed more advanced social

skills and executive control.

One task commonly used in the Montessori style of

teaching for younger children is the matching task [4]. In

this task, a child is given a set of objects (sometimes split

into two subsets and sometimes not) and asked to pair the

objects. A variant of that task was used by Daehler et

al. [10] who used both objects and pictures of objects in their

experiments. They found that children around the age of two

are able to correctly match objects from both pictures and

objects to sets of pictures or objects. One interesting result of

this experiment was that the children performed significantly

better on tasks where they were asked to match an object to

a set of objects, versus picture to object, object to picture,

or picture to picture matching. They suggested that this was

due to the ability of the children to perceive the objects from

multiple angles, thus giving them more reliable information

about the objects than they could extract from the pictures.

Other studies have shown infants’ ability to identify object

pairs and group objects into categories. A study by Leslie

et al. [11] demonstrated that eleven-month-old infants can

individuate pairs of objects only when there is a large amount

of physical similarity between objects in the same pair (in

this study they used identical objects) and a large physical

difference between objects of different pairs. Younger [12]

showed that ten-month-old infants can form object categories

and determine the variants and invariants of the objects

within a category and based on that information they can

determine the inclusion of a novel object in the given

category. These studies show that even at an early age,

humans are able to identify object properties and use them to

compare objects, which suggests that this is a fundamental

part of intelligence.

Another experiment by McPherson and Holcomb [13]

examined event-related brain potentials. Participants were

shown a picture of an object, then a picture of an object

from one of three categories: related, moderately related, or

unrelated. The electroencephalogram (EEG) results showed

that across all participants, there was a large negative spike

in the N400 family of potentials in the participants’ brain

shortly after being shown the second picture. The study found

that the magnitude of the spike was related to the similarity

between the two objects in the pictures. This suggests that,

at least at some level, the brain makes a quantitative measure

of how similar the two objects are.

B. Robotics

Several studies have demonstrated that robots can measure

perceptual as well as functional object similarities for a

variety of tasks [14], [15], [16], [17], [18], [8]. The ability

to measure the similarity between two objects is extremely

useful for tasks such as category recognition and object

grouping. Several studies [16], [5] have used unsupervised

approaches for object categorization, in which objects were

categorized by the similarity of their perceptual features.

Their results showed that when the robot was allowed to

use all of its sensory modalities, its object categorizations

closely resembled the human-provided ones. This suggests

that allowing robots to perceive more features about objects

can improve their ability to detect similarities between the

objects.

Sinapov and Stoytchev [8] showed how a robot can solve

the odd-one-out task. The robot picked the object in the

group that was least similar to the rest and resulted in the

rest of the objects being maximally similar. In this paper we

use a similar method to generate similarity scores between

objects. We then use this similarity measure to perform object

matching rather than solving the odd-one-out task, though

they are fundamentally related problems.

III. EXPERIMENTAL PLATFORM

A. Robot and Sensors

The experiments in this study were performed with the

upper-torso humanoid robot shown in Fig. 1. The robot has

as its actuators two 7-DOF Barrett Whole Arm Manipulators

(WAMs), each with an attached Barrett Hand. Each WAM

has built-in sensors that measure joint angles and torques at

500 Hz. An Audio-Technica U853AW cardioid microphone

mounted in the robot’s head was used to capture auditory

feedback at the standard 16-bit/44.1 kHz over a single

channel.
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Fig. 2. The four sets of Montessori objects used in the experiments. From
left to right and top to bottom the object sets are: pressure cylinders, sound

boxes, sound cylinders, and weight cylinders. All the objects are marked
with colored dots on the bottom to indicate the correct matches; other than
that, the objects in each set are all visually identical (except for the pressure

cylinders and the sound cylinders, which also have different colors for the
tops to indicate the two sets of six objects).

B. Objects

The robot explored four standard Montessori sets of ob-

jects: pressure cylinders, sound boxes, sound cylinders, and

weight cylinders (Fig. 2). Each set is composed of six pairs of

objects. The objects in each pair are functionally identical to

each other. The objects in each set are designed to vary in one

specific dimension and be identical in all other dimensions.

The pressure cylinders vary in the amount of force required

to depress the rod, with pairs requiring the same amount of

force. The sound boxes vary in the sounds they make when

the contents move around inside the box, with pairs making

the same sounds. The sound cylinders vary in the same way

as the sound boxes, but are cylindrical in shape and have

different contents than the boxes. The weight cylinders vary

by weight, going from light to heavy, with pairs having the

same weight.

C. Exploratory Behaviors

The robot used ten behaviors to explore the objects: grasp,

lift, hold, shake, rattle, drop, tap, poke, push, and press. All

of these exploratory behaviors, except rattle, have been used

in our previous work [19], i.e., they were not specifically

designed for the Montessori objects used in this paper. The

behaviors were performed with the robot’s left arm and

encoded with the Barrett WAM API as trajectories in joint-

space. The default PID controller of the WAM was used

to execute the trajectories. Figure 3 shows images of the

robot performing each behavior on one of the sound boxes.

All the behaviors were performed identically on each object,

with only minor variations due to the initial placement of the

objects by the experimenter.

D. Data Collection

The robot interacted with the objects by performing a

series of exploration trials. During each trial, an object was

placed at a marked location on the table by the experimenter

and the robot performed all ten of its exploratory behaviors

on the object. The experimenter then picked another object

and the robot repeated this process. This was done until each

object had been explored ten times. During each interaction,

the robot recorded proprioceptive information in the form of

joint torques applied to the arm and auditory data captured

by the microphone. The robot also recorded visual data, but

it was not used in this experiment. In the end, the robot

performed all ten behaviors ten times on each of the twelve

objects in the four sets, resulting in 10×10×12×4 = 4800
behavior executions. This resulted in 18 GB of data, which

was stored for off-line analysis. It took approximately 20

hours to collect this dataset.

IV. FEATURE EXTRACTION

We used the method and the publicly available source

code for proprioceptive and auditory feature extraction that is

described in [5]. It is briefly summarized below. Propriocep-

tive data was recorded as joint torques over time resulting

in a 7 × m matrix, in which each column represents one

set of torque readings for all joints and m is the number

of readings. To reduce noise, a moving-average filter was

applied over each row in the matrix, which corresponds to

the torques from one joint. Audio data was recorded as wave

files, one for each interaction. A log-normalized Discrete

Fourier Transform was performed on each audio file using

25+1 = 33 frequency bins resulting in a 33×n matrix, where

each column represents the activation values for different

frequencies at a given point in time and n is the number of

samples in the interaction. The Growing Hierarchical Self-

Organizing Map (SOM) toolbox [20] was used to map each

column to a single state. Two 6 × 6 SOMs were trained

(one for audio and one for proprioception) using 5% of the

columns that were randomly selected from all the joint torque

and auditory data recorded by the robot. Each joint torque

and auditory record was then mapped to a discrete sequence

of states, where each column in the record was represented

by the most highly activated SOM state for that column. For

more details see [5].

V. EXPERIMENTAL METHODOLOGY

A. Estimating Similarity

Given a set of objects O the robot must be able to estimate

the pairwise similarity for any two objects i, j ∈ O in a given

sensorimotor context (i.e., exploratory behavior and sensory

modality combination). Let X i
c = [X1, ..., XD] be the set of

sensory feedback sequences detected while interacting with

object i ∈ O in sensorimotor context c ∈ C (where C is the

set of all contexts) and let sim(Xa, Xb) be the similarity

between two sequences Xa and Xb. The similarity between

objects i and j can be approximated with the expected

pairwise similarity of the sequences in X i
c and X j

c :

scij = E[sim(Xa, Xb)|Xa ∈ X i
c , Xb ∈ X j

c ]

In this paper we used the Needleman-Wunsch global align-

ment algorithm [21] to calculate sim(Xa, Xb). The algo-

rithm calculates the cost of aligning two discrete sequences

9



Fig. 3. The ten exploratory behaviors that the robot performed on all objects. From left to right and top to bottom: grasp, lift, hold, shake, rattle, drop,
tap, poke, push, and press. The object in this figure is one of the sound boxes. The red marker on the table indicates the initial position of the objects at
the beginning of each trial. The object was placed back in that position by the experimenter after some of the behaviors (e.g., drop).

(strings), which in our case correspond to sequences of most

highly-activated SOM states (see the previous section). The

expected similarity scij is estimated as

1

|X i
c | × |X j

c |

∑

Xa∈X i
c

∑

Xb∈X
j
c

sim(Xa, Xb)

Next, the robot estimates the |O| × |O| pairwise object

similarity matrix W
c for a specific sensorimotor context c ∈

C. Each entry W c
ij in W

c is defined as the similarity scij
between two objects i and j in the specific context c. Figure 4

shows the similarity matrices for the sound cylinders for each

of the 20 contexts.

B. Combining Sensorimotor Contexts

It has been shown that combining information from dif-

ferent sensorimotor contexts has a boosting effect for tasks

such as object recognition [22]. Since object matching is

a similar task, it is likely that combining contexts will be

useful in this case as well. Thus, in this paper, we propose

three methods to combine sensorimotor contexts: uniform

combination, recognition accuracy based combination, and

pairing accuracy based combination. The result of combining

different contexts is a consensus matrix W that represents

the similarity between object pairs for the specific set of

contexts that was used to create it.

1) Uniform Combination: Given some set of contexts C′,

where C′ ⊆ C, the similarity matrices W
c for each of these

contexts can be used to construct the consensus matrix W

by simply averaging their individual values, i.e.,

Wij =
1

|C′|

∑

c∈C′

W c
ij

for all pairs of objects i and j.

2) Recognition Accuracy Based Combination: This

method assumes that contexts that are useful for object

recognition will also be useful for object pairing. The object

recognition accuracy rc for context c is estimated by per-

forming 10-fold cross validation on all the data from context

c using a classifier that attempts to recognize object identities

from sensory feedback sequences. To create the consensus

matrix for a given set of contexts C′ (C′ ⊆ C), a weighted

combination was used:

Wij =
∑

c∈C′

αc ×W c
ij

where αc is the normalized recognition accuracy rc for

context c such that
∑

c∈C′ αc = 1.0. The classifier used in

this paper was the k-nearest neighbor classifier with k set

to 3 and using the global alignment similarity function as a

similarity metric.

3) Pairing Accuracy Based Combination: The third com-

bination method allowed the robot to get feedback on its

attempts to pair some of the objects to refine its ability to pair

the remaining objects. In order to determine the usefulness

of each context, the robot split the set of objects such that

either 2, 3, or 4 of the six pairs were in the training set and

the rest remained in the testing set. Then, for each context c,

using the objects in the training set, the robot would attempt

to pair them (using the pairing method described below) and

evaluate the pairing accuracy pc for that context. To construct

the consensus matrix W, a weighted combination was used

similar to the previous method:

Wij =
∑

c∈C′

αc ×W c
ij

where αc is the normalized pairing accuracy pc for context

c such that
∑

c∈C′ αc = 1.0. After generating the consensus

matrix W, the robot would then attempt to pair only the

10
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Fig. 5. The consensus weight matrix for the sound cylinders using all 20
sensorimotor contexts for matching two groups of six objects. The pairing
accuracy combination method using four pairs to train was used to combine
the individual similarity matrices for each context. The subscripts indicate
correct matches.

objects from the testing set. Figures 4 and 5 show a consensus

matrix generated by combining the similarity matrices from

all 20 contexts when training using 4 pairs of objects.

C. Generating Matchings

The robot was tasked with generating matchings among

the objects in the four Montessori toys. The objects were

split into two groups of six and the robot was tasked with

selecting one object from each group to generate a match.

This split into two groups of six is naturally suggested by

the Montessori toys. For example, the sound cylinders have

either red or blue caps; the pressure cylinders have either

black or white buttons (see Fig. 2).

More formally, given a 6x6 non-symmetric similarity ma-

trix W
c or a consensus matrix W and objects O partitioned

into two sets of equal size Oa and Ob, matches were

generated by picking pairs that maximized similarity between

the objects in the pair and minimized similarity between

those objects and the remaining objects. One such matrix

is shown in Fig. 4. Formally, the objects i ∈ Oa and j ∈ Ob

that maximize

q(i, j,W) = Wij − γ





∑

k∈Ob/j

Wik +
∑

k∈Oa/i

Wkj





were selected and then removed from Oa and Ob. The first

term captures the pairwise similarity between objects i and j;

the last term captures the pairwise similarity between objects

i and j and the rest of the objects. The constant γ is a

normalizing weight, which ensures that this function is not

biased toward any of the terms. In our case, it was set to

γ =
1

2(|O| − 1)
.

This process was repeated until no more objects remained to

be paired.

D. Evaluation

Given a set of objects (e.g., the weight cylinders), the

robot’s model was queried in order to group the objects

into pairs. Five interactions were randomly picked for each

object from the set of ten interactions that were performed

on each object and used to create the weight matrix W
c for

each sensorimotor context c ∈ C. Consensus matrices W

were generated using the three methods described above for

a given set of contexts. Matchings were then generated using

the method described above. This process was repeated 100

times for every group of contexts. For each size from 1 to

|C|, 100 sets of contexts were randomly generated and tested

(1, 721 in total)1. Results are reported as the average accuracy

or as Cohen’s kappa statistic [23] over all 100 iterations.

Accuracy is computed as

%Accuracy =
#correct matchings

#total matchings
× 100.

The kappa statistic is computed as

kappa =
P (a)− P (e)

1− P (e)
.

In our experiments, P (a) is the pairing accuracy of the

robot and P (e) is the accuracy a random matching would be

1For sets of size 1, |C|− 1, and |C| all sets of that size were tested since
there were fewer than 100 sets of those sizes.
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Fig. 6. The accuracy of each context when matching between two sets of
six objects. Lighter values indicate higher accuracy with completely white
being 100%. Darker values indicate lower accuracy with completely black
being 0%. The images from left to right are: pressure cylinders, sound boxes,
sound cylinders, and weight cylinders.

expected to get. Kappa is used to allow for direct compar-

isons between the different sensorimotor context combination

methods, since for the pairing accuracy based method, chance

accuracy is different than it is for the other methods. The

kappa statistic controls for chance accuracy.

The evaluation was performed off-line after the robot

interacted with all 48 objects (4 Montessori tasks × 12

objects in each).

VI. RESULTS

A. Object Matching with a Single Context

Figure 6 shows the matching accuracy for each context for

all four Montessori tasks. For the pressure cylinders, the best

sensorimotor context was proprioception-press (97.5% pair-

ing accuracy), which was expected. Surprisingly, audio-press

also did well (80.7%), which was not expected since (at least

to the authors’ ears) all the cylinders sound the same when

pressed. Also interesting is the audio-drop context for the

sound cylinders (89.3% accuracy), which outperformed both

shake (60.3%) and rattle (51.3%) behaviors for audio. Audio-

press (82.3%) for the sound cylinders also did well, which

is likely due to the fact that they would fall over while being

pressed. It is also worth noting that for the weight cylin-

ders, the best contexts were proprioception-shake (87.7%)

and proprioception-push (94.3%) rather than contexts that

more directly measure the weight such as proprioception-lift

(50.7%) and proprioception-hold (18.8%).

In summary, the robot was able to identify the relevant

behaviors and sensory modalities and use them to pair the

objects in each of the four Montessori tasks with a high

degree of accuracy.
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Fig. 7. The kappa statistic for each set of objects. Each line represents
a different method for combing the sensorimotor contexts. The line la-
bels are as follows: U-uniform combination; R-recognition accuracy based
combination; P2-pairing accuracy using two pairs for training; P3-pairing
accuracy using three pairs for training; P4-pairing accuracy using four pairs
for training.

B. Object Matching with Multiple Contexts

Figure 7 shows the kappa statistic for each set of objects

as the number of contexts is varied from 1 to 20. The

graphs show that as the number of sensorimotor contexts

used to perform matching increases, so does the kappa

statistic. In all cases, the pairing accuracy based combination

using four pairs for training (the cyan line) outperforms all

the other combination methods. The only exception to this

is for the sound boxes, since accuracy reaches 100%, all

methods reach a kappa value of 1.0. In most cases, the

pairing accuracy based combination using three pairs for

training (the yellow line) also outperforms the other methods

(except for the method that uses four pairs for training).

The pairing accuracy based combination using two pairs for

training performs about the same as the recognition accuracy

combination method, which usually performs slightly better

than the uniform combination method. All the combination

methods perform better than chance for all object sets, which

is indicated by a 0.0 kappa value.

C. Repeating the Same Behavior

In all results reported up to this point, five interactions

were randomly chosen from the ten for each object during

each iteration. Figure 8 shows the average kappa statistic

as the number of trials vary, averaged over all the sets

of objects and number of contexts. The accuracies quickly

converge after only a few trials, implying that repeating

the same behavioral repertoire multiple times on an object

has quickly diminishing returns. In most cases and for all

combination methods, after four repetitions there is very little

gain. Diminishing returns is most quickly realized for the

pairing accuracy combination method using four pairs for
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training. The largest gain when increasing interactions was

realized by the uniform combination method. This suggest

that the uniform combination method benefited the most from

a decrease in noise due to its lack of weighted preferences

between the contexts, whereas the pairing accuracy combi-

nation methods didn’t benefit as much because the weights

assigned to each context already decreased the noise.
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Fig. 8. The kappa statistic averaged across all four sets of objects while
varying the number of interactions used to generate the similarity matrices
W

c for each context c ∈ C. The number of randomly sampled interactions
was varied from 1 to 9. The line labels are the same as in Fig. 7.

VII. CONCLUSION AND FUTURE WORK

This paper demonstrated a framework that allows a robot

to solve object matching tasks by estimating the pairwise

similarity of objects in specific sensorimotor contexts. The

performance of this framework was evaluated with four

standard Montessori tasks that require pairing a set of objects

based on their perceived similarities across multiple sensory

modalities. The results showed that for a given set of objects,

certain contexts are best suited to extract the information

necessary to perform object pairing (e.g., audio-shake for

the sound boxes), while others are not useful for that set of

objects (e.g., proprioception-lift for the sound cylinders).

The robot was also able to combine similarity measures

from different contexts using three different methods: uni-

form combination, recognition accuracy based combination,

and pairing accuracy based combination. The robot was able

to achieve the best performance in almost every case when

it was allowed to train on four of the six object pairs before

being tested on the remaining two. These results show that

embodied sensorimotor similarity measures between objects

can be extremely useful for performing matching tasks.

This paper introduced the domain of Montessori tasks to

the field of robotics and showed how embodied learning

could be used to solve object pairing tasks. For each set

of objects the robot learned which set of contexts are most

useful for pairing the objects and which are not. The objects

in each Montessori task implicitly capture an important

concept that the robot can discover on its own through

sensorimotor exploration. In the future similar tasks could

be used to teach robots not only matching skills, but also

important concepts such as ordering, sorting, and relating.

Future work can also expand upon this research by improv-

ing the feature extraction methods, the similarity measure,

the combination methods, or by using a better matching al-

gorithm. It would also be useful to develop methods that can

discover novel exploratory behaviors. This framework can

also be applied to other tasks such as object categorization

and object recognition. For example, a robot could match

previous experiences with objects with new experiences in

order to label the objects.
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Abstract—This paper explores the problem of attention models
for robot tutoring as related to the cognitive development of
infants. We discuss the factors that have an important influence
in infants’ attention and the way these factors can be taken into
consideration to develop robot attention models that simulate
infants’ cognitive stimuli. In particular, we focus on the attention
given to objects that appear closer to the infant when they
are shown by an adult. Using the distance of an object as an
important factor to increase visual attention, our model uses
depth information along with the well-known Bottom-Up Visual
Attention Model Based on Saliency (Itti & Koch, 2001) in order
to increase attention accuracy even if non-salient feature objects
are shown to the robot or if tutoring activity takes place under
cluttered environments. Our model also considers the presence
or absence of a human tutor to decide whether a tutoring
activity might take place. Experimental results suggest that depth
information is a key factor to emulate effective infants’ attention.

I. INTRODUCTION

One of the main objectives of researchers in the area of
cognitive robotics is to design mechanisms to provide robots
with human-like abilities in perception, decision making, rea-
soning, and action execution. Among the many challenges of
developmental cognition for robots, attention is perhaps one
of the most important challenges that needs to be addressed
since it plays a very important role in the process of learning.

The study of attention of infants can provide important
clues to develop systems that emulate this important ability.
This is because even before babies with normal vision can
talk or walk, they are able to perceive and parse their visual
environment and are able to move their eyes and head to
select visual targets (objects or people) [7]. Moreover, by
observing the cognitive development of infants when they
interact with their parents, it has been shown that infants’
attention and learning are favorably influenced by factors such
as motionese (e.g., exaggeration of parent’s actions) [8] or con-
tingent reactions (helping infants find proper association) [10].
In this direction, researchers have developed robotic systems
that emulate attention and learning processes of infants by
using socially guided exploration [2], dialogs [4], or motionese
[6]. Human guided instruction plays a very important role in
infants learning and can be simulated in robot systems by
presenting a visual task or object within robot’s visual field as
shown in Fig. 1 (a).

Fig. 1. 1) Human Guided Robot Learning. 2) Controlled environment (salient
object and plain background) commonly used for experiments.

One of the main difficulties of robot learning is the fact
that robots do not know where to look at when observing
a demonstration [6]. Researchers have proposed computer
vision models of attention that enable the robot to selectively
choose a relevant visual segment while ignoring others (e.g.,
[19]-[22]). The Bottom-Up Visual Attention Model Based on
Saliency originally proposed by Itti & Koch [20] is perhaps
one of the most used and widely accepted models of attention.
This model proposes the idea that visual attention is attracted
by salient stimuli that ’pop out’ from their surroundings due
to primitive features such as color, intensity and orientation.
This model is commonly used in robotic systems to achieve
visual attention during a tutoring activity (e.g., [6], [25]).
However, robotic systems that use this model are usually
evaluated with objects that have strong salient features or in
controlled environments with plain backgrounds (e.g., Fig. 1
(b)). This certainly facilitates the tutoring activity but limits
its applicability to experimental setups and cannot be used in
real environments. Moreover, since the Bottom-Up Attention
Model uses 2D images to find ’salient’ features to define focus
of attention, distance of the object is not considered due to the
lack of depth (3D) information.

The distance of an object to the infant is also a very
important factor that effects visual attention. Smith et al. [1]
provide experimental evidence that demonstrates that visual
attention is largely increased by bringing objects close to
the child. Therefore, this factor should certainly be used to
improve attention mechanisms for robots. In this paper, we
put this concept into practice and developed an attention
model that uses depth information along with the Bottom-
Up Visual Attention Model Based on Saliency in order to

Ugur, E., Nagai, Y., Oztop, E., and Asada, M. (Eds) Proceedings of
Humanoids 2012 Workshop on Developmental Robotics: Can
developmental robotics yield human-like cognitive abilities?
November 29, 2012. Osaka, Japan
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Fig. 2. Schematic of salience model proposed by Itti & Koch [20].

increase attention accuracy when the robot observes closer
objects with or without salient features. We also take into
consideration the presence or absence of a human teacher
to activate the attention model when a tutoring activity takes
place. Most importantly, our attention model can be used in
real environments with cluttered backgrounds.

The remaining part of this work is organized as follows.
Section II introduces a discussion of the Bottom-Up Visual
Attention Model Based on Saliency and the need to use depth
information for attention models. A description of our attention
model is described in the subsequent section. Experiment
design and results are given in section IV. Finally, in the last
section we present some conclusive remarks.

II. A BOTTOM-UP VISUAL ATTENTION MODEL BASED ON
SALIENCY

Inspired by the behavioral and neuronal mechanism of
primates, the Bottom-Up Visual Attention Model Based on
Saliency uses the ”outstandingness” of primitive features of
an image to be able to detect salient locations in a scene [20].
For example, a yellow object in a black background is detected
as salient because of its distinctive color. A person moving
to the right direction among other persons moving to the left
direction is detected as salient with respect to motion direction.

This model is probably the most influential attention model,
since it has been extensively used in many research fields
including computer vision and robotics [11]. This model
(Fig. 2) uses several concepts (e.g., feature map, saliency
map) and proposes a well-structured process for calculation
of the saliency map which defines attention focus. As a brief
summary, multi-scale analysis of an input image is performed
to evaluate five primitive features: color, intensity, orientation,
flicker, and motion. Individual feature maps are combined to
create a centralized saliency map that is used to identify the
focus of attention. Refer to the original paper [20] for a more
detailed description.

Fig. 3. Tutoring environment: a) Plain background - salient-feature object. b)
Saliency Map c) Focus of attention. Attention model correctly locates object
of interest.

Fig. 4. Tutoring environment: a) Cluttered background, non-salient object,
presence of distracters (salient-feature objects in background) b) Saliency Map
c) Focus of attention. Attention model fails to locate the object of interest that
is shown by the human tutor.

Contrary to the top-down attention model (an active scan of
the visual field in search of a pre-specified object or stimuli),
the bottom-up approach guides visual exploration focusing on
the most salient stimuli - in a similar way babies do in early
stages of development - and therefore it is more appropriate
for emulating infant behavior. However, due to the native
process of saliency computation from 2D images, the Bottom-
Up Visual Attention Model Based on Saliency is unable to
cope with attention focus based on depth information, which
is also a key factor to effectively emulate infant attention.

A. Importance of Depth Information in Tutoring Activities

When an adult is tutoring an infant about an object or a
particular task, the principle of overt attention (to place an
object of interest at the center of visual field), along with the
distance of the object are generally used to increase visual
attention [13] - as demonstrated by experimental evidence of
Smith et al. [1].

For tutoring activities, several researchers have emulated
infants’ attention by successfully applying the Bottom-Up
Visual Attention Model Based on Saliency in robotic systems.
Since this model is meant to find ’salient’ features in the
scene, most of the times the tutoring activity takes place in
experimental environments (plain backgrounds scenes or use
of objects with ’salient’ features such as bright colors), which
certainly facilitate the learning task (i.e. Fig. 3). However, a
real environment such as the one presented in Fig. 4 (a) (clut-
tered background, presence of multiple objects with salient
features, or teaching an object that lacks salient features)
presents a bigger challenge to the Bottom-Up visual model,
which is unable to locate the object presented by the human
tutor since other salient-featured objects are present in the
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background. In this case, depth information plays a very
important role in defining where the focus of attention should
be located.

III. ATTENTION MODEL USING DEPTH

In order to deal with the difficulties presented in the previous
section, our model uses depth information along with the
Bottom-Up Visual Attention Model to be able to cope not
only with feature saliency but also with object proximity. The
main purpose is to emulate infants’ attention when objects are
presented - by a human tutor - at a close distance during a
tutoring activity even if the objects lack strong feature saliency.

Attention models that use depth information to define focus
of attention have been previously introduced by researchers
(e.g., [14]-[17]) for scene analysis applications. In order to
define saliency, mentioned techniques commonly use the 3D
structural information of objects or object’s relative position
to other objects. Since none of these models takes into
consideration the presence or absence of a person, it is
difficult to implement them to emulate infant tutoring in robots
because these models would encounter important difficulties
such as focusing on the person vs object or detecting saliency
effectively in extreme cluttered environments.

Since the main objective of this research is to emulate
infants’ stimuli, the particularity of our model is that we also
take into consideration the presence or absence of a human
teacher to activate the attention model, and we use proxemics
theory according to Hall [23] to pre-define a distance range
to which robots should pay attention when a tutoring activity
takes place.

A. Development Process

During the tutoring activity, a human actively teaches an
object to a robot by using the principle of overt attention (the
object is presented within the visual field of the robot at a
close distance). On the robot’s behalf, our attention system
that uses depth information along with the Bottom-Up Visual
Attention Model is activated when a human teacher is found
within its field of view. This is when the robot knows that a
tutoring activity might take place. On the other hand, when a
human teacher is not present or when there is no object close
to the robot, only the Bottom-Up Visual Attention Model is
activated.

Another way to look at our approach is by considering depth
as an extra channel of the saliency map defined in the Bottom-
Up model, but using a binary weight applied to the depth
channel as described in Fig 5. This binary weight would be
0 when no human is present within the field of view of the
robot and 1 otherwise - this can be considered as top-down
influence of a human-detection. In other words, when a human
is present, depth pixels within the personal space of the robot
(if any) will be taken into consideration along with the pixels
of salient features (color, intensity, orientation, flicker, and
motion) of the Bottom-Up model. However, if no human is
present, only the salient features of the Bottom-Up model are
used to define attention location.

Fig. 5. Considering depth as an extra channel to saliency map defined in the
Bottom-Up model, but using a binary weight applied to the depth channel.

Designation Specification Usage

Intimate distance 0 - 0.45m Embracing or touching
Personal distance 0.45 - 1.20m Friends

Social distance 1.20 - 3.60m Acquaintances and strangers
Public distance >3.60m Public speaking

TABLE I
THE FOUR SPHERES OF PHYSICAL DISTANCE CORRESPONDING TO SOCIAL

DISTANCE ACCORDING TO HALL [23].

In order to be able to recognize a human teacher, we
used the built-in capabilities of our Kinect sensor through
the Software Development Kit freely provided by Microsoft
[24]. The main process of human body (pose) detection is
explained in detail in [18]. As a brief overview of their method,
the authors use a single depth image to accurately predict
3D positions of body joints by designing an intermediate
body parts representation that maps the difficult pose estima-
tion problem into a simpler per-pixel classification problem.
Subsequently, they use a ’dictionary’ of 3D pose proposals
and find the closest match. Finally, they generate confidence-
scored 3D proposals of several body joints by re-projecting
the classification result and finding local modes.

In our model, once the human teacher is recognized, the
depth-based attention is activated and the principle of depth-
based saliency is performed. In this principle, a particular
distance range is pre-defined and objects that appear within
that range are given attention priority over objects that appear
farther away from the robot even if they have stronger salient
features than the ones of the object within the pre-defined
distance range.

In order to define the most appropriate distance range for
attention focus, we looked into social robotics literature and
refer to the principle of proxemics — physical and psycholog-
ical distancing from others. According to Hall [23], the four
spheres of physical distance corresponding to social distance
can be defined as described in Table I.

We chose personal distance as the most appropriate range
for the tutoring activity, since objects within the intimate space
appear too close to the camera and too far in the social space.
The Kinect sensor has a depth distance limitation in which
the minimum detection distance is 0.45m. Therefore, for our
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Fig. 6. Proxemics - From the four spheres of physical distance, personal
distance was chosen as the most appropriate range for the tutoring activity.

Fig. 7. Depth-RGB graphic representation as perceived by robot when human
teacher demonstrates an object.

tutoring activity we defined the robot’s personal space from
0.45m to 1.20m, as seen in Fig 6.

Kinect sensor provides valuable depth data that can be
easily analyzed. Figure 7 shows a graphic representation of
the visual Depth-RGB combination in which a human teacher
is demonstrating an object to the robot. Our approach consists
in extracting the RGB information corresponding to the object
that appears within the personal distance range.

One way to detect objects within personal space is to
perform depth-based thresholding. This involves estimating the
depth value of each of the pixels that appear in the depth image
and labeling those pixels whose z-value (depth) appears within
the predefined distance range, as shown in Fig. 8 (d). Finally,
target depth value pixels conform a pixel region that serves
as a visual mask to the RGB input image to extract original
color pixels of the attended object as observed in Fig. 8 (c).

The architecture of our attention model is described in
Fig. 9. Our system integrates Bottom-Up Visual Attention
Model with depth information by receiving input RGB and
Depth images and use them to define whether a person is
present or not, and decide the attention location based on the
salient features of objects and object’s distance to the robot.

IV. EXPERIMENT AND EVALUATION

A. Experimental Setting and Task

This section presents the experiment carried out to validate
our attention model. The main objective of the experiment is
to compare the attention accuracy during a tutoring activity in
three cases: 1) using only the Bottom-Up Visual Attention
Model, 2) using only depth-based attention model, and 3)
using our model that combines both approaches.

The tutoring task consisted on a human volunteer presenting
two types of objects to the robot: 1) objects with salient
features (e.g. bright colors) and 2) objects with non-salient

Fig. 8. Visual representation of our Depth-Based Attention Model: (a) Input
RGB image, (b) Depth view - Human Detection, (c) Focus of Attention, (d)
Personal space view.

Fig. 9. Attention model that integrates Bottom-Up Visual Attention Model
with depth information in order to define focus of attention.

features. In total, six objects (3 salient and 3 non-salient)
shown in Fig. 10 were used in the experiment.

The experiment was performed in an ordinary room with
no special pre-arranged settings such as plain backgrounds. In
fact, our experimental setting contains cluttered background
and objects with salient features (i.e. lamp, monitor) that may
serve as distractors during the tutoring task.

The experiment was divided into two phases: 1) demonstrat-
ing objects with salient features and 2) demonstrating objects
with non-salient features. Fig. 11 shows actual experiment
images in which the volunteer holds the objects in front of
the robot. It can be noticed that non-salient feature objects are
difficult to distinguish from 2D image.

In each experimental phase, 3 tutoring tasks with corre-
sponding objects were performed. Each tutoring task lasted
10 seconds and consisted on the following actions:

1) Volunteer stood 1.2m∼1.5m distance from the robot (2
sec).

2) Volunteer performed object demonstration by presenting
the object within robot’s personal space (6 sec).

3) Volunteer finished demonstration and stepped out of
robot’s field of view (2 sec).

It is worth mentioning that volunteer was not previously
instructed how to perform object demonstration. Volunteer was
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Fig. 10. Experiment objects - upper: objects with salient features, lower:
objects with non-salient features.

Fig. 11. Phase 1: experiment using objects with salient features. Phase 2:
experiment using objects with non-salient features.

free to present the object by lifting the object to desired height,
holding the object with one or two hands, move the object in
front of the robot, or keep the object still.

B. Evaluation

In order to evaluate which aspects of the demonstration
were detected by the attention model, attention locations were
classified into four regions: object, tutor’s hand, tutor’s face,
and others (i.e., background objects). Figure 12 (c) shows
examples of the classification regions.

Region classification was performed for every frame by
examining the center region (20x20 pixel) of the attention
image obtained by each attention model. Figure 12 shows the
attention region result obtained by the Bottom-Up Attention
Model (a) and Depth-base attention model (b). Each center
region was classified as object or not depending on whether it
was the same color as the object (for salient objects) and by
visual inspection (for non-salient objects). Center regions with
skin color were categorized as face or hands. Face and hands
were then distinguished by the relative position in which hand
position is usually lower than the face.

Attention analysis was performed by comparing how often
the focus of attention was brought to object, tutor’s hand, face
or other, using salient and non-salient feature objects.

Fig. 12. Example attention regions detected by (a) Bottom-Up Attention
Model and (b) Depth-based Attention Model. (c) Classification of attended
locations.

Fig. 13. Results of experiment using objects with salient features. Note
that Bottom-Up attention model had a better accuracy in focusing on the
demonstrated object compared to the performance of the same model in
Fig. 14.

C. Results

Figures 13 and 14 present the proportion of attention of
both phases: 1) using salient feature objects and 2) using non-
salient feature objects. Each color bar represents the mean
proportion of the attention during the three tutoring tasks
using a particular type of object: Blue- using only Bottom-Up
Visual Attention Model based on Saliency, Red- Depth-based
attention model and Green- attention model that combines both
approaches.

In Fig. 13 it can be noticed that Bottom-Up attention
model had a better accuracy in focusing on the demonstrated
object compared to the performance of the same model in
Fig. 14. This was mainly due to the fact that salient-feature
objects were easier to detect as compared to non-salient feature
objects. An interesting point is that Bottom-Up model was
able to focus on the object for some short period of time even
with non-salient objects. This may be the result of the object
movement done by the volunteer during the demonstration.
Therefore, we can confirm that motionese is also a very
important factor that defines the visual focus of attention.

In Fig. 14, it can also be noticed that the Bottom-Up
attention model was highly distracted by the hand, face and
background. On the other hand, depth-based attention model
alone performed fairly well during the demonstration of salient
and non-salient feature objects. This result seems reasonable
since most of the times the object was demonstrated within
the robot’s pre-defined depth threshold distance. However, we
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Fig. 14. Results of experiment using objects with non-salient features. Note
that Bottom-Up attention model was highly distracted by the hand, face and
background. Depth-based attention model alone performed fairly well during
the demonstration of salient and non-salient feature objects. Our approach
that combines depth information along with the Bottom-Up Attention Model
represented by the green bar demonstrates higher attention accuracy located
in the demonstrated object.

can notice a small proportion of attention directed to the hands
of the volunteer that may have held the object with two hands
or with one hand covering part of the object.

Finally, our proposed attention model that uses depth infor-
mation along with the Bottom-Up Attention Model represented
by the green bar demonstrates higher attention accuracy lo-
cated in the demonstrated object. While the performance does
not differ too much from the depth based attention model, the
improvement may have been caused by using the Bottom-up
attention model to find the salient feature object even when
the volunteer did not present the object within the pre-defined
depth threshold distance.

V. CONCLUSION

In this paper we discussed the factors that have an important
effect in infants’ attention and the way these factors can be
taken into consideration to develop robot attention models that
simulate infants’ cognitive stimuli. We proposed an attention
model that uses depth information along with the Bottom-
Up Attention Model based on Saliency to increase attention
accuracy of objects during a tutoring task when a human tutor
is present. Our model can be used for robots to locate the focus
of attention in objects that are presented at a close distance,
even if objects do not have salient features. Experimental
results show that depth information plays an important role
for defining the focus of attention of systems that emulate the
cognitive development of infants.

VI. FUTURE WORK

In future work we will perform experiments with a richer
variety of objects, and we will compare saliency performance
across multiple volunteer tutors.
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Abstract—We describe a way of narrowing the search space
for descriptive keywords during a human-robot tutoring scenario,
where the tutor is explaining names and characteristics of objects
to the robot, by employing interaction detection techniques. This
system detects attention getting behaviour which is derived from
mother-infant interactions and extracts the verbal information
during these specific time periods, segmenting it and building
up histograms to estimate word frequencies and thus word
importance. This method should allow us to create a system
that does not rely on a dictionary or normal speech recognition
to acquire novel word-object relations but only relies on the pure
interaction between the robot and a human tutor.

I. INTRODUCTION

In human-robot interaction speech is an important way
of communication. To achieve a natural interaction between
a human and a robot we have followed the developmental
robotics approach [1] with the intend to create a model
for keyword acquisition gained from previous research on
adult-child interactions. We have previously studied preverbal
infants (6 to 8 months) in an interaction with their parents for
clues on how infants learn words (see [2], [3]).

Most speech acquisition approaches typically use a prede-
fined dictionary and a common speech recognition algorithm
or manual annotation, see for example [4], [5]. These methods
are well suited to their application and more or less accurate
in their results, however, we want to build a system that is
able to learn important keywords on its own. Such a system
should be capable of learning online, so we cannot rely on
manual annotation. In addition we want to build a system
that profits from the learning behaviour shown by preverbal
infants to prevent the need for predefined words which are
then recognized by the robot.

In this paper we will show a way of reducing the search
space for important words in a human-robot tutoring scenario
by emulating the behaviour of preverbal infants, thus trying to
achieve a tutoring behaviour in the human tutor which is, as
similar as possible, to the behaviour of a mother playing with
and teaching her child [6]. We will present a specific scenario
where the human tutor is teaching the robot some objects,
specifically their names, colours and shapes. We will try to
describe a way to encourage the tutor to use more descriptive
words (e.g. red, small etc.) than filler words (this, and, here
etc.). By this we hope to achieve a search space that allows
us to identify important words without knowing their meaning

Fig. 1. One of the participants explaining shapes and colours to the iCub
[9] robot. The shape explained is the blue sun inside of an ARToolKit [10]
marker for the object detection.

and thereby create a way of learning them with some kind of
unsupervised learning algorithm.

To recognize the situations where the tutor is more likely
to use keywords for the object description we will employ
a detector that relies purely on the interaction between the
tutor and the robot. Afterwards we will have to segment [7]
the recorded speech data and identify similar words [8] to
determine a word scale to find the most important ones.

II. ADULT-INFANT INTERACTION

The following section describes visual clues that allow us
to narrow down the keyword search space. All these clues
are derived from the interaction between a mother and her
preverbal infant (6 to 8 month) [6]. This is due to the fact
that we want to teach our robot novel-words in relation to an
object, therefore, we will have a look at how mothers teach
their infants such object-word relations. The preverbal infant
condition was chosen because we want to learn words that are
new for our robot (no internal dictionary), so we need to have
a look at infants that need very much assistance with their
language acquisition.

Ugur, E., Nagai, Y., Oztop, E., and Asada, M. (Eds) Proceedings of
Humanoids 2012 Workshop on Developmental Robotics: Can
developmental robotics yield human-like cognitive abilities?
November 29, 2012. Osaka, Japan
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A. Maternal Object Naming

As Matatyaho and Gogate describe in their paper [6] there is
a connection between the movement of the object and naming
it as a part of our natural behaviour in a mother-infant teaching
scenario.

Matatyaho and Gogate [6] state that preverbal infants learn
an object-word relation better if their mothers use attention
getting gestures like forward motions and shaking (or wag-
gling) while synchronously naming the object, compared to
infants where the mothers did not use such techniques. So
Matatyaho and Gogate [6] have shown that uni-modal (visual)
properties occur in combination with inter-modal (synchrony)
properties or maternal naming. As described above the mothers
used showing gestures like forward and shaking motions more
often in synchrony with naming the object than in asynchrony
(these findings are consistent with the field studies of Zukow-
Goldring [11], [12]). As a result of this Matatyaho and Gogate
[6] state that these gestures in synchrony with words are
naturally effective tools for conveying novel word-referent
relations because they likely elicit greater infant joint attention
and thereby facilitate the word mapping.

We hope to exploit this teaching technique for our human-
robot tutoring scenario by relying on the natural attention
getting behaviour of the human tutor. For this purpose we will
try to implement a behaviour for the robot that encourages
such attention getting gestures and hopefully synchronous
object naming, thus narrowing down the search space for
meaningful words without knowing what these words actually
mean.

B. Looming

As stated by Matatyaho and Gogate [6] mothers use forward
and upward/downward1 and shaking or waggling gestures as
attention getting movements. Since we do not care about
the position of the tutor in respect to the robot we ignore
the upward/downward movement which is combined with
the forward movement (Matatyaho and Gogate [6] collapsed
forward/downward movements into one because they often co-
occurred at the same time) but will just concentrate on the
forward movement itself. These forward movements which
intend to bring an object into the line of sight of the infant
(or robot in our case) are also called looming.

If we use this looming behaviour to narrow down our
search space, we are more likely to get meaningful information
as a result. As a logical consequence we disregard all the
other verbal information that is given during the non-looming
phases and just process the verbal information given during
the looming phases.

C. Robot Behaviour

To induce looming gestures we will have to design a
behaviour for our robot that shows some kind of reaction to
the looming itself. One way of giving such a feedback would
be gazing at the loomed object. This gaze switching to the

1Depending on the position of the tutor in respect to the infant.

Fig. 2. This figure illustrates the study setting where the human tutor and
the robot are placed on opposite sides of a table. The scene is captured by
two cameras one facing the human and one facing the robot. In addition we
need a Microsoft Kinect for the looming detection (see III-B), a webcam for
the object detector and a headset for the voice recording (not shown in this
figure). On top of the table is one of the cubes showing the blue arrow shape
inside an ARToolKit [10] marker for the object detection.

object and thereby creating a state of joint attention is one of
the main features that helps infants learn the relation between
the spoken word and the described object [6]. As a result the
obvious choice to reward looming would be the joint attention
to the object by looking at it. However, to encourage the tutor
to use as much looming as possible the robot has to reach a
habituation2 [13] state at some point during a looming gesture
and thereby loose interest in the object and show its lack of
attention by looking away (at random points for example).
This is supposed to trigger as much looming in the tutor as
possible, and thus help us gather more meaningful information
about the object, by being sensitive to the ostensive stimuli and
giving feedback about the capabilities of the robot and thereby
creating an environment where the robot is treated infant like
[3].

III. STUDY

After we have shown how a robot should react and behave
to facilitate the acquisition of meaningful data (see II-C) we
will now describe a related study which was carried out in the
italk project and conducted at the University of Hertfordshire
in the beginning of 2012.

A. Parameters

1) Set-Up: We observed 19 participants, which are native
English speakers, teaching the iCub robot [9]. The participants
were divided into 2 groups which differed in the behaviour the
robot showed. The first group was confronted with a random
gaze switching, non-responsive3 robot and the other half taught
a robot showing a behaviour according to the Tutor Spotter
[14]. The Tutor Spotter tries to create a contingent tutoring
environment by showing joint attention according to the gazing

2Our definition of habituation differs in the way that not repeated but
persistent stimulus triggers the habituation and after the stimulus vanishes
the system will immediately recover from said habituation.

3Less contingent, does not respond to gazing and looming behaviour of the
tutor.
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(a) Original signal of three
words in one utterance
recorded by a headset. Still
pretty noisy and distorted.
The boarders between the last
two words are not very clear.

(b) Signal from Figure (a) af-
ter passing through the pre-
emphasis and band-pass filter.
We can now even make out
the borders between all three
words.

Fig. 3. Original and filtered Input signal.

behaviour of the tutor [14]. Looming behaviour is rewarded
by pointing at the loomed object, thus trying to heighten the
joint attention.

The participants had to partake in 3 sessions which had
at least one day in between them. In the second and third
session the robot spoke back to the participant [15], but this is
only mentioned for the sake of completeness and will not be
important for our analysis since we will only regard the first
session.

2) Task: The task for the participants was to teach the robot
about different shapes, sizes and colours. As objects they were
given 3 different sized cubes (small, medium and large) with
different shapes (sun, heart, cross, circle, arrow and crescent
moon) in different colours (red, green and blue) on them.4

The participants were then advised to explain these 3 different
characteristics (sizes, colours, shapes) to the robot in any way
they like for about two minutes in each session. In Figure 1 we
can see one of the participants explaining the medium sized
cube with the blue sun shape facing towards the iCub [9] and
Figure 2 shows the general setting during the experiment.

B. Looming Detection
In Section II-B we defined what part of the interaction is

meant to help us distinguishing important from less important
words. To utilise this we have to detect the looming behaviour
of the tutor. We will not talk about the object detection since
the object tracker always has to fit to the specific problem5,
but will just focus on the hands to not go beyond the scope
of this paper.

We used a Microsoft Kinect camera (as seen in Figure 2)
to get a 3D image of the scenery and used the ability to
track the position of the hands in 3D space provided by the
OpenNI [16] framework. The only value we will observe is
the distance (z-coordinate) of the hands to the Kinect camera
which is placed behind the robot. These distances are the only
important informations for our looming detection since every
movement of bringing the object into the line of sight of the
robot includes a forward movement [6]. Our approach in the
mentioned study (see III) was to use just a fixed distance δ
which had to be undershot to trigger the looming detector:

L =

{
true if d < δ

false else
(1)

4On each side of the cubes was only one shape in one colour to make it
unambiguous which object is explained.

5We used a standard ARToolKit [10] marker tracker.

(a) (b) (c)

Fig. 4. The resulting signal segments after the automatic segmentation into
single words.

Where d is the current distance of the hand to the Kinect and
δ is the threshold for the looming detection which has to be
obtained by manual calibration and testing.

Now that we can detect looming behaviour we have to
record the voice during these parts of the experiment and
segment it into words [7].

IV. SEGMENTATION INTO WORDS

When recording sound we will always get some kind of
noise that is distorting the signal we want to process. We can of
course try to minimize that by using a headset or unidirectional
microphone arrays (in our case we used a headset to enhance
the audio track of one of the cameras) but, nevertheless, we
will always get some kind of background noise or distortion.
To get rid of almost all of the unwanted information in the
signal we used two algorithms of noise reduction as suggested
in the paper by Waheed et al. [7].

1) Pre-emphasis Filter: At first the incoming speech sig-
nal is preprocessed using a so called pre-emphasis filter:
y (n) = x (n)− α · x (n− 1) where n is a discrete time step
and x (n) is the corresponding value. The α represents the
pre-emphasis factor which usually is 0.95. The pre-emphasis
filter in general is used to reduce differences in power of
different components of the signal. In speech recognition the
pre-emphasis filter is used to “[. . . ]reduce the effects of the
glottal pulses and radiation impedance.” [7] and “It takes the
focus to the spectral properties of the vocal tract.” [7].

2) Band-Pass Filter: The second algorithm which is de-
signed to reduce low frequency background noise and remove
high frequency noise spikes [7] is a band-pass filter. This filter
basically consists of a high-pass filter and a low-pass filter. So
the band-pass filter passes through frequencies in between an
upper and a lower border.

A. Segmentation

To segment the signal we used an algorithm based on an
entropic contrast suggested by Waheed et al. [7]. After the
signal has been filtered (see IV-1, IV-2) it is divided into
windows of 1024 frames (at a signal frequency of 44100Hz)
with a 25% overlap which is then passed into a histogram
with 100 bins to determine the probability distribution for
that individual frame. The entropy of each of these indi-
vidual windows is then computed by the standard entropy
formula [7]: H = −

∑N
k=1 pk log2 pk. This gives us a list

of entropies which are used to construct the entropy profile
ξ = [H1H2 · · · Hm] with m total windows of 1024 frames
in the signal. From this entropy profile we can now choose a
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(a) Words said during whole session.

(b) Words said during looming phases.

Fig. 5. Two histograms of the 20 most said words during the first session of
the study. Both histograms are taken from the Tutor Spotter [14] condition.

biased threshold to “[. . . ]minimize excessive influence of the
background noise.” [7]:

γ =
max (ξ)−min (ξ)

2
+ µ ·min (ξ) (2)

The bias is defined by µ ·min (ξ) where µ > 0 and min (ξ)
represents the residual noise floor. After defining the threshold
we can consider every window with an entropy above the
threshold as speech and every window with an entropy below
the threshold as noise [7]. The problem with that assumption
is that in many cases non-speech data can be reported as
speech data due to artefacts. Also some valid speech data
may be ignored because of its physio-vocal characteristics. So
Waheed et al. [7] suggest two further criterions in addition to
the threshold to determine whether a segment contains speech
or not.

The first criterion is the size of the found speech segment
λi > κ where κ symbolizes the duration of the shortest
phoneme in the target language. Because, “Humans generally
do not produce very short duration sounds.” [7]. The second
criterion is the inter-segment distance dij between the seg-
ments i and j. This criterion is required because there can be
parts of speech that have been separated into two segments
due to its pronunciation [7]. So the criterion is dij < δ where
δ is the maximum inter-segment distance.

As our final distinguishing criterions to determine speech
segments we now have our threshold and if λi or λj > κ and
dij < δ the two segments i and j are merged and the space
in between will be considered part of the speech, too. On the
other hand if λi < κ and dij > δ, then the segment i will be
discarded and thereby considered noise.

The problem with this automatic segmentation algorithm
is that the algorithm will just find sentence boundaries or

Fig. 6. The scores for the histograms of the two different conditions for
the first session of the experiment. The histograms gained a point for every
keyword (14 keywords in total) that was listed first. So e.g. if blue turned up
first in the looming phase histogram then looming gained a point and vice
versa. Green: looming, yellow: whole session.

the shortest utterances if the speech is very continuous [7].
Since we are expecting one or two word sentences during the
looming phases we hope to achieve good results, nonetheless.

V. IDENTIFYING SIMILAR WORDS

To determine which words are most important for the object
description, and by that which words we have to learn, we
will need a way to make an assertion about which words are
similar to previously heard words. By that we can construct a
histogram of words and hope that the most used words are
the most descriptive ones. As one possibility to do so we
suggest an approach that is similar to the audio fingerprinting
algorithm introduced by Yan Ke et al. [8] which is used by
the music industry.

This approach was chosen because of its high reliability, the
insensibility to noise and the possibility to find single words
in longer utterances which compensates for the segmentation
where not all of the words can be segmented due to continuous
speech. This algorithm Fourier transforms the sound signal
and treats it as a 2D image. By that they try to “[. . . ]employ
geometric verification in conjunction with an EM-based occlu-
sion model to identify the song that is most consistent with the
observed signal.” [8]. These 2D images represent spectrograms
of the given signal and could be compared directly by using
correlation. This however would be too slow and inaccurate so
Yan Ke et al. [8] suggest to use a small set of filters that are
robust to small distortions and still give us enough information
to distinguish between two different signals. After viewing the
spectrogram images Yan Ke et al. [8] suggested that the filters
introduced by Viola and Jones [17] are most suitable for their
needs. To select a descriptive subset of these filters Yan Ke
et al. [8] use a pairwise boosting algorithm that differs from
the standard Adaboost [18], [19] in the fact that they only
re-weight pairs of filters instead of single filters since their
suggested weak classifiers cannot do better than chance on
their own. After creating this subset of filters they are used
to create a set of descriptors for overlapping windows of the
signal.

These descriptors are written to a file and stored in a
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Fig. 7. Tutor Spotter [14] condition: The difference in position for each
single keyword. Positive means the keyword moved up this number of ranks
in the histogram when comparing looming with the whole session. Negative
means the keyword moved down this number of ranks.

database and this database can then be queried using other
descriptor files. So we are now able to construct a histogram
of words (by running cross references) without knowing the
actual word itself but just knowing its number of occurrences
in the recorded signals.

VI. RESULTS

After we have seen how to construct a system that detects
the looming behaviour and builds histograms of the said words
we will go back and have a look at our study again (see III).

To show that it will be more likely to learn an important
keyword6 during a looming phase than during the whole ses-
sion we will employ a histogram based analysis as suggested
in Section V. For our analysis we just considered the first
session to prevent any kind of learning effect from falsifying
our results. In Figure 5 we can see two histograms which
resulted from the first session of all participants facing the
Tutor Spotter [14] condition. Figure 5b still shows that even
during the looming phases the most said word is a but the
amount is considerably smaller than during the whole session
as we can see in Figure 5a. We can also see from Figure 5
that the first 3 words are identical in regard to their position in
both histograms. The first real change is the 4th word which is
the for the whole session but blue for the looming phases. To
highlight this effect of keywords moving up the ranks in the
histogram we can have a look at Figure 6 which shows scores
depending on the position of the keywords in the histogram.
The higher the score the more keywords are mentioned first
in the related histogram. So the looming phases generate
histograms that contain more keywords on higher ranks than
the histogram over the whole session. The difference in ranks
which the keywords moved up or down to is pictured in Figure
7 and 8. In Figure 7 the rank difference is 20 which means
that we have a gain of 1.43 ranks per keywords on average. In
Figure 8 we have a rank gain of −19 which is dominated by
one outlier. If we disregard the outlier we achieve a rank gain

6Keywords used for this analysis are: red, green, blue, star, sun, moon,
arrow, circle, doughnut, cross, heart, small, medium and large.

Fig. 8. Non-Responsive condition: The difference in position for each single
keyword. Positive and negative values are defined as described in Figure 7.

of 30 which means an average rank gain of 2.31 per keyword.

VII. CONCLUSION

We have seen in the Results Section VI that we have
achieved to move the keywords up in the histogram if only
regarding the looming phases. This is the essential result if
we want to rely on these histograms to create a database
of words associated with one particular object. On the other
hand we have also seen that we still get a lot of filler
words that are meaningless for the object description. These
filler words will still have to be filtered out by running a
cross reference between the different objects like the Inverse
Document Frequency [20] algorithm. The presence of the
unwanted information may be explained by the experiment
design which was not built to induce looming behaviour in
particular but to evaluate the Tutor Spotter [14] (see VIII-2).
However, it still narrows down the search space, nonetheless.
Figure 6 shows that the Tutor Spotter [14] condition yielded
less keywords that moved up in rank than the Non-Responsive
condition. This could be due to the reason that the Tutor
Spotter [14] itself already creates a state of joint attention
triggered by the gazing behaviour of the tutor. Thus, it implies
higher cognitive function which results in less use of the
synchronous naming behaviour as implied by [6]. But there
still is a gain in ranks which we can see in the Results
Section (VI). The Non-Responsive condition tends to yield
better results because of the general inattention which induces
attention getting behaviour (see Figure 6 and 8).

This leads us to the conclusion that considering the looming
phases as a clue for meaningful keywords will narrow down
the search space and improve the possibility of finding key-
words at the top of the histogram if we use an experimental
set-up which is either inattentive and/or rewards looming.

In addition to the narrowed search space we gain an
unambiguous clue which object these keywords are describing
because, as Matatyaho and Gogate [6] state, the attention
getting gestures also help to highlight the object-word relation
by highlighting the object through movement. So we found
a way of combining meaningful words with objects without
knowing anything about the object or the word.
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VIII. FUTURE WORK

1) Looming Detection: The looming detection method we
used in the study (see III-B) is very robust concerning the
actual detection of looming but also very fragile in regard
to calibration and changing environments, e.g. a different
position of the tutor that brings him closer to the Kinect could
trigger the looming more easily. Due to this problem of exact
calibration and adaptability we will follow a new approach
of looming detection for future studies which relies on the
mean distance of the hands and the variance of that distance.
The idea behind this is that the hands (or at least one of the
hands) of the tutor will be in front of him while explaining
the object of interest. During the explanation phase the tutor
will create his own explanation space where he moves the
object about freely in his normal way of describing it. This so
called explanation space will be defined by the mean distance
over the time and a certain variance to compensate for normal
purposeless movement.

Looming will now be triggered if the tutor moves the object
in his hand out of the explanation space towards the robot
(Kinect). To create a more robust detection the hand has to
move towards the robot for a minimal distance of twice the
radius of the variance sphere. So we end up with the following
conditions:

L =

{
true if d < µ ∧ |d− µ| > σ · 2

false else
(3)

Where d is the current distance of the hand to the Kinect, µ
is the mean distance over time and σ is the standard deviation
which equals the square root of the variance

√
σ2.

With this method of detection we hope to achieve a more
natural looming detection and an easier experimental set-up
and are hopefully able to construct a system that induces
looming in a more robust fashion.

2) Future Studies: We believe that the presented study (III)
was not optimal to test the real abilities of our system since it
was designed to show the benefits of the Tutor Spotter [14],
and therefore hope to conduct a new study where we can test
an experimental set-up that is tailored to our needs with a
system that obeys the rules of creating joint attention when
looming is detected like stated in [6] (see Section II-C). We
hope to achieve better results and show a more significant
difference in rank gain for the desired keywords by doing so.

Also, our system was not implemented and running at the
actual study. So we hope to show that with a running system
during an experiment we can actually learn at least some
of these found keywords and associate them with the given
object.
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[4] T. Plötz and G. Fink, “Robust time-synchronous environmental adapta-
tion for continuous speech recognition systems,” in Proc. ICSLP, vol. 2.
Citeseer, 2002, pp. 1409–1412.

[5] G. Fink, “Developing hmm-based recognizers with esmeralda,” Lecture
notes in computer science, pp. 229–234, 1999.

[6] D. J. Matatyaho and L. J. Gogate, “Type of maternal object motion
during synchronous naming predicts psreverbal infants’ learning of
word-object rselations,” Infancy, no. 13:2, pp. 172–184, 2008.

[7] K. Waheed, K. Weaver, and F. Salam, “A robust algorithm for detecting
speech segments using an entropic contrast,” in Circuits and Systems,
2002. MWSCAS-2002. The 2002 45th Midwest Symposium on, vol. 3.
IEEE, 2002, pp. III–328.

[8] Y. Ke, D. Hoiem, and R. Sukthankar, “Computer vision for music
identification,” in CVPR (1), 2005, pp. 597–604.

[9] G. Metta, G. Sandini, D. Vernon, L. Natale, and F. Nori, “The icub hu-
manoid robot: an open platform for research in embodied cognition,” in
Proceedings of the 8th workshop on performance metrics for intelligent
systems. ACM, 2008, pp. 50–56.

[10] H. Kato and M. Billinghurst, “Marker tracking and hmd calibration for
a video-based augmented reality conferencing system,” in Proceedings
of the 2nd International Workshop on Augmented Reality (IWAR 99),
San Francisco, USA, Oct. 1999.

[11] P. Zukow-Goldring, “A social ecological realist approach to the emer-
gence of the lexicon: Educating attention to the amodal invariants in
gesture and speech.” Evolving explanations of development: Ecological
approaches to organism-environment systems, pp. 199–252, 1997.

[12] P. Zukow-Goldring and K. R. Ferko, “An ecological approach to the
emergence of the lexicon: Socializing attention,” Sociocultural ap-
proaches to language and literacy: An interactionist perspective, pp.
170–190, 1994.

[13] C. Rankin, T. Abrams, R. Barry, S. Bhatnagar, D. Clayton, J. Colombo,
G. Coppola, M. Geyer, D. Glanzman, S. Marsland et al., “Habituation
revisited: an updated and revised description of the behavioral charac-
teristics of habituation,” Neurobiology of learning and memory, vol. 92,
no. 2, p. 135, 2009.

[14] K. Lohan, K. Rohlfing, K. Pitsch, J. Saunders, H. Lehmann, C. Nehaniv,
K. Fischer, and B. Wrede, “Tutor spotter: Proposing a feature set and
evaluating system,” International Journal of Social Robotics, 2012.

[15] J. Saunders, H. Lehmann, F. Foerster, and C. Nehaniv, “Robot acquisi-
tion of lexical meaning - moving towards the two-word stage,” 2012.

[16] “Openni - the openni organization is an industry-led, not-for-profit
organization formed to certify and promote the compatibility and
interoperability of natural interaction (ni) devices, applications and
middleware.” [Online]. Available: http://openni.org

[17] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Computer Vision and Pattern Recognition, 2001.
CVPR 2001. Proceedings of the 2001 IEEE Computer Society Confer-
ence on, vol. 1. IEEE, 2001, pp. I–511.

[18] Y. Freund and R. Schapire, “Experiments with a new boosting algo-
rithm,” in Machine Learning-International Workshop then Conference.
Morgan Kaufmann Publishers, Inc., 1996, pp. 148–156.

[19] R. Schapire and Y. Singer, “Improved boosting algorithms using
confidence-rated predictions,” Machine learning, vol. 37, no. 3, pp. 297–
336, 1999.

[20] K. Church and W. Gale, “Inverse document frequency (idf): A measure
of deviations from poisson,” in Proceedings of the third workshop on
very large corpora, 1995, pp. 121–130.

25



Towards robots with teleological action and
language understanding

Britta Wrede and
Katharina Rohlfing

Citec
Bielefeld University

bwrede@techfak.uni-bielefeld.de
kjr@uni-bielefeld.de

Jochen Steil and
Sebastian Wrede

CoR-Lab
Bielefeld University
{swrede,jsteil@

cor-lab.uni-bielefeld.de}

Pierre-Yves Oudeyer
Flowers Team

INRIA, Bordeaux
pierre-yves.oudeyer@inria.fr

Jun Tani
Cognitive Neuro-Robotics Lab

KAIST
tani1216jp@gmail.com

Abstract—It is generally agreed upon that in order to achieve
generalizable learning capabilities of robots they need to be able
to acquire compositional structures - whether in language or
in action. However, in human development the capability to
perceive compositional structure only evolves at a later stage.
Before the capability to understand action and language in a
structured, compositional way arises, infants learn in a holistic
way which enables them to interact in a socially adequate way
with their social and physical environment even with very limited
understanding of the world, e.g. trying to take part in games
without knowing the exact rules. This capability endows them
with an action production advantage which elicits corrective
feedback from a tutor, thus reducing the search space of possible
action interpretations tremendously. In accordance with findings
from developmental psychology we argue that this holistic way is
in fact a teleological representation encoding a goal-directed per-
ception of actions facilitated through communicational frames.
This observation leads to a range of consequences which need to
be verfied and analysed in further research. Here, we discuss
two hypotheses how this can be made accessible for action
learning in robots: (1) We explore the idea that the teleological
approach allows some kind of highly reduced one shot learning
enabling the learner to perform a meaningful, although only
partially “correct” action which can then be further refined
through compositional approaches. (2) We discuss the possibility
to transfer the concept of “conversational frames” as recurring
interaction patterns to the action domain, thus facilitating to
understand the meaning of a new action. We conclude that
these capabilities need to be combined with more analytical
compositional learning methods in order to achieve human-like
learning performance.

I. INTRODUCTION

One prominent goal in robotics is to endow robots with
the capability of making sense of a situation. To achieve
this, a popular approach is to build systems that perceive
pieces of situation (objects, persons, their movements) first and
then to combine them for a bigger picture on this situation.
There is, however, increasing evidence in the developmental
literature that children have the bigger picture first before
they actually understand the individual pieces: Imagine a
toddler who is eager to participate in a game that the older
siblings are playing: S/he will not be able to understand every
move in this game, let alone the proper rules but (a) s/he is
definitely motivated to participate i.e. to act as the others do
and (b) s/he knows that this participation is about holding

some cards, having a turn with dicing and the ultimate goal
of receiving other cards. This toddler seems to have amazing
skills according to which s/he analyzes the situation instantly
and this enables her or him to produce a behavioral turn which
will provide the child with data and solicit positive or negative
input from the physical and/or social environment. This way,
learning within an interaction can be stimulated [1]. We know
from our previous research that disabled persons also draw
from similar capabilities to engage in an interaction even if
not every component is understandable [2].

Todays artificial cognitive systems lack the capabilities to
actively participate in an interaction on a very low level of
understanding having a very rough and preliminary idea of the
goal. But we know that without such capabilities an interaction
with a user cannot start or will break down soon when facing
unforeseen situations.

By teleological understanding we mean that a system can
apply pragmatic or contextual knowledge about the task or
goals. In contrast, by compositional understanding we mean
an approach that is already able to parse an action into its
components thus allowing for generalisation to new actions
and situations. In the action modality, Gergely and Csibra
(2003) [3] suggested that young children develop a teleological
understanding of actions that is based on a situational analysis.
Seeing a ball moving from one side to the other, one-year-
olds are sensitive to whether this ball is moving in a rational
way or not. A rational way is achieved when (1) the moving
of the ball brings about a future goal state, and (2) the
goal state is realized by the most rational action available to
the ball within the constraints of the situation ([3], p. 289).
Thus, a straight path that the ball takes from one side to a
particular place is better acceptable than a curved path. Such a
rationality assumption (ibid: 290) refers to the infants ability to
understand actions without attributing intentional mental states
to others. In the language modality, some scholars (e.g. [4], [5],
[6], [7]) acknowledged that children need to establish some
interaction protocols that provide a general pragmatic frame
for them to act appropriately without knowing every linguistic
detail. Social signals such as contingency and ostension ([8],
[3], [7], [9]) guide children towards understanding of such
frames and result in childrens ability to participate in an
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interaction, even though they might not understand every
detail of it. The term “frame”, thus, refers to a multi-modal
interaction structure that is already established. Fogel et al.
([5] p. 3) characterize frames as “regularly recurring patterns
of communication”. For example a “labeling-frame” consists
of looking at and pointing to an object and labeling it possibly
with an excited facial expression and an according intonation.
Thus, once the structure is established in recurrent interactions,
the only new element within it is the new label for a particular
objects - simplifying the understanding process tremendously.

II. TELEOLOGICAL ACTION

We understand teleology in the sense that a child (or a robot)
will pick up an element of the action (such as manner or
goal) to be important in his/her observation which will then
be applied for the action production. Although in the following
we make no explicit difference between action understanding
and production we are aware that a child (or robot) may be
able to understand the ”goal” of an observed action (either a
”manner” goal or a ”target position” goal), but may not be
able to reproduce this goal at this point. Also, the concrete
mechanisms underlying perception and production may be
different but at a higher level we do not exclude that a common
representation exists.

Developmental psychology provides evidence that young
infants are able to understand actions without decomposing
them. Rather, they seem to apply some sort of goal-oriented
interpretation enabling them to carry out an action in order to
achieve that goal - even if in the first attempts they do not
achieve the goal.

In our attempt to characterize a teleological action, we think
that two questions need to be separated: The first question
concerns the development of teleological reasoning, i.e. what
kind of representation of the goal is formed when experiencing
an action in a situation. Another question concerns how the
experience of several actions can contribute top-down to an
analysis of a new situation. We would like to exemplify
these questions on recent discussion about findings from
developmental studies. Gergely and colleagues [10] compared
childrens imitation abilities in two different conditions. More
specifically, children saw the experimenter switching on light
by pressing a button with his forehead. In one condition, the
experimenter had his hands put visibly free on a table. In
another condition, the experimenter seemed to be cold and
wrapped himself and his hands in a blanket. Children imitated
the action of switching the light on with the forehead in the
hands-free condition predominantly. The authors suggested
that it is due to a situational analysis that the children conduct:
In the hands-occupied condition, they might conclude that
while the experimenter chooses the most rational action of
pressing the button with his forehand (because his hands are
occupied), for the children, the most rational action would be
to press the button with their hands. Only in the condition,
in which the action of pressing the button with a forehand
seems to be a rational one, seem the children to imitate it.
Recently, however, this interpretation has been challenged by

a more low-level explanation. Conducting some controlling
conditions, in the study by Beisert et al. [11], the authors
found that children in the hands-occupied condition might
have been distracted by the unfamiliarity of the experimenters
appearance. Thus, it is not due to the fact that they judge an
action as rational or not. Instead, children seem to imitate in
cases, in which they have the cognitive resources to do so.
The unfamiliarity of the experimenter distracted the childrens
attention. Accordingly, only the goal (switching the light on)
was emulated, regardless of the means (the forehead). We
think that Beiserts findings actually perfectly fit with the idea
of a teleological action: Children perceive an action as goal-
directed, and depending on their cognitive resources they can
perceive (and/or produce) further details of how to achieve
the goal. If their resources are limited, they will choose to
reach the goal with an action they have in their repertoire. 1

This repertoire is built upon the childs experience (the second
question). Thus, teleological action understanding is about
formulating a quick behavioral plan and to further learn from
an interaction. However, we still know little about what action
experience leads to this repertoire (the first question).

A. Representation of Goals

How are goals represented and how are concepts of goals
formed? In accordance with Mandler [12] we believe that the
“goal” of an action is a concept inflicted upon the action by
the adult teacher who has already learned that it is helpful
to understand the world with respect to “goals”. Consider for
example a person moving an object from point A to point B.
What is the “goal” of this action? The goal could be for the
object to be in the final position B. However, the goal could
also be to simply remove the object from its current position A.
Yet another goal could be that the object needs to be moved in
order to change its state e.g. shaking to make snowflakes move
in the water as in a snowdome. There is an infinite number
of potential goals which an action may have. It is therefore
almost impossible to derive its goal (or meaning) from one
single observation. So how do infants learn the meaning or
goals of actions?

Mandler [12] argues that although young infants are already
able to produce predictions about ongoing actions and to
behave in a goal-oriented manner, the abstract concept of a
goal only forms later. Instead, she proposes basic conceptual
elements with which children might perceive a motion as
meaningful. More specifically, in the example outlined above,
infants will most likely perceive a START and an END of this
motion as meaningful units. It is still of question whether and

1However, note that the results of this experiment can not explain if the
infants did indeed not perceive the manner or if they were simply not able
to incorprate it in the computation of their behavior generation. One could
also argue that infants perform actions according to an optimality criterion,
i.e. to produce the action with the least effort possible which depends on the
manner. However, if the cognitive load is too high the infant may not be able
to take a different manner (i.e. using the head) into account but rather chooses
the manner that is generally accompanied with the least effort (i.e. using the
hands).
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how these units can be learned or are innate concepts that the
children are equipped with.

Following this line of argumentation, we believe that in
a very early representation of action the goal will not be
explicitly represented. Rather, physical effects that occur in
the scene during the action can be noticed and represented.
Thus, in order to derive the invariant ”goal” of an action the
learner needs to look out for effects that always occur with
this action. We elaborate later on how such potentially goal-
bearing, meaningful effects may be perceived. 2

B. Teleological processing

We assume that infants separate between goal and manner
and - if under cognitive load - are only capable of reproducing
one aspect (e.g. only the goal, not the manner). While at first
sight this may appear as a disadvantage or compensation strat-
egy it might well be that this resource-boundedness actually
helps the infant to learn more efficiently, as it produces an
action that is partially “correct” and also partially “wrong”.
This will provoke the tutor (or the physical environment) to
give the learner a corrective feedback e.g. by pointing out the
missing parts (or by reinforcing the achieved part). This is
what we understand as the “Action production advantage”.

III. ACTION FRAMES

When compared to similar findings in language, for action
learning, the scholars have just begun to acknowledge the
value of recurrent structures and how their recognition might
facilitate action understanding. While in language learning,
“frames” refer to an established interaction structure that is
based on regularly recurring patterns of communication, in
action learning the value of recognizing the recurrent structure
is implicit to the assumption of a rational action. In other
words, one can assume that infants will consider a movement
as rational if they recognize it as a familiar movement within
a particular situational configuration. We think that this aspect
needs to be more recognized: The memory of events is the
basis against which we perceive and predict actions. However,
to date, we know little about how young infants remember
structural properties of the motion stream [13] - yet this
capability of making sense of actions seems to be basic [12].
Loucks et al. [13] (p. 233) suggest that “as people take action
to carry out their object-directed intentions, certain physical
and temporal properties predictably coalesce within the motion
stream [] The time course of this sequences gives the con-
catenation of elements a ballistic quality, with characteristics
acceleration and deceleration parameters”. However, we need
more evidence in developmental studies of how children’s
memory allow to form such elements.

2Another issue related to this is the question how the learner knows that
this is the same action as before, especially if some aspects have changed.
We argue that it is the communicative frame - be it verbally by specifying a
label e.g. “Look, I shake it.” or be it non-verbally by providing a repetition
frame e.g. through prosody - that indicates whether the new action is the
same or a different one. In the latter case it is likely that we find some kind
of contrastive marker, indicating what it is that is different from the previous
action (e.g. “Look, now I don’t shake it - see, there are no snowflakes if you
move it carefully”.

These insights strongly suggest that we need to endow
artificial systems with the capability to memorise and recog-
nise recurrent structures. How the recognition of recurrent
structures is integrated with the learning system we do not
know. But we speculate that there is an intimate relationship
especially in the (frequent) cases where a structure is only
partially known and the unknown part needs to be learned
and associated with meaning.

How can actions or the situation provide a recurrent struc-
ture that help the learner to better understand a new action?
This may have different dimensions. One recurring cue may
be the structure of a situation: consider for example a situation
where only one agent is present (be it in the form of an agent
toy such as a teddy bear or in the form of a real agent e.g.
the tutor) but no manipulatable object in his/her reach. This
is a frame indicating that an intransitive action has to happen,
where the movement of the agent him/herself is of relevance.
However, if there is an object present, a transitive action can
be expected, where the important thing will happen to the
object. A different dimension of action frames might be related
to the structure of actions itself: consider for example the
process of manipulating an object. This will always involve a
sequence of reaching, grasping, manipulating. From this one
might condense the restriction, imposed by physics, that in
order to manipulate an object it needs first to be grasped.
A more sophisticated notion of such an action structure has
been explored and formalised by Pastra & Aloimonos [14].
Although we can formulate hypotheses on how actions and
situations may frame actions and thus render them more
understandable, these hypotheses need to be carefully tested
in experiments with infants.

IV. FAST LEARNING

How can we achieve the capability in an artificial system
to learn some meaningful part of an action based on only
one first observation? We argue that it needs to be capable
of perceiving some sort of physically observable effect of the
action which it will try to imitate (or emulate) based on its
existing experience.

A. Goal identification

One bottom-up way for the learner to infer or detect the
(potential) goal of an action is to identify recurring features in
repeated action demonstrations. From a modeling perspective
it is reasonable to assume that bottom-up biases exist that help
the learner to identify goal-relevant features such as:

• Goal-position of manipulated object (the standard “goal-
directed” action where the spatial goal matters e.g. when
putting a cup on a saucer, or opening of a bottle where
the goal is that the cap is away from the bottle)

• Source-position of manipulated object (e.g. move the
object away)

• Orientation of manipulated object (e.g. turning an object
upside-down)

• Movement itself (e.g. shaking leading to movement of
snowflakes)
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• Visibility of manipulated object (e.g. a cup that “van-
ishes” when nested in another cup)

• Form of manipulated object (e.g. open vs closed;
scrunched; folded vs unfolded; )

• Sound (on vs off; intensity; frequency)
• Social reaction of a person (e.g. smiling, waving, nod-

ding, speaking,)
A further consideration then concerns the process how such

features may be observed. Again, we propose very basic
strategies, such as:

• Detection of physical effects (for goal identification)
• Detection of deviations from “normal”, that is highly

frequent, patterns (e.g. a normal trajectory might be a
straight one between two points in space, if the trajectory
is deviating from this by a cyclic shaking pattern this
will be noticed and interpreted as important) (for manner
identification)

In order to produce the identified goal (which might be
wrong) the system will choose the most frequent means it
knows in order to achieve this goal (which might be wrong
as well) (note that in contrast, Csibra & Gergeley [3] argue
that infants follow a rationality principle: it is most rational
to move from A to B in a straight line instead of taking a
deviation; it is most rational to push a button with the hands
instead of the head). Instead, here we argue for a frequency
effect. For example:

Goal Means
Position of object Movement with hand in a direct line to B
Orientation of object Grasp object with one hand and turn it

with the other hand
Visability of object Movement with hand towards larger

object in environment

B. Carry out action
In order to achieve the action production advantage we need

a system that is capable of carrying out an action regardless
of its current learning state. This invites to concentrate on
movements and actions that are relevant to engage in inter-
action and facilitate communication with a tutor on the one
hand and which can be applied to a wide range of situations
on the other hand. This early repertoire of action shall rely
on minimal requirements for internal modeling and rather
have the form of direct sensory-motor patterns that are easy
to learn and to explore. An example are pointing gestures
with the arm, which reference directions and can initiate and
maintain much interaction, but need not be sophisticated in
exactly referencing a particular object e.g. with an extended
finger. Such elementary actions can easily be learned without
representing exact positions in space and without an explicit
kinematic model of the body in a holistic fashion [15]. This
means also that there is a mechanism allowing the system
to take part in an interaction e.g. by taking into account
minimal turn-taking rules. The challenge is to devise respective
simple but behavioral meaningful and flexible sensori-motor
representions of such elementary actions that can further be
specified and differentiated as development progresses.

C. Develop compositional structure

A further desideratum accrueing from these considerations
is the capability of the learning architecture to switch between
teleological and compositional learning. While the system
needs to be able to build an initial structure of an action
it then needs to apply the emerged structure towards new
incoming action demonstrations and parse them accordingly.
This does not necessarily need to happen in an explicit way.
It is possible that depending on the current representation
different processing takes place implicitly.

V. COMPARISON OF COMPOSITIONAL AND TELEOLOGICAL
LEARNING

Why is teleological learning not only beneficial but even
necessary? Why shouldn’t a learning system start with com-
positional learning? By teleological learning we mean a pro-
cess that exploits the production advante through continuous
engagement in interaction frames and which progresses from
teleological behavior to more differentiated (compositional)
perception, situated action and situation understanding. We
argue that it is the use of pragmatic and action frames that
help the learner to bootstrap an initial action representation
and to tie observed new cues to a meaning-frame, i.e. some
kind of category that helps the learner to better understand.
Such categories may be syntactic categories such as objects,
verbs or adjectives or they may be semantic categories such
as agent or patient.

We further argue that the teleological approach may achieve
one-shot learning resulting in a partially correct action repre-
sentation by focussing its resources on one single aspect of the
action. This way the complexity of decomposing an observed
action in all its parts and potential meanings is highly reduced.

The predominant approach in movement learning towards
motor skills and complex actions currently is compositional.
It considers movement primitives in low dimensional task
spaces, i.e. elementary movement patterns that can be either
goal directed [16], [17], [18] or oscillatory [19]. The respective
learning methods have developed sophisticated schemes to rep-
resent and generalize the manner by encoding the movement in
dynamical systems that follow learned transients towards goals
and can even model the relevance of the manner according
to demonstrations through probability based methods [20],
[18]. These primitives are assumed to form the basic building
blocks of a later to be composed complex action, however,
this very process of composition is hardly considered and
taken for granted. In practice the composition is far from
easy to achieve [21] and typically employs very heuristic
schemes [22] or needs in itself sophisticated modeling ap-
proaches [23]. The transformation from task spaces into the
motor domain is solved model-based through standard inverse
kinematics. Movement primitive based methods need to be
complemented by approaches to segment complex actions into
basic primitives, which is also far from easy e.g. using NMF
[24] or sequential primitives ([25], or taking into account the
already learned primitives [26]. On the other hand, it has been
shown that neural networks (e.g. MTRNNs [27]) are capable
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of evolving a structure that allows to learn action primitives
and their sequencing in the same neural structure.

This compositional approach can neither explain how in
the course of development the coordination of motor function
comes about, which needs to orchestrate a highly complex
body in extremly high dimensional motor spaces. Nor does is
offer any route to interaction and communication and thereby
mostly ignores the behaviroal function of the action, as was
recently observed also in [28]. More recently, first learning
approaches to directly tackle the coordination problem in high
dimensions towards complex sensory-motor behavior have
been very successful [29], [30], [31], [32] motivated by the
observation that infants also perform reaching movements
from the very beginning [33]. While impressive, these ap-
proaches share the feature that they need a set of “goals”
to drive learning, i.e. in motor coordination tasks a number
of spatial positions to reach. These appraoches provide some
means to follow a more behavior and goal oriented, i.e. a more
teleological approach to action learning.

Fig. 1 illustrates this restriction: in the example the target
position is specified (‘B’) whereas the other potential goals
(source, manner, form) of the action are not specified in the
sense that they can take any value (‘*’). Although this is
generally not represented in an explicit way, it is often encoded
implicitly in the learning algorithm which, for example, does
not allow to switch between different types of goals.

B	   *	  

Target	  
Posi,on	  

Source	  
Posi,on	  

Manner	   Form	  

*	   *	  

Fig. 1. Implicit structure underlying compositional learning approaches: each
entry needs to be specified, generally only one entry is specified explicitly
while the others are specified implicitly through the learning algorithm.

In contrast, in the teleological approach the learner would
simply select (based on which strategy ever) one “goal” and
try to carry it out with the easiest or most frequent means it has
at its disposal (cf. Fig. 2. If this turns out to be unsuccessful
– which can be tested through interaction with the tutor –
the hypothesis can be refined or corrected according to the
feedback. Also, new constraints can be added if necessary.

In short, what is needed is an approach that facilitates the
acquisition of structure, i.e. the discovery that in an action not
only the end position matters but also the way in which it
is demonstrated or or executed and that constraints may exist
that modulate the action such as obstacles.

Based on the structure that teleological learning has thus
achieved, compositional learning strategies can be applied.

B	  

Target	  
Posi,on	  

Manner	  

?	   .	  .	  .	  

Fig. 2. Structure underlying teleological learning approaches: only one entry
needs to be specified in order to enable the system to carry out the action.
This yields in a corrective feedback of the tutor which can immediately be
added to the teleological representation.

Note, that this is a circular relationship: at every point in time it
must be possible to extend the “filled” compositional structure
by a teleological approach.

VI. CONCLUSION

We have argued that infants follow a teleological action
learning approach which is characterised by the ability to
assign some sort of meaning to an observed action (which
may be wrong) facilitated through conversational and action
frames and the ability to imitate part of the action (possibly
leading to the non-achievement of the goal).

This perspective on action and language learning has a
range of consequences when considered as a basis for robotic
learning approaches which need to be explored in future in
order to better understand their functions. In this paper we have
explored two potential consequences: (1) Communicational
and action frames allow the learner to make use of recurrent
structures, be they syntactic, semantic or pragmatic, in order
to assign meaning to a newly encountered entity. Especially
the concept of action frames is largely unexplored, although
first attempts exist [14]. Further research needs to tackle the
question how such action frames look like in more detail
and how they can be exploited for learning. (2) Through the
capability to extract only one part (e.g. only manner or only
goal) from a single action demonstrationg and to reproduce it
by means of extrapolation from previous experience the learner
builds an action concept in an incremental way, by eliciting
feedback of the tutor and thus gaining specifically tailored
information to increase his/her action concept.

Both capabilities have not yet been shown by existing com-
positional approaches but might be achieved through different
applications. We argue that in order to achieve a system that
is able to learn new actions from the very first steps towards a
level of expertise based on existing capabilities a combination
of teleological and compositional approaches is needed.
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Abstract—We develop through continuous interactions with the
world, learning from our experiences of successes as well as our
failures. Neurological understanding of the involved mechanisms
is beginning to emerge to a level where they can be validated
on robots functioning in the real world. For instances: 1) the
Anterior Cingulate Cortex “ACC” has shown to contribute to
Cognitive control by modulating the error-related signals for
both positive as well as negative past experiences, thus, acting as
an early warning system “EWS”. The notion of Vigilance helps
formulate such a mechanism in the manner we learn and develop,
thus the way we make decisions. 2) the Orbitofrontal Cortex
“OFC” is said to play a role in the way we learn by representing
the effective value of reinforcements, thus, regulating decision-
making and expectation. These neural mechanisms play an
underpinning role in Cognitive Development. In this paper, we
show that computational models of these mechanisms have been
realized on a robot that can acquire and develop new skills (e.g.
walking, throwing).

I. INTRODUCTION

The notion of “cognition” aims to capture the capability of
mental activities of human beings for abstracted information
from real world. It refers furthermore to their representation
and storage in memory. It includes various mental processes
like perception, attention, reasoning, learning, recognition, de-
cision, as well as task coordination. All cognitive models have
in general the same objective, analyze how human think, rea-
son, remember, perceive, and learn. By studying the behavioral
consequences of the brain, cognitive neuroscience promises to
delineate the connections between the brain anatomy and the
functionality of the human mind that is studied in cognitive
psychology.

The research on cognitive neuroscience adds a biologically-
inspired intelligent dimension into robotics research. In con-
trast to traditional robotics control, which focuses on program-
ming robots to solve one specific task in one environment
(sense-act, sense-act, sense-act, ...), cognitive robotics control
aims to generate intelligence and adaptive behaviors based on
animal or human thinking and learning processes (sense-learn-
predict-act, sense-learn-predict-act,...).

To be considered as a human partner, human-like robots
and human interactive robots should be provided with so-
phisticated cognitive systems based on open-ended learning
toward cognitive developmental robotics. Learning can be con-
sidered to be open-ended if it handles tasks that are unknown
or even not well-defined previously [1]. Nevertheless, the

OFC

Task 1 , Task 2, ..... Task n

PatternsTask
Evaluation

Biological Inspiration

ACC

Walking Throwing

Fig. 1: The conceptual overview of our work. (“ACC” is the
Interior Cingulate Cortex; “OFC” is the OrbitoFrontal Cortex.)

learning mechanisms based on fitness function minimization
are limited to solve such tasks. Human develops and learns
in open-ended way across its lifespan. A human child can
learn tasks that he never did before, this can be referred to
the mental and physical development. Traditional robots can
percept and act only with the external environment, while
robot based cognition can be intrinsically motivated by the
internal environment, therefore, it can percept and act with
the external and the internal environment to reach an intrinsic
motivation (e.g. search for missing knowledge in the word-
model and trigger a learning process when needed.) [2].

Human learns tasks from their own experiences by self-
exploration and observation of others’ actions. The evaluation
of the achieved task is driven by rewards. Human can improve
their skills in order to gain more rewards. Neurobiological
studies suggest that the orbitofrontal cortex (OFC) is related
to reward dealing in the human brain [3]. Neurons of OFC are
the key reward structure of the brain, where reward is coded
in an adaptive and flexible way [4].

By observing its cortical activities, studies of the Anterior
Cingulate Cortex (ACC) suggest that it is responsible to avoid

Ugur, E., Nagai, Y., Oztop, E., and Asada, M. (Eds) Proceedings of 
Humanoids 2012 Workshop on Developmental Robotics: Can 
developmental robotics yield human-like cognitive abilities? 
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repeating mistakes [5]. This cortical area acts as an early
warning system (EWS) that adjusts the behavior to avoid
dangerous situations. It responds not only to the sources of
errors (external error feedback), but also to earliest sources of
error information available (internal error detection) [6]. EWS
has shown to be affected by the tolerant to risks, psychological
studies provide further evidences of people’s strategies into
two classes as in taking or aversion risks [7]. A Developmental
study of risky decisions suggests that risk taking behavior is
related to human age and development [8].

“NeuroRobotics” research draw on human learning methods
in order to improve the autonomy and the robustness of robots
for their dealing with environment changes. In connection with
these neurological studies, we proposed a learning method
based on human learning from experiences (ACC) and inspired
by the way the human brain code rewards (OFC), in order to
allow a humanoid robot to learn a walking task. With the
vigilance threshold concept that represents the tolerance to
risk, the method guaranteed the balance between exploration
and exploitation. Most task learning methods based on reward
use predefined parameters in their reward function [9], [10],
which cannot be obtained without previous experiences to
achieve the desired task. Learning based adaptive reward don’t
require any previous information about the reward, it is able
to build the experience only based on the reward available
information after starting from scratch.

Our approach has been implemented on the NAO humanoid
robot, controlled by a bio-inspired neural controller based on
a central pattern generator “CPG” [11], [12], see Figure. 1.
The learning system adapts three intrinsic parameters in the
CPG (the frequency of oscillation, and the motor neuron gain
in pitch and roll) in order to walk on flat and sloped terrains.

II. NEUROPSYCHOLOGICAL INSPIRATION

A. ACC contribution in Cognitive Control

The ACC and neighbouring areas are involved in control-
ling and monitoring goal-direct-behavior to avoid repeating
mistakes. Brown and Braver develop a computational model
that shows how ACC not only detects errors, it may predict
error likelihood before the error occurs [5]. The ACC is
activated proportionally to the observed likelihood of the
error. The error-likelihood hypothesis assumes the training
signal that affects the ACC is acquired and dopaminergic.
The phasic suppression of dopamine, which drives the error-
related negativity (ERN) [13], [14], may play the role of a
training signal that make ACC activation stronger for contexts
with more frequent error. As a result of FMRI observation
of subjects’ ACC, the ACC cells learn to respond with more
activation for cues with high error likelihood. The results
suggest that the ACC is involved in cognitive control through
its risk-related cortical activity.

B. OFC contribution in Motivational Control

The primate orbitofrontal cortex (OFC) is involved in the
motivational control of goal-directed behaviour [15]. It has
an essential role in controlling and correcting reward-related

and punishment-related behaviour [16]. The neurons of OFC
are involved in the processing of motivational values of
voluntary action rewards. OFC neurons increase their activities
during the expectation of reward and after receiving it [15].
Subjects select more frequently rewards when they have to
chose between different rewards at the same time, however,
such frequently rewards can be ignored when more delectable
rewards become available. It seems that motivational values
are not fixed to defined rewards, unlike physical properties.
The reward discrimination in some OFC neurons is based on
the relative preference rather than the physical properties [15].

C. OFC-ACC Connectivity During Decision-Making

Many neuroscience research study the primate brain regions
involved in decision-making and other neurobiological mech-
anisms [17], [18]. The challenge was not only to detecting
the brain regions that exhibit significantly during such mech-
anisms, but also to understand how different brain regions
interact between each other. Cohen et al. designed a FMRI
study that separates experimentally the neural activity related
high-risk and low-risk choosing from other processes such as
reward anticipation and evaluation during the general frame-
work of decision making [17]. They showed that choosing
high-risk over low-risk decision was related with increased
activity in both ACC and OFC. It seems that OFC carries
on reward associations for stimulus [19], and ACC contains
mechanisms that control the selection of appropriate behaviors
[20]. According to [17], no ACC activities were observed
during low risk decision, while both ACC and OFC show a
high activation when subjects made high-risk. However, this
study was not able to distinguish whether ACC activation are
related with small chance of a large reward or large chance
of a failure. ACC and OFC exhibited similar patterns for
activation and time courses and distinct patterns of functional
connectivity. This suggests that they may play different and
complementary roles in decision making [17].

D. Risk Taking Behavior

Psychological studies show the probability of sampling with
experience based learning in human is reduced with poor
past outcomes [21], [22]. They show how adaptive sampling
could lead to risk-averse as well as risk-seeking behaviors.
Risk tendency may change according to the distribution of
the uncertain alternatives and the information about foregone
payoffs. Denrell et al. assume that the decision maker mostly
samples the ambiguous substitution if its estimated value is
positive. However, it explores eventually substitution with
negative estimated value [21]. Erev and Barron have shown
the role of adaptive sampling in modeling risk taking behavior
for systems where decision is based on experience [23].

Based on previous studies in learning from mistakes, coding
reward, and adaptive sampling for risk taking modulation; we
introduce a learning mechanism that is able to learn and to
evaluate humanoid tasks and to optimize its performance.
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III. SUCCESS-FAILURE LEARNING

The objective of this learning mechanism is to adapt pa-
rameters of a low-level controller and to detect their domain
of viability. We designated by Ω the state space of those
influential parameters. The mechanism must be able to learn
from negative feedback (failure) and positive feedback (suc-
cess). Therefore it must have experience of success and other
experience of failure in the state space Ω. As each action vector
−→v from Ω leads to either success or failure, the mechanism
will evaluate whether this vector belongs to a success case
or to a failure case. The decision mechanism “go” or “no-
go” described in [24] works as an early warning system
similar to that in the Anterior Cingulate Cortex [5], [25]. The
learning architecture is then based on these two mechanisms
and works as shown in Fig.2.

Fig. 2: Success-Failure Learning mechanism with evaluation
and decision phases.

We have proposed previously a preliminary model for
success-failure mechanism [26].

A. Evaluation Phase
To represent the knowledge in success and in failure, we

define two independent neural networks that are well-known
Self Organizing Maps (SOM), proposed by Kohonen [27].
Success map Sm learns in case of success trials, and failure
map Fm learns in case of failure trials. During the learning,
the two maps will be self-organized in the state space that will
be therefore divided into three zones: 1) a zone of success
represented by success map; 2) a zone of failure represented
by failure map; and 3) a zone of conflict that corresponds
to the overlapping between the two maps. The evaluation of
any vector −→v from space Ω belonging to success or failure is
defined by the distance between −→v and each map. The distance
of a vector with a map is the minimal Euclidean norm between
this vector and the closest neuron’s weights vector in the state
space (the winning neuron). For each −→v we have therefore
two distances: one to Sm called ds, and another to Fm called
df . ds and df are then used for the decision process.

B. Decision mechanism
For a vector −→v , the comparison between the distance with

success map ds and the distance with failure map df leads to

an expected result in the case where the vector was passed to
the low level controller (trial). According to expected results,
if it may lead to failure, then an Early Warning Signal (EWS)
becomes active to avoid the passing into the lower level, and
the decision will be “no-go”. When EWS is inactive the
decision is “go”. The decision mechanism is affected by the
threshold of vigilance svig .

C. Vigilance-Related Development
Psychological research studies suggest that some people

are more tolerant to risk than others who are more cautious
[28][29][30]. The vigilance is related to human learning in
connection with decision making [31]. In the standard psy-
chological assessment of risk taking, people are classed as
risk seeking or risk averse [7].

Through the observation of particular areas located in
cerebral cortex in the brain responsible for cognitive control,
neuropsychological studies demonstrated a switching in hu-
man learning strategies around the age of twelve years. This
switch from learning with positive feedback to learning with
negative feedback probably comes from the combination of
brain maturing and experience[8].

In our study for robot tasks learning by success and failure
maps, we introduced the concept of vigilance in order to
control the learning process in the two maps (success and
failure) and manage the learning cycle while avoiding or
taking risks according to the system’s needs. The vigilance
is represented by a threshold svig that is used to adjust the
early warning signal in the decision mechanism. This threshold
describes the tolerance of risk.

In our previous work, the vigilance threshold was modulated
according to the number of trials [32], see Figure 3. The
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Fig. 3: Vigilance Model related to learning iterations, y1 ≤
svig ≤ y2. The risk behavior will change from prudence at
the beginning of learning to adventure at the end [32].

vigilance was modulated to change the risk behavior from
prudence at the beginning of learning to adventure at the end.
An example of vigilance threshold modulation is given as
following (see Fig.3):

y1 ≤ svig ≤ y2
{
y1 = a1 − b1 ∗ log((x+ c1)2)
y2 = a2 − b2 ∗ log((x+ c2)2)

(1)

The coefficients values are (a1 = 0.9, a2 = 1.47, b1 = b2 =
0.15, c1 = c2 = 20) and were chosen after several attempts.
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y1 and y2 chosen curves ensure smooth change between the
prudence and adventure above mentioned behaviors.

Vigilance modulation is an important approach that can
drive the open end learning, it can be modulated in oppo-
site way, start with taking risk then switch to risk avoiding
behavior.

However, vigilance can be also modulated according to the
distribution of the uncertain alternatives. In the next section,
the vigilance threshold was adapted to drive the sampling
process in the way that ensures success and failure maps learn
and converge together.

D. Reward Coding

Most reinforcement learning based robotic walking studies
use predefined constants to determine the maximum and the
minimum reward or to determine the multiplier factors [9],
[10]. Reward coding is a way that qualifies succeeded trials
differently according to an optimized criterion. Each trial
will have its own weighted reward representing the objective
criterion to be optimized. During each learning step, neurons
will get closer to trials with high rewards rather than to trials
with low rewards. If the optimized criterion was the efficiency
of learned task, the minimum value of the reward related mul-
tiplication factor rmin matches the trial with lowest efficiency.
While the maximum value of the reward related multiplication
factor rmin matches the trial with highest efficiency. This
matching is done in adaptive way during the learning process,
see Figure 4.

s 

ws 

Δws 

v 

Ω 

Success 
Map 

wr Δwr 

rmin 
rmax 

r 

Fig. 4: Success map adaptation. r is a reward-related mul-
tiplication factor. rmin and rmax are the minimum and the
maximum values for the multiplication factor.

After enough numbers of trials, this will result in a shift of
the map into a spatial area associated with the highest rewards.

By introducing the concept of adaptive coding of reward
it will be possible to scale the quality of a trial according to

the quality in previous experiences even when starting from
scratch. After learning, the optimal parameter is presented by
the success map neuron that is close to the trial with maximum
reward in training set.

The general diagram of the success-failure learning is pre-
sented in Figure 5.

START 

Initialize success and failure maps  

Test the end of learning 
condition 

Select a vector randomly 
from the state space 

Evaluation:  
Calculate the distance 

of this vector with 
each map  

Decision: 
(go/no-go) 

Make a trial on the 
robot 

no-go 

Is the outcome 
Positive? 

Add the vector to 
the failure training 
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Learn failure map 

go 

No 
Add the vector and 
his quality (amount 

of reward) to the 
success training set 

Learn success map 

Calculate the reward  
 for success training set 

Yes 

No 

Yes 

Vigilance Modulation 

END 

Fig. 5: Flow diagram for success-failure learning.

IV. LEARNING WITH ADAPTATION

We apply the learning mechanism proposed in the previous
sections in order to learn efficient walking for a bipedal
humanoid robot, NAO. We used success-failure learning to
learn in a space of intrinsic parameters of the CPG controller
(the frequency of oscillation, and the motor neuron gain in
pitch and roll), the basic CPG model is presented in [32].
The optimization of walking efficiency was studied in term of
energy as in [33]. The efficiency with which a muscle operates
is defined in [33] by

efficiency =
mechanical work done

metabolic energy consumed
(2)

This study is also generalized from a muscle to whole body
movements like walking, and running [34], [35]. With inspi-
ration from biomechanical studies, the efficiency of walking
for a humanoid robot can be described in a similar fashion.
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Our objective is to simultaneously learn and optimize walk-
ing with success-failure on-line learning. The robot learns to
walk a 1.5[m] trajectory with start and end lines. In case of
succeeded trials, the trainer sends a reward signal to the robot
by caressing the head equipped with electrostatic sensors. The
walking efficiency is calculated for each trial as:

η =
Ek

Ee
(3)

Where Ek is the kinetic energy of a trial, Ee is the required
electric energy for the entire trajectory.

The introduction of the efficiency for success map learning
will shift the neurons of this map into the area in which
the walking efficiency is high. Figure 6 shows the reward
coding for success map in the beginning of learning (after
four successful trials), and at the end of learning. Each sphere
corresponds to a succeeded trial whose diameter represents the
reward of this trial in the success map. The interest of using
this technique is to make success-failure learning search for
new trials in the space area where walking efficiency in term of
energy is high. In other words, this leads to learn and optimize
in a defined space. Figure 7 shows success maps after learning
to walk on flat terrain with and without the technique of reward
coding adaptively. In Figure 7(a), the success map learns all
successful trials with the same opportunity, i.e. with the same
reward. In Figure 7(b), the success map learns successful
trials in accordance with their adaptive rewards. Trials with
high reward influence success map neurons more than trials
with low reward. Therefore, the success map will be attracted
to the area where reward is high. This is influenced by the
differences between highest and lowest rewards (scaling range
limits: [rmin, rmax]). In this study, rmin and rmax are set to
0.1 and 2.5.
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(a) Learning with same reward.
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(b) Learning with adaptive reward
coding.

Fig. 7: The effect of reward coding on success map. Success
map after learning with the same reward for all successful
trials (a). Success map after learning with adaptive reward
coding (b). Gray spots represent successful trials reward. Note
that the map on the right moves into the area where rewards
are high (representing high efficiency).

Regarding the learning frameworks with and without the
application of reward coding adaptively shown in Figure 7,

performance was increased by 60%. This was calculated by
the ratio of the highest efficiencies matched by neurons of both
success maps. The ratio of the lowest efficiency of the neurons
of success maps has increased by 40%. In order to provide
sufficient precision in the network for our task, we have
empirically selected a 5×5×5 dimensional network space to
represent the success and failure maps. Learning occurred with
500 trials for each case.Computationally, all the processing of
this learning framework in simulations as well as on the real
robot can be performed in real-time, thus making our approach
feasible for training on the real robot. Within the same cycle,
joint angle commands are calculated in real-time and sent to
joint motor circuit boards of NAO every 10[ms]. This is done
inside a high priority thread on the robot. Physically each
trial requires about 3 minutes, which includes learning and the
experimental set up. A complete learning session in the robot
usually takes about one week. Both Learning frameworks
shown in Figure 7 start from scratch.Adaptive sampling driven
by vigilance threshold ensures to have the same size of training
sets to learn success map and failure map.(A video shows
NAO humanoid robot achieving the walking task is available
on: http://web.ics.ei.tum.de/∼nassour/naowalking.wmv.)

V. CONCLUSION

This paper has brought several ideas from different bodies
of research. Research in machine learning, neuroscience, psy-
chology, and robotics are involved in cognitive development.
Understandings within human brain research help provide
human-like learning mechanisms that can be implemented
on robots. Our neurologically grounded learning framework
imitates part of the functionality of the anterior cingulated cor-
tex involved in learning from mistakes, and the orbitofrontal
cortex involved in reward coding adaptively. This Success-
Failure learning cycle forms an important part of our cognitive
development architecture in order for robots to learn and
acquire different physical and mental skills.

In this paper, we showed how vigilance is modulated
differently as our robot develops over time under different con-
ditions during decision making. These vigilance modulations
can be said to play an important role throughout a lifetime of
human as well as robot developments.
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Forming Goal-directed Memory for Cognitive Development

Erhard Wieser and Gordon Cheng

Keywords: embodied representation, meaningful associa-
tion, coaching

I. INTRODUCTION

A. The Challenge of Skill Acquisition

Cognitive development [1] gives rise to the major challenge
of skill acquisition, i.e., the learning of a new physical skill
for object manipulation. This learning is very difficult because
the system designer cannot specify a priori all the necessary
robot actions depending on the latest states of objects and
environmental conditions. Even slightly different environments
or facing new objects lead to an undesirable re–programming
of the action programs of the robot.

B. Related Work

At the perceptual level, approaches to skill acquisition
are imitation learning and coaching. Researchers created an
imitation learning system [2], [3] controlling a humanoid
robotic hand. Their imitation system learns hand postures by
observing the hand of a human with a camera. Their imitation
system uses a higher order Hopfield network (HHOP) as the
main mechanism. In [3], Chaminade et al. showed that the
HHOP was able to generalize between the learned patterns to
a limited extent, i.e., it could generate a few new gestures
correctly even though they were not trained a priori. On
the way from the perceptual level to motor control, system
designers have to deal with object manipulation. In embodied
cognition, objects are represented by sensorimotor patterns to
reduce the symbol grounding problem [4]. Wörgötter et al.
introduced their concept of object–action complexes [5] to
describe possible actions, which a robot can perform on a
given object.

C. Our approach

Our long term goal is the creation of a new cognitive
architecture for skill acquisition. A cognitive architecture [6] is
fundamental to any intelligent robot. In this paper, we present
a first part of our future architecture. That part is based on
our idea of meaningful associations. So far, a meaningful
association is the link between a given percept, a learned
goal state, and a corresponding action leading to that goal
state, similar to the concept of object–action complexes. But
at a later developmental stage, a meaningful association also
includes cross links to abstract values (good or bad percepts
/ actions) and memories, which bias the current actions of
the robot. For these associations, we do not provide a priori
symbolic knowledge at all, instead we put the emphasis on

Institute for Cognitive Systems, Technische Universität München,
Karlstrasse 45/II, 80333, München, Germany, Email: see
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the close interaction between the robot, its local sorrounding,
and its human coach. A human coach shows the robot these
meaningful associations by giving tactile feedback. Through
continuous interaction with objects and a coach, the robot
increases the amount of such associations, representing an
increase of knowledge. Knowledge is internally stored by
forming goal–directed memory contents. So far, these contents
ground themselves in associations between sensorimotor and
neural patterns, representing percepts, goals, and goal–directed
actions (later, also values). Our approach has the potential
to exploit many cross–modal associations, e.g., visual, tactile,
which can in turn bias the behaviour of the robot in a useful
manner. Therefore, we developed the foundations [2], [3] in
the following ways:
As a part of our cognitive architecture, we created a perception
system with goal–directed memory to trigger goal–directed
physical actions of the robot (a Humanoid Robot NAO).
Our perception system processes latest visual data, enables
visual servoing, and influences the behaviour of a robot by
using previous experiences stored in an episodic memory
module. The episodic memory is implemented by Hopfield
networks. First, in contrast to [2] and [3], we extend the feature
space of the Hopfield networks in order to capture not only
simple shapes, but also basic colours. Second, we combine
the memory output with a pattern associator, in order to link a
recalled percept to a learned goal state. This goal state can in
turn trigger a corresponding goal–directed action of the robot
resulting into a new percept.

II. SYSTEM DESCRIPTION

A functional diagram of our perception system with goal–
directed memory is depicted in Fig. 1. The sensor modalities
of our system are vision and tactile feedback. However, the
main modality is vision using any colour camera built into a
robot. Tactile feedback only initiates the storage of the latest
percept into the episodic memory. We implemented several
fields of simple receptive cells, each responsive to certain
visual features, such as shape, contour, and colour. Currently,
we use four types of simple receptive cells, so called simple
retina cells, as well as higher level receptive cells. Simple
receptive cells are sensitive to shape and contour, mainly of
objects in the foreground, and to each of the basic colours red,
green, and blue. Each of these cells corresponds to a bipolar
neuron, i.e., it fires (activation value +1) when a certain feature
is present, or it does not fire (activation value −1) when the
feature is absent. A higher level receptive cell is only active,
when both a shape cell and a corresponding colour cell are
active at the same time. We implemented a simple, but robust
and flexible visual servoing module, which directs the head
of the robot towards an object of interest. Our visual servoing
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Fig. 1. Our perception system with goal–directed memory, depicted in
functional diagram 1(a). Simple receptive cells emulate bio–inspired vision.
Visual servoing directs the head of the robot to an object of interest, e.g., a
green cup. A human coach guides the learning by giving tactile feedback, see
fig. 1(b). Tactile feedback activates the storage of visual patterns through the
episodic memory. The percept–goal associator links a recalled visual pattern to
a goal, which in turn triggers goal–directed actions of the robot. Goal–directed
actions are realized by sensorimotor modules. During an executed action, the
system is in a closed loop with its environment, and open to new (recalled)
percepts and tactile feedback. These can influence the executed action at any
time.

module moves the robot head, so that the object is in the
middle of the field of view of its camera. Here, an important
aspect is to note that at this stage, our perception system does
not regard an object as an object. Our overall system will
bootstrap this skill of higher level categorization at a later
developmental stage, after enough interactions between the
robot and environment have occurred. The activation signals
from the simple as well as higher level receptive cells run
into the episodic memory module. The storage of percepts
is triggered by tactile reinforcement on the robot through a
human coach. The episodic memory uses either the classic
Hopfield network [7], or the higher order Hopfield network
(HHOP) presented in [2], [3]. The drawback of the HHOP is
its huge need of computer memory (given N neurons, then
N3 weights need to be saved, compared to N2 weights in
a classic Hopfield net). However, the advantage of HHOP is
its limited ability to generalize to new patterns based on the
already learned ones [3]. The episodic memory recalls a known
visual pattern, e.g., of an object the robot has experienced
before. The percept–goal associator links an abstract goal (e.g.,
lift the object up) to that recalled visual pattern by using a
feedforward neural network. The goal state is represented by
a neural pattern, which self–emerges through the interaction

with a human coach. In sum, once the robot sees an already
known object, our perception system recalls a visual pattern
representing that object. The recalled visual pattern is in turn
associated with a suitable goal (affordance, e.g., lift the object
up) enabling the robot to initiate action programs leading to
that goal.

III. RESULTS

Our perception system is a part of our new cognitive
architecture and is still an ongoing project. The simple and
higher level receptive cells as well as the visual servoing
module are fully implemented. So far we focused only on that
part of the episodic memory, which responds to shape and
contour. Within that part, we compared the classic Hopfield
and higher order Hopfield network (HHOP) performance. We
validated that the classic Hopfield network as well as the
HHOP are not sufficient for usage as an episodic memory
for a cognitive architecture when only the feature of shape
and contour is considered. This is due to the consideration of
only one feature (shape respectively contour) on the one hand,
and to memory interferences on the other hand. We showed
that the addition of colour features enhanced their performance
by increasing the dimensionality of the overall stored pattern.
Like Chaminade et al. [3], we observed that new patterns
emerged within the higher order Hopfield network, which were
not stored previously. All the implemented modules of our
system run successfully on a NAO robot according to the
descriptions in part II.

IV. CONCLUSION

We presented a perception system with goal–directed me-
mory forming an important part of our cognitive architecture.
Our perception system uses basic visual features and relies on
tactile feedback given by a human coach to create meaning-
ful associations between percepts and goals triggering goal–
directed actions.
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Goal Babbling: a New Concept for
Early Sensorimotor Exploration

Matthias Rolf, Jochen J. Steil

I. COORDINATION PROBLEMS

The human body possesses more than 600 skeletal mus-
cles [1]. Performing purposeful actions to achieve some be-
havioral goal requires a high degree of coordination of these
many degrees of freedom. Yet, human infants are born without
the most basic coordination skills like reaching for an object
[2], which poses the learning of sensorimotor coordination as
a fundamental problem in human development. Understanding
this ability to learn, and utilizing it for modern robotics
systems is one of the major goals of the research fields of
cognitive [3] and developmental robotics [4], [5].

We investigate the learning of reaching skills as an exem-
plary coordination skill. The problem of reaching is to find
motor commands (e.g. joint angles of a robot arm) that move
the hand, or the robot’s end-effector towards some desired
position in space. Thereby motor commands q and outcomes
x are connected by a causal relation which is denoted as
the forward function f(q) = x. Learning needs to invert
this relation in order achieve some desired outcome x∗. This
problem setup is not only illustrative, but very prototypical for
other coordination problems: it asks the very general question
of how to achieve some behavioral goals by means of actions.
The skill of reaching itself is also fundamental for both robots
and humans, since the positioning in space is necessary for
any use of the robot’s gripper or the human’s hand.

Successful reaching skills can be well understood with the
notion of internal models [6], [7], whereas forward models
predict the outcome of an action and inverse models suggest
actions in order to achieve a desired outcome. The boot-
strapping of internal models without explicit prior-knowledge
requires experience that has to be generated by exploration.
Machine learning approaches thereby traditionally rely on
an exhaustive exploration of all possible motor commands,
frequently generated by means of an entire random procedure,
which is referred to as “motor babbling” [8], [9]. After the data
generation phase, learning and coordination can be phrased in
a variety of ways [10], [11], [12]. Yet, exhaustive exploration
can not be achieved on high-dimensional motor systems such
as the human body, modern humanoid robots, or biomimetic
robots like elephant trunks. The sheer number of combinations
of commands for different actuators is too large to be explored
in the lifetime of any learning agent. Understanding human
motor development, as well as the successful application of
future robotic systems like the Bionic Handling Assistant (see
Fig. 3), demands for concepts and methods that succeed in
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sensorimotor learning even without fully exploring the space
of possible motor commands.

II. INFANT DEVELOPMENT

The standard models for the learning of coordination skills
demand either an exhaustive exploration of all actions [8],
[10], [9], [11], [12], or prior knowledge about the action space
and forward function [13], [14], [15]. Therefore the acquisition
of the coordination skill is divided into separate stages of
(random) exploration, learning, and exploitation of the learned
mechanisms. However, exhaustive exploration does neither
provide an explanation of infant’s efficiency in sensorimotor
development, nor does it provide a feasible approach for
artificial agents to learn in high-dimensional domains.

Nevertheless, the generation of random actions by means
of motor babbling has been repeatedly motivated [16], [8],
[17] by Piaget’s view on infant development [18]. Piaget
suggested that development is organized in distinct stages and
that, at first, infants do not perform purposeful actions. “The
implication of [Piaget’s] proposal is that the early behavior of
the neonate is essentially random and insensitive to contextual
information. Recent research suggests that some re-thinking
of this extreme position is necessary” [19]. Contrary to Pi-
aget’s suggestions, and the random motor babbling approach,
infant developmental studies over the last three decades have
found conclusive evidence for coordinated behavior even in
newborns. Examples include orienting towards sounds [20],
tracking of visual targets [21], and apparent reflexes that have
been re-discovered as goal-directed actions [22], [23]. “These
behaviors are fragile and inconsistent, which explains why they
were overlooked for quite some time” [19].

In the case of reaching, it has been shown that newborns
attempt goal-directed movements already few days after birth
[24], [25]. Von Hofsten showed that, when salient objects
are in the visual field, infants produce more arm movements
towards that object, than movements away from it. This
indicates a strong role of “learning by doing” instead of
random exploration and that infants learn to reach by trying
to reach: “Before infants master reaching, they spend hours
and hours trying to get the hand to an object in spite of the
fact that they will fail, at least to begin with” [26]. From a
machine learning point of view, these findings motivate to
devise methods that closely intertwine exploration, learning,
and exploitation, instead of organizing these aspects in distinct
and subsequent stages.

Findings of early goal-directed actions are complemented by
studies investigating the structure of infants’ reaching attempts
over the course of development. When infants perform the first

Ugur, E., Nagai, Y., Oztop, E., and Asada, M. (Eds) Proceedings of 
Humanoids 2012 Workshop on Developmental Robotics: Can 
developmental robotics yield human-like cognitive abilities? 
November 29, 2012. Osaka, Japan

40



successful reaching movements around the age of four months,
these movements are controlled in an entire feedforward
manner [27], [28]. This strongly indicates the use of an inverse
model for motor control, which selects one solution and
applies it without corrections. The importance of feedforward
control does not diminish over the course of development,
which is well known from prism-glass experiments [29], but
the skill is later on augmented by mechanisms that allow for
more adaptive movements and error corrections by means of
visual feedback [30]. Moreover, the earliest reaching move-
ments are rather jerky and suboptimal in the sense that the
distribution and timing of muscular forces is more complicated
than actually necessary [31], [2], [32].

In short, infants appear to follow a very efficient pathway,
on which one initial solution is learned, and directly used for
goal-directed behavior. Only later on these movements are
gradually optimized and become more adaptive. While this
pathway is very intuitive, it is orthogonal to the motor-babbling
approach which first attempts to gather full knowledge about
the sensorimotor space, from which particular solutions can
be derived afterwards.

III. A NEW CONCEPT: GOAL BABBLING

The general idea that connects early goal-directed move-
ments and initial feedforward control is to take redundancy as
an opportunity to reduce the demand for exploration, instead of
a burden that has to be dealt with. If there are multiple ways
to achieve some behavioral goal, there is no inherent need
to know all of them. Of course, this requires an exploration
mechanism that can generate relevant training data without
exhaustive exploration. Our main hypothesis is that infants’
early goal-directed movements do not only reflect an early
exploitation of knowledge, but that they constitute the very
mechanism to generate that knowledge by exploration, and
therefore enable an efficient learning of valid solutions for the
coordination problem. Consequently, our main research goal
concerns the general mechanism of goal-directed exploration:

Research goal 1: Conceptualize and understand
early goal-directed movements as mechanism for the
bootstrapping of coordination skills.

As a basis for this investigation, we have introduced the notion
of “goal babbling” [33]:

Definition: Goal babbling is the bootstrapping of
a coordination skill by repetitively trying to accom-
plish multiple goals related to that skill.

A central aspect is, of course, trying to accomplish goals,
which corresponds to infants’ attempts to perform goal-
directed movements. Several other aspects of this definition
need to be highlighted in order to distinguish this concept from
other approaches: Goal babbling aims at the bootstrapping of
coordination skills such that a skill can be learned without
prior knowledge, or non-goal-directed prior exploration. Goal
babbling defines this as a repeated process, which implies that
the skill acquisition is incremental and ongoing, as opposed
to stage-like organizations of exploration and learning [8],
[9]. Goal babbling applies to domains with multiple related
goals. For reaching problems this is naturally given by a

Learning

Exploration

(a) Uninformed motor babbling

Learning

Exploration

Perturbations Home Posture

Positive feedback loop
Gain: learning rateAdapt

Generalize

(b) Goal babbling

Fig. 1. In contrast to uninformed exploration processes like motor babbling,
exploration and learning mutually inform each other in goal babbling. This
organization constitutes a positive feedback-loop during bootstrapping which
substantially accelerates learning.

continuous space of possible hand positions. This exploration
across multiple goals stands in contrast to typical scenarios in
reinforcement learning, in which only a single desired behavior
is considered [34]. Given this research goal and the definition
of goal babbling, we address several conceptual questions:

• Is goal babbling possible at all, and what are the mech-
anisms necessary to enable it?

• Does it actually permit a bootstrapping that is scalable
to high dimensions?

• What are observable characteristics of such a bootstrap-
ping process?

IV. APPROACH AND RESULTS

Goal babbling does not refer to a particular algorithm,
but to a concept that can be methodically investigated by
various means. A recent approach that is compatible with
the concept of goal babbling has been introduced in [35].
Baranes’ model attempts to learn a partial forward model.
In this scenario, goal-directed movements are performed by
analytically inverting the iteratively learned forward model and
performing conventional feedback control. Goal babbling then
generates a distribution of actions that lies in the typical regime
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Fig. 2. Goal babbling scales to very high-dimensional problems, as shown
by the only marginal increase of exploratory cost for reaching with between
m=2 and m=50 degrees of freedom.

Fig. 3. Goal babbling allows to efficiently learn reaching with the Bionic
Handling Assistant. The feedforward control with an inverse model allows to
cope with intense sensory noise and delays.

of the feedback controller when trying to reach for goals, such
that not the entire action space needs to be explored.

In contrast to Baranes’ model, we investigate the learning of
inverse models by means of goal babbling, and therefore focus
on learning the coordination skill directly, without relying
on analytical inversion mechanisms. This approach resembles
infants’ developmental pathway, which serves as an example
of efficiency, by acquiring at first one valid solution that can
be used for feedforward control. Learning inverse models in
high-dimensional, redundant domains has, so far, only been
possible with error-based mechanisms [13], [14] that use
prior knowledge in order to generate a learning signal. The
demand for a bootstrapping mechanism clearly disqualifies
error-based methods due to their inherent need for prior knowl-
edge. Instead, we focus on learning from autonomously self-
generated examples. Learning inverse models from examples
was believed to be impossible due to the non-convex solution
sets in non-linear redundant domains [14]. Consequently, the
second research goal concerns this methodological aspect:

Research goal 2: Enable the learning of inverse
models from examples in non-linear and redundant
domains.

Finding an exploration scheme that can realize this goal clearly
needs to cope with non-convex solution sets. Previous studies
have only shown how to deal with non-convexity locally, either
by reformulating the problem into a differential one [10], or by
using prior knowledge to start learning from a well-initialized
state [36]. We show that goal babbling provides an elegant
account [33] for this long-standing problem, and demonstrate
an algorithm that can utilize goals as reference structure in
order to resolve possibly inconsistent solutions. However, non-
convexity is not the only problem to deal with. While non-
convexity makes it difficult to handle multiple solutions for
the same outcome, the initial problem is to find at least one
correct solution to realize the desired outcomes and, hence, to
invert the causal relation of the forward function in a reliable
manner. This inversion of causality is a general problem for
exploration schemes, since the direction x → q can not be
directly queried within coordination problems. Random motor
babbling can theoretically solve the problem because it simply
explores all actions, such that the necessary ones are also
explored. This, however, is practically not feasible in high-
dimensional domains. The inversion of causality has a distinct
characteristic in goal-directed exploration schemes which tend
to get stuck in only partial solutions of the coordination
problem [37], [38], [39], in which only a subset of goals can be
successfully reached. The general pattern to solve that problem
is to introduce exploratory noise into the process [40], [36].
We show novel results for a mathematical theory of example-
based learning of inverse models, and provide a proof [41]
that goal babbling succeeds in linear domains.

Given a goal babbling method that can learn inverse mod-
els from examples, the consequential goal is to practically
prove the success and usefulness of goal babbling in high-
dimensional domains:

Research goal 3: Devise a practical algorithm for
goal babbling that is scalable, fast, and applicable in
real-world scenarios.

We demonstrate an online goal babbling algorithm [42] and
show that the method does indeed permit enormous scalability
(see Fig. 2). This can be achieved because goal-directed
exploration allows to leave out redundant choices of actions
as soon as there are known ways that solve the problem. The
experiments point out that goal babbling constitutes a positive
feedback loop during bootstrapping, in which exploration and
learning reinforce each other. This positive feedback loop is
identified as an important conceptual property of goal babbling
that is in line with the dynamic systems perspective [43] on de-
velopment. Experiments demonstrate that it allows to achieve
human-level [44] learning speed. We finally demonstrate the
practical use of the approach to learn the inverse kinematics of
the Bionic Handling Assistant (see Fig. 3), which is a relevant
and very challenging use case [45].

The results demonstrate the theoretical as well as practical
validity of our algorithmic approach. It thereby provides a
coherent and constructive explanation of how infants’ early
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goal-directed movements might lead to their rapid initial
mastery of feedforward-controlled reaching movements. Other
implementations of goal babbling have recently been pro-
posed, and confirm the success of goal babbling, as well as
its superiority over motor babbling in terms of bootstrapping
efficiency [46], [47], [48]. These results also demonstrate the
general validity of the goal babbling concept, which provides
a new framework to foster research on infant development as
well as robotic systems.
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I. INTRODUCTION

Converging developmental studies have emphasized the
significance experience within the uterine environment from as
early as the fetal period for motor and cognitive development
[1]. Notably, these studies have emphasized the importance
of sensory feedback due to spontaneous movements for early
development. It is therefore important to reveal how the fetus’
interaction with the uterine environment guides its develop-
ment in order to deepen our understanding of the underlying
mechanisms for development.

Among all sensory experiences within the uterine environ-
ment, the somatosensory modality plays a central role in early
development. In fact, this modality starts functioning over the
whole body from as early as the 17th gestational age, before
other sensory modalities [2].

Several researchers have suggested the importance of sen-
sory stimulation generated by spontaneous fetal movements for
the formation of the body map in the primary somatosensory
area (S1) [3]. However, there are few studies on the mecha-
nisms of how the S1 map is generated and what components
shape its organization.

In this paper, we argue that uterine environment contributes
to the guidance of the formation of somatosensory represen-
tations. We investigated the relationship between the uterine
environment and the organization of S1 shaped by sensory
information gathered via interaction with the environment.

II. MATERIALS AND METHODS

We ran computer simulations of human fetus models within
and outside uterine environment. This fetus model have bi-
ologically plausible musculoskeletal bodies, a spinal neural
network and a primary somatosensory area.

A. Body Model and Environment Model

We used human fetus models, which undergo 30 gestational
weeks [4] [5] (Fig.1). The model had parameters based on
actual fetus data such as size, mass, moment of inertia of
each body part, joint angle limits, muscle configuration and
force. The human fetus models had 198 muscles in the whole
body excluding the finger and face muscles, and 1500 tactile
sensor cells, whose distribution was based on human two point
discrimination (Fig.1B, Table.I). To simulate tactile sensation,
we used the Merkel cell model. Merkel cells are mechanore-
ceptors which mainly detect continuous pressure. The Merkel

30weeks
1211g
198 muscles

fetus model

1500 tactiles

A

B

Fig. 1. Fetus model overview. (A) Fetus model appearance and fetus data.
Blue circle represents uterus and white and red circles represent tactile sensors.
Red one is responsing tactile. (B) Tactile distribution on the fetus model.

TABLE I
THE DISTRIBUTUION OF TACTILE SENSORS ON THE

FETUS MODEL’S LEFT SIDE.

head neck shoulder upper arm lower arm
377 7 14 16 14

hand chest stomach hip thigh calf foot
132 34 48 22 24 15 47

cell model used in this simulation detected continuous pressure
by low-pass filtering the pressure input (< 50 Hz) [6].

Inside the uterus, pressure inputs to the fetus come from its
embryonic and fetal environments. We used the amniotic fluid
and uterine wall models produced by Mori and Kuniyoshi [4].
In our simulations, pressure inputs could be due to (1) physical
contact, (2) the uterine wall, and (3) amniotic fluid resistance.
Pressure due to physical contact between body parts was
distributed according to the tactile sensors distance from the
colliding body part. Pressure due to the uterine membrane
depends on the sensor’s distance from the center of the uterus
and as well as its orientation. Pressure due to amniotic fluid
resistance is calculated by taking the inner product of the
velocity of the body part and directional unit vector of the
tactile sensor. Outside the uterus, the fetus model was only
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subject to pressure due to physical contact between body parts
and the ground.

B. Motion Generation Model

The neural basis for fetal spontaneous whole-body move-
ments is believed to be Central Pattern Generators (CPGs),
which are circuits mediating rhythmic behaviors such as
walking and swimming in the spinal cord or brain stem [7].
We employed the spinobulbar model developed by Kuniyoshi
and Sangawa [8], which includes a CPG model for generating
various whole-body movements. This model receives muscle
length and tension as sensory input, and outputs the degree of
muscle activation as motor command.

C. Somatorsensory Area Model

S1 has a somatotopic representation of the body, which
largely presents the spatial organization of body parts [9].
Similar cortical representations are observed in other primary
sensory areas such as the primary auditory cortex (A1) and the
primary visual cortex (V1). Recently, Terashima and Okada
suggested that A1 and V1 cortical representations can be
explained by the common neural network model [10]. We
applied the neural network model, Topographic Independent
Component Analysis (TICA), to simulate the organization of
the somatosensory map [11].

TICA takes the sensory inputs from tactile sensors and
not only extracts the independent components using Inde-
pendent Components Analysis (ICA), but also constructs a
two-dimensional map in such a way that adjacent elements in
the map have similar sensory representations. In other words,
TICA is a variant of ICA in which the output is a sparse
and topographically organized representation of the sensory
inputs. To construct a two-dimensional map of m elements, an
independent components vector st = [s1t, · · · , sjt, · · · , smt]

T

is calculated as

st = Wxt, (1)

where xt is the vector of sensory inputs from tactile sensors,
and W is the weight matrix. The weight matrix W =
[w1, · · · ,wm]T is estimated using the gradient method, which
maximizes the likelihood function L for the observed time
series of tactile information xt. The likelihood function L is
formulated as follows:

cit =
∑
j

h(i, j) s2jt, (2)

logL(x1, · · · ,xn; w1, · · · ,wm) =
n∑

t=1

m∑
i=1

G(cit), (3)

where h(i, j) is binary filter function for selecting the elements
that neighbor i-th components on topography. This filter makes
sure that adjacent elements in the final map have similar
weight vectors, allowing the map to have a topographical
organization. G(cit) denotes the probability density function
of cit, which we defined as:

G(cit) = log p(cit) = −
√
0.005 + cit. (4)

color key

outside uterus

(white rate = 22 %)

within uterus

(white rate = 11%)

Fig. 2. Learned S1 maps. Colors represent each body parts, and white color
represents somatosensory components which could not be categorized into
any specific body part.

By defining the probability density function in the above fash-
ion allowed the resulting map to be sparse. In this experiment,
the dimensions of the resulting two-dimensional topographical
map 30 × 20 elements (m = 600). The map had a torus
configuration (opposite edes were connected) to avoid border
effects.

III. EXPERIMENTS

In order to investigate relationship between the uterine
environment and organization of the S1 model, we conducted
fetus simulations within and outside the uterus, and then built
S1 maps as defined by tactile sensory information. Therefore,
we set the time step of the simulation to 1 ms, and ran the
simulation for 500 s. As for tactile sensors, we used the left-
side of the body. We analyzed (1) whether each component
in the S1 model represent specific five body parts: head, arm,
hand, torso, leg and (2) whether the S1 map is organized so
that adjacent components represent the neighboring body part.

First, we determined which body part was represented by
each tactile component in S1 (Fig.2). If more than half of
the strongest inputs to a given tactile sensor came from one
specific body part, it was categorized as being dominantly
represented by that body part. We calculated the percentage of
components which could not be categorized into any specific
body parts (”white rate” in Fig. 2). The percentages were 11%
and 22% within and outside the uterus, respectively. Figure 3
shows the array of tactile sensors contributing to the body parts
represented in S1. We confirmed that these sensors tended to
be spatially localized to their respective body parts.
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face abdomen thigh

Fig. 3. Examples of cortical reprsentation in S1. Red circle is a tactile cell,
which strongly inputs one component in S1 map.

Second, to evaluate the degree of topography in S1, we
investigated the degree of clustering in S1. The number of
tactile components which had neighboring components also
categorized into the same body part were summed. Results
showed a significant increase in the number of clustered
components in S1 maps created within rather than outside the
uterus. The results showed that such area within uterine envi-
ronment significantly increased compared with those outside
uterus (Mann-Whitney test, p < 0.005).

IV. CONCLUSION

Animals are dynamically coupled to their environments,
with environment shaping the structure of sensory input, and
sensory information determining neural dynamics. In this
paper, we argue that interaction structured by the environment
can guide the formation of somatosensory representations in
human fetuses. To test our hypothesis, we conducted computer
simulations using fetus model and compared the organization
of such representations within and outside uterine environ-
ment. We found that S1 within the uterus had two times
the number of localized body representations than outside the
uterus. Furthermore, the fetus within the uterus is significantly
larger than outside the uterus in terms of somatotopic organi-
zation. Our results suggest that uterine environment possesses
rich regularities that structure tactile information and guide the
organization of the S1 body map.
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I. INTRODUCTION 

A fundamental principle in time perception is the so-called 
central tendency: reproductions of time intervals regress to 
the mean value of the previous stimuli distribution [1, 3-4]. 
Therefore, the estimate of sample duration differs 
depending on the distribution from which it is drawn, i.e. its 
statistical context. Central tendency is not just the 
consequence of a decrease of attention in a repetitive task, 
but rather optimizes temporal reproduction by minimizing 
the total error, which comprises both the accuracy and the 
variance of the responses [1, 4]. This strategy compensates 
for low sensory resolution by sacrificing veridicality, as it 
takes into account the statistics of previous stimuli rather 
than just the current stimulation. To explain the benefit of 
applying this strategy, we can propose an analogy with an 
everyday judgment. Consider the task of estimating the real 
dimension of an object (e.g. a car) by looking at its picture. 
If we were to evaluate the object size only on the basis of the 
current visual information, a car would be misperceived as a 
few cm long. On the contrary, usually our estimation is 
based on an internalized average measure, derived from a 
statistics of all the cars that we have seen in the past. The 
ability to take into account environmental statistics during 
perception could be advantageous also on a robotic 
platform. However, from a practical point of view, it is 
important to evaluate whether this optimization approach 
could be always beneficial and, if not, in what circumstances 
would it be more advantageous. In particular, it is 
interesting to investigate how this mechanism develops 
during childhood. Recent Bayesian models of the 
phenomenon in human adults [1, 4] have shown that the 
central-tendency strategy is beneficial only when perceptual 
judgment is imprecise and that the entity of the regression 
to the mean depends strongly on the precision with which 
such judgment can be made.  

In this study we evaluated whether other factors can influence 
the feasibility of the central tendency in perception, to establish 
when it would be appropriate to endow the robot with this 
optimization mechanism. In particular we considered the 
relevance of three factors in determining the adoption of the 
central tendency in humans:  

The quantity to be judged, moving from time to space 
perception. The idea of studying space rather than time 
perception derives from a hypothesis put forward by 
Hollingworth already in 1910 [3]. According to his view, the 
perceptual principle of central tendency should apply also to 
other sensory judgments rather than time, although recent 
studies have been focused only on the latter. Therefore, in this 
work we evaluated whether central tendency generalizes also to 
space perception.   

The developmental phase, as different strategies could be 
beneficial at different phases of the development. Although the 
central tendency mechanism is a gold standard in perceptual 
judgments in adults, how this strategy develops with age is still 
unknown. On the one hand, in children sensory precision is 
usually lower than in adults. Therefore, a strategy aimed at 
minimizing the variance of sensory judgments could be 
particularly beneficial at younger ages. On the other hand, for 
the developing brain it could be fundamental to formulate 
estimations as veridical as possible, at the expenses of 
production variance, so that – by trial and the feedback of the 
error – children could develop the ability to produce accurate 
judgments. Hence, a Bayesian model aimed at minimizing the 
total error by reducing veridicality could be adopted only later 
in the development. This is what happens for instance in the 
development of sensory fusion: before adopting the Bayesian  
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optimization of a multimodal judgment, the brain needs to 

calibrate the single modality estimation by using the more 

reliable sense [2]. Only when the calibration has occurred, the 

adult-like multimodal Bayesian integration occurs. In this study 

we evaluated the developmental trend of the central tendency 

mechanism in children between 7 and 14 years of age.   

Interactive vs. not interactive context, as a judgment 

finalized to an interaction might need to obey to different 

constraints than a judgment per se. Even in adults, the central 

tendency mechanism could sometimes be not beneficial. In 

particular, when we move from perceptual tasks to interactive 

tasks, accuracy (or veridicality) could acquire a higher 

relevance than robustness to perceptual noise. Indeed, an 

inaccurate evaluation of the amplitude of the arm movement of 

another agent passing an object could imply a failure of the 

cooperative task. Hence, it could sometimes be inappropriate to 

sacrifice accuracy for minimizing the total error. We performed 

an interactive spatial task with the humanoid robot iCub as a 

co-actor to assess whether central tendency is normally adopted 

by adults in interactive scenarios too. 

The results of this study can give insights on whether it is 

really relevant (and under which conditions it is appropriate) to 

implement the central tendency optimization mechanism in a 

robotic device. 

II. METHODS 

In this study we tested the central tendency strategy for space 

estimation in adults, in both a perceptual task (6 subjects) and 

an interactive task (7 subjects). Moreover, we tested children 

ranging from 7 to 14 years of age (a total of 77 subjects divided 

into five age groups) in the first task, to evaluate the  

 

 

 

 

 

 

 

 

 

 

 

 

development of the phenomenon. In the developmental study 

we used such a larger number of subjects, (in traditional studies 

with adults the sample is of 6 subjects [1, 4]) because children 

data are usually characterized by a high variability. 

In the perceptual task, on each trial, subjects were presented 

with two subsequent flashes of light (red disks of 1 cm of 

diameter, each flash lasting 400 ms) positioned along a visible 

straight white line crossing the whole screen at its middle 

height. The first flash was located at a variable distance from 

the left border of the screen (0.5-3.5 cm, randomly selected). 

On its disappearance, a second disk appeared at a variable 

distance from it. Subjects were requested to touch a point on 

the straight line in order to reproduce, with respect to the 

second disk, the distance between the first and the second disk.  

After the touch, a red disk appeared to indicate where the 

subject had pressed the screen. No feedback was provided. 

Each new trial started after the experimenter’s button press, 

with the first light appearing after 500 ms. Each subject 

participated in two sessions: a SHORT condition, in which the 

spatial distance between the first two disks ranged from 2 cm 

to 10 cm, and a LONG condition, in which the presented 

distances ranged from 6 cm to 14 cm (see Fig.1). To avoid 

interference between the two contexts the two conditions were 

tested in two different days. The order of the sessions was 

randomized between subjects. Each condition was 

characterized by 11 different sample intervals (separated by 0.8 

cm each), each of which was presented 8 times, yielding to a 

total of 88 trials per subject per condition.  

In the interaction task the stimuli were similar, but the task 

was presented as a collaborative game. The humanoid robot 

iCub pressed the touch screen in two different points in 

sequence and the subjects had to complete its action by  

 
 
Fig. 1. Schematic representation of the task and of the stimuli distributions in the LONG and SHORT conditions. On the right, picture of the interactive task. 
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touching a third point to reproduce the distance shown by the 

robot. iCub performed a human-like approximate minimum-

jerk movement (6) and exhibited a naturalistic gaze behavior 

(5), with the eyes looking towards the pointing target before the 

movement completion and then fixating the human subject 

when his/her turn started. The stimuli presentation was slower 

than in the perceptual condition, with the mean robot velocity 

being constant across trials (average hand speed of about 0.1 

m/s). The use of the robotic platform iCub guaranteed a 

complete control over the statistics and the timing of the 

stimuli presentation, to allow for a comparison with the 

computerized perceptual task. Before each experimental 

session, a calibration was performed to register the frames of 

reference of the robot and the touch screen. The distances 

presented by the robot were not sampled in 11 intervals but 

were drawn from the same uniform distributions that we used 

in the perceptual task, as in (4). 

III. RESULTS

A. Central tendency in the perception of space 

The results in Fig. 2 show that the phenomenon of central 

tendency is present in adults also for space perception. The 

average reproduced lengths (larger dots in Fig. 2A) do not 

correspond to the real stimulus amplitude (the data would lie 

on the identity line in such case), but tend to the mean value of 

the corresponding stimulus distribution (6 cm and 10 cm for 

the magenta and green data points, respectively), lying on  

flatter lines. The central tendency can be quantified by the 

regression index, i.e. the difference in slope between the best 

linear fit of the reproduced lengths and the identity line. This 

index varies from 0 (veridical performance) to 1 (complete 

regression to the mean) and was on average 0.35 ± 0.08 

(Standard Error of the Mean, SEM).  The central tendency is 

even more clearly depicted in Fig. 2B, where the distribution 

for the reproductions of the stimulus of 8.5 cm depends 

strongly on the sample range from which it was drawn, tending 

towards a shorter mean length for stimuli in the short range 

(magenta) and a longer mean for stimuli in the long range 

(green).  

B. The development of the central tendency mechanism 

As depicted in Figure 3A, during development a clear 

change is observed in the reproduction of spatial stimuli. 

Interestingly a developmental trend seems to be active until 13 

years of age, with a progressive increase in children’s accuracy 

shown by the decrease of the regression index. Indeed, the 

regression index decreases substantially with age, reaching 

adult-like values around 11-13 years of age (see Fig. 3B).  

Fig. 2. A) Reproduced lengths as a function of stimulus length for two stimulus 

ranges (short – magenta, long – green). B) Reproduction distribution of visual 
stimuli for the stimulus 8.5 cm during sessions where stimuli were drawn from 

the short or the long contexts (same color coding as Fig. 2A). 

Fig. 3. A) Reproduced length as a function of stimulus length for the different age groups. Same color code as Fig. 2. B) Average regression index as a function 

of age. Error bars represent group standard errors 
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This trend follows the improvement in visual precision in 

size perception (see e.g. [2]), as the variability associated to 

perceptual estimates of size decreases progressively during 

childhood, at least until 10 years of age. Moreover, the 

tendency seems to indicate that during late childhood kids 

adopt even lower regression values than adults, as if giving 

more relevance to veridicality than adults 

C. Accuracy wins over central tendency in interactive 

scenarios 

In adults when space reproduction is inserted in an 

interactive framework, the central tendency almost disappears 

(see Fig. 4A). Indeed, subjects on average reproduce as 

accurately as possible (not considering an individual constant 

bias) the distance presented by the other agent. In fact, on 

average the regression index decreases significantly in the 

interactive condition with respect to the space reproduction 

task performed in solo (one-sided, two-sample t-test, t(6.95)= 

2.55324, p= 0.019, see Fig. 4B). 

 

 

 

D. General results 

Our results show that in adults the central tendency is 

present not only for time, but also for space perception. 

Younger children show a stronger regression to the stimulus 

mean. Adult-like regression level is attained only around 11-13 

years of age, following the reduction in perceptual variance 

associated with development. A tendency for preferring 

accuracy over regression to the mean is observed at the later 

developmental stage, but it still needs to be investigated in 

more detail. Most interestingly, the central tendency is almost 

abandoned in interactive tasks, where the accuracy of the 

reproduction is maximized with almost no regression to the 

stimulus average. 

IV. DISCUSSION

The central tendency mechanism is a fundamental principle 

of optimization adopted in human perception, not dissimilar to 

a filtering approach that takes into consideration a (moving) 

window of measures to obtain a better estimation of a certain 

quantity. An important question is under what circumstances 

its implementation could become advantageous also in 

robotics. Our study confirms that sacrificing accuracy for 

noise-robustness can be beneficial for perception of various 

quantities (e.g., time and space) when sensory precision is low, 

as during development. However, in interactive scenarios 

accuracy is preferred over noise-robustness, suggesting that the 

adoption of central tendency is task-dependent. These findings 

indicate that the implementation of the central tendency 

mechanism should not be ubiquitous, but would need to be 

considered as a function of the task and of the variance of the 

robot sensory inputs.  
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