MINIME-Validator: Validating Hardware with
Synthetic Parallel Testcases

Alper Sen
Department of Computer Engineering
Bogazici University, Istanbul, Turkey
Email:alper.sen @boun.edu.tr

Abstract—Programming of multicore architectures with large
number of cores is a huge burden on the programmer. Parallel
patterns ease this burden by presenting the developer with a
set of predefined programming patterns that implement best
practices in parallel programming. Since the behavior of patterns
is well-known and understood they can also lower the burden
for verification. In this work, we present a toolset, MINIME-
Validator, for generating synthetic parallel testcases from a newly
defined Parallel Pattern Markup Language (PPML) that uses the
concept of parallel patterns. Our testcases mimic the behavior of
real customer applications while being much smaller and can be
used to generate traffic and validate e.g. inter-processor commu-
nication architectures. Experiments show that synthetic testcases
can be used for finding representative hardware communication
problems. To the best of our knowledge, this is the first time
synthetic testcases using parallel programming patterns are used
for hardware validation.

I. INTRODUCTION

Embedded multicore architectures are gaining popularity
in electronics. These types of hardware are used for many
application domains including healthcare, automotive, and
consumer electronics. Multicore hardware demands software
that can exploit it for performance gains. High performance
is obtained by the execution of multithreaded software where
multiple operations can be completed simultaneously. How-
ever, concurrency brings the challenge of non-determinism that
causes communication problems that may not be present in
single core or sequential applications.

One solution to ease the burden of multithreaded pro-
gramming is to use parallel programming patterns. Patterns
bring best practices to commonly occurring programming
challenges. Parallel patterns are high level characteristics that
define the structure of a concurrent application in terms of
communication and data sharing behaviors. They provide a
way to design and create robust and understandable parallel
applications rapidly. Pipeline and task parallelism are two
examples of parallel patterns. Parallel patterns have been suc-
cessfully used in many contexts including synthetic benchmark
generation, dynamic task mapping and compiler optimization,
parallel application development, and selecting an optimal
architecture (see [1] for details). An example parallel pattern
is

Multicore hardware validation is often handled by randomly
generated testcases. This is useful for initial verification ef-
fort, but might not necessarily mirror real-world patterns of

978-3-9815370-8-6/17/$31.00 ©2017 IEEE

Etem Deniz
Department of Computer Engineering
Bogazici University, Istanbul, Turkey

Email:etem.deniz@boun.edu.tr

Brian Kahne
NXP Semiconductors
Austin, TX, USA
Email:brian.kahne @nxp.com

communication traffic. Unfortunately, real applications are too
large to run via simulation and sometimes even too large for
emulation. Hence these applications are typically run in post-
silicon validation.

We propose a technique that allows for the generation of
concise real world testcases to stress a system’s inter-processor
communication architecture, while limiting the total verifica-
tion path length. Our test cases use parallel patterns that are
observed in realistic applications. For example, a compression
application such as dedup from PARSEC benchmark suite
observes the pipeline pattern. In dedup application, there are
five pipeline stages where one or more tasks independently
work on a stage. The stages are reading inputs and generat-
ing coarse-grained chunks, anchoring each chunk into fine-
grained segments, computing a hash value for each segment,
compressing each segment, and assembling the deduplicated
output stream. Thus, our technique can be used as an extra
level of verification to catch more complex hardware bugs
which might be missed via simpler random tests. Another
benefit of our approach is that testcases can be run in pre-
silicon during full-system simulation, which is generally not
possible with real applications.

Given a multicore application, parallel patterns can be
used to verify that the hardware is behaving according to
the programmer’s intention. For example, for an application
with pipeline parallel pattern behavior, information is com-
municated (via the underlying architecture) from one pipeline
stage (which may correspond to a core) to the next and the
correct operation of the underlying network architecture can
be accomplished by checking whether the correct information
has arrived at the last stage of the pipeline. In this work, our
goal is to exploit parallel patterns to validate the hardware syn-
chronization mechanisms such as coherency, reservations etc.
between the processor cores of embedded multicore hardware
that runs concurrent applications.

We implement our techniques in a tool called MINIME-
Validator, which is based on the synthetic application generator
MINIME [2]. MINIME allowed the generation of synthetic
applications from existing applications such as PARSEC suite
by exploiting their parallel pattern. In this work, we extend
MINIME such that synthetic applications (testcases) that use
various parallel patterns can be automatically generated from
user given Parallel Pattern Markup Language (PPML) specifi-

386

cations rather than from existing applications, where PPML is
a language that we define in this work. Another novelty of our
approach is that each generated synthetic testcase also carries
validation code appropriate for the type of parallel pattern used
in the testcase. We experimentally validate our technique using
Graphite hardware simulator [3] on a multicore architecture.
We observe that the pattern of the testcase is related to the
type of bug found.

II. RELATED WORK

Since we generate synthetic testcases that can also be
used as a benchmark suite we investigate such work in the
literature. In the literature, there are synthetic benchmarks
that are similar to the sequential [4], [5] or multithreaded
applications [6], [7] that they are derived from. Synthetic
benchmarks obtained from multithreaded benchmark suites
such as PARSEC, Rodinia, and EEMBC that leverage parallel
patterns have also been developed [2].

Parallel patterns have been used for deciding the type of
multicore architecture. For instance, in the ParaPhrase project
[8], [9], the authors decide the required resources in heteroge-
neous systems using the parallel pattern of a target application.
In general, heterogeneous multicore architectures including
larger and smaller CPU cores are suitable for divide and
conquer and recursive data patterns. This is because threads
in these patterns are unbalanced and assigning larger threads
to the larger cores and smaller threads to the smaller cores
provides load balancing. On the other hand, homogeneous
multicore architectures are suitable for geometric decompo-
sition pattern, which has balanced threads.

Although there are various works on validating parallel
programs, that is not our goal in this paper. Our goal is in
validating hardware architecture itself.

Testcases can be generated as user-directed, coverage driven
[10], or randomly [11]. Most realistic testcases are used for
post-silicon validation as they are large and slow [12]. Genetic
algorithms have also been used for test case generation and
validation of coherency protocols [13]. We generate fast and
small synthetic tetscases based on PPML inputs that are
representative of realistic applications thanks to using parallel
patterns.

In this work, we extended MINIME tool [2] and obtained
MINIME-Validator that generates verifiable and standalone
synthetic testcases for multicore systems. Unlike MINIME,
we do not need an actual application to generate the synthetic,
the synthetic can be generated standalone. For this purpose,
we defined an input specification language, PPML, to specify
the attributes (properties) of the synthetic testcase. Then we
generate characteristics from PPML that MINIME can use to
generate synthetic testcases. We also add validation codes for
each pattern type in the synthetic testcases expanding their
benefits.

III. PARALLEL PROGRAMMING PATTERNS

Parallel programming can be made attractive to general-
purpose professional programmers by providing them with a

2017 Design, Automation and Test in Europe (DATE)

Choose how
to organize
. ' .
o]
‘ Regular?] } Irregular? i [Linear? h ‘ Recursive? i ‘ Linear? i | Recursive? .
Pipeline i Event-Based Task ‘ Divide &] Geometric I ’ Recursive |
Coordination Parallelism Conquer D iti Data

Fig. 1. Hierarchy of Parallel Programming Patterns [14]

set of patterns. Patterns are typically organized into a hierar-
chical structure so that the user can design complex systems
going through the collection of patterns. Parallel patterns also
provide domain-specific solutions to the application designers
in less time. A widely-known set of parallel patterns has been
proposed in [14]. In this set, there exist three classes of parallel
patterns based on organization of tasks, data, and flow of data.
Figure 1 shows parallel patterns in a decision tree [14]. We
briefly explain these patterns here. Further details can be found
in [14], [2], [1].

Each parallel pattern has unique architectural characteristics
to exploit. When a work is divided among several independent
tasks, which cannot be parallelized individually, the parallel
pattern employed is Task Parallelism (TP). The independent
tasks may read shared data, but they produce independent
results. In Divide and Conquer (DaC), a problem is structured
to be solved in sub-problems independently, and merging the
outputs later. This pattern is used to solve many sorting,
computational geometry, graph theory, and numerical prob-
lems. Divide and conquer algorithms can cause load-balancing
problems when using non-uniform sub-problems, but this can
be resolved if the sub-problems can be further reduced.

In data centric patterns, data decomposition is aligned with
the set of tasks. When the data decomposition is linear,
the parallel pattern that is employed is called Geometric
Decomposition (GD). In GD, decomposition can inherently
deliver a natural load balancing process since data is parti-
tioned into equal size. Matrix, list, and vector operations are
examples of geometric decomposition. Parallel pattern used
with recursively defined data structures is called Recursive
Data (RD). Graph search and tree algorithms are examples
of recursive data.

Apart from task parallelism and data parallelism, if a series
of ordered but independent computation stages need to be
applied on data, where each output of a computation becomes
input of a subsequent computation, Pipeline (PL) parallel
pattern is used. Each stage processes its data serially and all
stages run in parallel to increase the throughput. Event-based
Coordination (EbC) parallel pattern defines a set of tasks that
run concurrently where each event triggers the start of a new
task. In this pattern, the interaction can take place at irregular
and unpredictable intervals.

It has been shown earlier [2], [1] that multithreaded pro-
grams using above parallel patterns are characterized using

387

Synthetic Testcase
Description in PPML

}

Benchmark Characterizer

Validation
Code Blocks
2

Data Thread Gengral
Sharing Commupication Threpding
\ 4 4

MCAPI / MRAPI /
POSIX / Graphite =—>| Benchmark Synthesizer
Library l

Multicore Testcase in
MCAPI / MRAPI / POSIX / Graphite

Fig. 2. MINIME-Validator: The tool takes PPML as input and outputs a
multithreaded testcase complete with validation code

three classes of characteristics; data sharing (private, shared),
thread communication (none, few, many), and general thread-
ing (thread id, creator thread, work size, etc.). Hence these
characteristics capture the parallel pattern type of a program.

IV. OUR SOLUTION

Our MINIME-Validator tool can generate a synthetic bench-
mark (testcase) starting from a specification instead of a real
application as was done in MINIME. The new tool is shown in
Figure 2 with characterizer and synthesizer components. The
characterizer component turns specifications given in Parallel
Pattern Markup Language (PPML) into characteristics such
as data sharing, thread communication, and general thread-
ing as used in MINIME as well as it generates validation
code blocks. Then we use the synthesizer block to generate
a synthetic testcase with the generated characteristics and
validation codes. The synthesized testcase not only has the
parallel pattern type specified in PPML specification but it also
has code for validating that particular pattern. The testcases
can use any of the listed library types hence they can be
run on any architecture that supports these libraries. Our
testcases are synthetic in the sense that they do not perform
any useful functional computation but rather they implement
the characteristics specified in the input PPML including the
pattern type and thread behaviors.

A. Farallel Pattern Markup Language (PPML)

We defined a new language called Parallel Pattern Markup
Language (PPML) to specify the characteristics and the paral-
lel pattern of a testcase. We show the grammar of the language
in Figure 3. PPML uses a style similar to XML where each
line in a PPML specification defines the attributes of threads in
a multicore testcase. We list some of these attributes in Table
I, a complete list can be found on our website [].

As described in previous section a parallel pattern is spec-
ified by three set of characteristics; data sharing (private,
shared), thread communication (none, few, many), and general
threading (thread id, creator thread, work size). The attributes
specified in Table I, allow us to capture these characteristics.
We now explain some of these attributes. Each testcase has a

388

pattern type. Each thread in a testcase has an associated thread
id, work size denotes the amount of computation done by the
thread where the user can increase or decrease this amount
(which is captured as a parameter to a function), private data
size denotes the size of thread local data, shared data size
denotes the size of shared data among threads, and function
is used for validating the pattern. Finally, PPML allows to
specify patterns in a hierarchical manner, for example, in a
pipeline pattern example, each stage in the pipeline can be
executing an application with different pattern types.

Figure 4 displays an example PPML for a multithreaded
application that uses pipeline parallel pattern. In this example,
we have a 6 stage pipeline, where worker threads execute a
recursive function or generates thread id (TID), and the main
thread (id 0) executes no operation.

B. Validating Parallel Patterns

In this section we describe how our synthetic parallel
pattern testcases can be used for validation. The validation
code is automatically generated based on the pattern type,
the number of threads, and thread attributes. For each pattern
type, worker threads execute a well-known algorithm of that
pattern type, then the main thread executes the same algorithm
itself and compares its result with the result received from the
collective execution of worker threads. We now describe in
detail validation related activities done for each parallel pattern
type.

Task Parallelism (TP): The main thread assigns each worker
thread an arbitrary function for execution. Every worker thread
sends its result to the main thread, which knows what the result
should be, and verifies that the correct results are received.
A simple worker thread function is to do some arbitrary
arithmetic operation or just return thread id.

Divide and Conquer (DaC): Merge sort algorithm is exe-
cuted by worker threads which communicate among each other
using messages. Then the main thread executes merge sort
itself and verifies that the results are consistent.

Geometric Decomposition (GD): This is similar to task
parallel except the threads use the shared memory rather than
messages for communication.

Recursive Data (RD): Depth-First-Search algorithm is exe-
cuted on a data structure by worker threads that communicate
among each other using messages. Then the main thread also
searches the data structure itself and verifies that the results
are consistent.

Pipeline (PL): Every worker threads sends the result of its
execution of an arbitrary function (that is known by the main
thread) to the thread in the next stage together with the results
from previous stages. Finally all results are sent to the main
thread. Since the main thread is aware of each function it then
verifies that the correct results are received.

Event-based Coordination (EbC): This is similar to pipeline
except that the data flow is irregular in this case. That is,
messages are sent to threads in arbitrary stages.

Each pattern type can be used in different validation sce-
narios. For example, a pipeline pattern can be used to stress

2017 Design, Automation and Test in Europe (DATE)

program ::= ‘“‘<ppml_start>"’ pattern ‘‘<ppml_end>""’
pattern ::= ‘‘<pattern_start>"’ ‘‘<pattern:’’ ptype ‘>’ threads+ ‘‘<pattern_end>""’
ptype ::= ‘‘task_parallel’’|‘‘divie_and_conquer’’|‘‘geometric_decomposition’’|‘‘recursive_data’’|
‘“pipeline’’|“‘event_based_coordination’’
threads ::= *°<’7 attr+ **>77 | pattern
attr ::= ‘‘tid: °’ <integer> | ‘‘stage: '’ <integer> | ‘‘wsize: '’ <integer> | ‘‘pds: '’ <integer> | ‘‘sds: '’ <integer>
| ““function:’’ func
func ::= C‘NOOP’” | ““TID’” | <‘SORT’’ | *‘SEARCH’’ | ‘‘RECURSION’’
Fig. 3. Parallel Pattern Markup Language (PPML) Grammar
TABLE I
PPML ATTRIBUTES

[Attribute [[Description

pattern Parallel pattern type: task parallel, divide and conquer, geometric decomposition, recursive data, pipeline, event-based coordination

tid (thread id) unique thread ID. 0 denotes the main thread, others are worker threads

stage used in pipeline pattern, denotes the pipeline stage that where the thread runs

wsize (work size)

pds (private data size)
sds (shared data size)
Ic (loopcount)
function

parameter for the function (func) that the thread executes. Note that wsize = 1 for function TID.

the size of the local integer array that thread writes/reads

the size of the shared integer array that threads share. e.g. messages sent over shared data in Graphite, hence sds=1 for pipeline below.
used in pipeline pattern, denotes the number of times that a thread reads data from previous stage, works on it, and writes to the next stage
the type of function executed by the thread, example functions: SORT, SEARCH, TID, NOOP, RECURSION

<ppml_start>
<pattern_start>
<pattern: pipeline>
<tid:4,stage:1,wsize:1,lc:10,pds:10,sds:1,func:TID>
<tid:8,stage:2,wsize:4,lc:10,pds:10,sds:1,func:RECURSION>
<tid:12,stage:3,wsize:7,1c:10,pds:10,sds: 1, func:RECURSION>
<tid:16,stage:4,wsize:9,1c:10,pds:10,sds: 1, func:RECURSION>
<tid:20,stage:5,wsize:1,lc:10,pds:10,sds:1,func:TID>
<tid:24,stage:6,wsize:13,1c:10,pds:10,sds: 1, func :RECURSION
<tid:0,stage:7,wsize:0,lc:10,pds:1,sds:1,func :NOOP>
<pattern_end >
<ppml_end>

Stage 1
Stage 2

Stage 3
Stage 4

Stage 5
Stage 6 - r += fibonacci(13)
= A "
fa=r f4=r e I == 30T0) PASS else FAL |

[ain Thrend

Fig. 4. Pipeline PPML Example and graphical representation of validation

data flow between cores, whereas a geometric decomposition
pattern can be used for heavy data flow between two cores.

C. PPML Example

Once PPML specifications are converted into characteristics
shown in the characterizer output of Figure 2, the results are
passed to the synthesizer block to generate executable code
that can use Pthreads, MCAPI/MRAPI, or Graphite commu-
nication libraries (based on user input). For each pattern type,
there is a template parallel code that can be specialized based
on each attribute in the PPML. We use the existing MINIME
framework for synthesis. Additionally, we added template code
for validation purposes as described above.

Figure 5 shows the synthetic testcase generated for the
pipeline PPML specification given in Figure 4. Figure 4 also
shows graphically the validation code for the example. We use
the Graphite library in the test case. Specifically, there are 6

threads in the pipeline. Due to lack of space we only show
thread 1, 2, and the main thread O (lines 1, 26, 57) in Figure
5. Every worker thread sends the result of its execution of
either a recursive function such as fibonacci (line 43) or just
its thread id (line 14) to the thread in the next stage together
with the results from previous stages (lines 16, 39, 45). Finally,
all results are received by the main thread (line 65). The
main thread verifies that the correct results are received (lines
70-71). For example, if the payload from thread 2 (core 2)
to thread 3 (core 3) were to be corrupted in the underlying
communication architecture, this would be caught by the main
thread as the expected result 3070 would not be received from
thread 6.

V. EXPERIMENTS

We implemented our techniques in a new tool called
MINIME-Validator that can be downloaded with our synthetic
testcases from our website [15]. We use the Graphite archi-
tectural simulator to validate the effectiveness of synthetic
testcases generated by MINIME-Validator. Graphite [3] is
an open-source hardware architectural simulator that targets
large-scale multicore processors with hundreds to thousands of
cores. It provides both functional and performance modeling
for cores, on-chip networks, and memory subsystems includ-
ing cache hierarchies with full cache coherence. Graphite im-
plements a layered communication stack. Application threads
(cores) communicate with other threads (cores) via messages.
Messages are routed and timed by target architecture network
model. Many different architectures can be instantiated with
Graphite. We assume that each thread runs on a different core.

We chose to focus on hardware communication problems
as a case study although MINIME-Validator can be used for
other hardware validation purposes as well. We developed a
fault model for the communication mechanism in Graphite
simulator. Our fault model targets real life communication
problems, where messages between cores can be removed,

2017 Design, Automation and Test in Europe (DATE)

389

1 void xtaskl (void xparam) {

2 /% initialize variables =/

3

4 CAPI_Initialize (1);

5 td->tid = 4; //tid (thread id)

6

7 for (localMemlIt = 0; localMemlIt < 10; localMemlIt++) { //pds (private data size)
8 localMemTemp = 0; /* assign localMemTemp x/

9 localAddrl [localMemlIt] = localMemTemp; /% write local mem x/

10 +

11

12 for (loopCount = 0; loopCount < 10; loopCount++) { //loopcount = 10

13 /% Description: code block for work function x/

14 localAddrl [0] += td->tid; //wsize=1 (work size), function = TID

15 //sds=1 (shared data size), stage=1 below

16 CAPI_message_send_w (me /% [*/, 2, (char x)&localAddrl1[0], sizeof(localAddrl[0]));
17

18 for (localMemlIt = 0; localMemlIt < 10; localMemlt++) { //pds (private data size)
19 localMemTemp = localAddrl[localMemlIt]; /*x read local mem x/

20 /* use localMemTemp x/

21 }

22 }

23 return NULL;

24 }

25

R6 void xtask2(void xparam) {

27 /x initialize variables x/

28

29 CAPI_Initialize (2);

30 td->tid = 8;

31

32 for (localMemlIt = 0; localMemlIt < 10; localMemlt++) { //pds (private data size)
33 localMemTemp = 0; /% assign localMemTemp x/

34 localAddrl [localMemlIt] = localMemTemp; /x write local mem x/

35 }

36

37 for (loopCount = 0; loopCount < 10; loopCount++) { //loopcount = 10

38 // sds=1 (shared data size), stage=2 below

39 CAPI_message_receive_w (1, me /¥ 2 =/, (char *x)&message, sizeof(message));
Ko localAddrl [loopCount] += message; // vtype (validation type)

Ul

U2 /% Description: code block for work function =/

U3 localAddr1 [0] += fibonacci(4); //wsize = 4 (work size), function = RECURSIVE
U4 // sds=1 (shared data size), stage=3 below

45 CAPI_message_send_w (me /% 2 */, 3, (char x)&localAddrl1[0], sizeof(localAddrl1[0]));
“o

U7 for (localMemlIt = 0; localMemlIt < 10; localMemlt++) { //pds (private data size)
Us localMemTemp = localAddrl [localMemlt]; /% read local mem x/

4o /* use localMemTemp x/

50 }

51

52 return NULL;

53 }

54

55 ... // Code for task3, task4 , task5, task6

56

57 int main(int argc, char xxargv) {

58 CarbonStartSim (arge, argv);

59 CarbonEnableModels ();

60 CAPI_Initialize (0);

61 td->tid = 0; //tid (thread id)

62

63 for (loopCount = 0; loopCount < 10; loopCount++) { //loopcount = 10

64 //sds=1 (shared data size), stage=0 below

65 CAPI_message_receive_w (6, me /* 0 =/, (char x)&message, sizeof (message));
66 td->workload += message;

67 }

68

69 /x Validation at the Main Thread =/

70 if (td->workload == 3070) { printf(”"PASS, Result: %d\n”, td->workload);}

71 else { printf ("FAIL, Result: %d, Expected: %d\n”, td->workload, 3070); }

72

73 CarbonStopSim ();

74 return O;

75 }

390 2017 Design, Automation and Test in Europe (DATE)

TABLE II
EXPERIMENTS

\ Synthetic Testcase [FI[F2[F3 [F4[F5]Fo |

Task Parallel (TP1) 1 0 0 0 0 0

Divide-and-Conquer (DaCl) 0 1 0 0 0 0

Geometric Decomposition (GD1) 1 0 1 0 0 0

Recursive Data (RD1) 1 0 1 1 0 0

Pipeline (PLI) 0 0 0 0 1 0

Event-based-Cooridination (EbC1) 0 1 0 0 1 1
TABLE III

FAULT TYPES

[Fault Type [[Target | Description |

FT1 TP At iteration 1, the content of message from
Thread N to 0 is modified/dropped.

FT2 DaC At iteration 1, the content of message from
Thread N to M is modified/dropped.

FT3 GD At iteration 100, the content of message from
Thread N to 0 is modified/dropped.

FT4 RD At iteration 500, the content of message from
Thread N to 0 is modified/dropped.

FT5 PL At iteration 10, the content of message from
Thread N to N+1 is modified/dropped.

FT6 EbC At iteration 10, the content of message from
Thread N to M is modified/dropped.

delayed or modified. We implemented the fault framework in
Graphite by instrumentation using the GNU compiler.

We instantiated a 64-core Graphite configuration with a full-
map directory based MSI coherency protocol, and a 2D mesh
interconnection network. We generated six different synthetic
testcases with MINIME-Validator as shown in Table II one
for each pattern type. In Table II, we list the faults that were
detected by the validation codes in each synthetic testcase. For
example, fault F1 (where at iteration 1, message from core 2
to main thread O is dropped) is detected by TP1, GDI1, and
RD1 because there is message passing from thread N to 0 in all
these 3 testcases. Fault F2 (where at iteration 1, message from
core 2 to core 4 is dropped) is not detected by TP1, GD1, RDI,
PL1 since there is no message passing from thread N to M
(where M # N+1) in these testcases. Whereas, F2 is detected
by DaCl and EbCI1 since such message passing exists. In the
case of fault F3 (at iteration 100, message from core 3 to
main thread 0 is modified), although there is communication
from thread N to O the number of iterations is only 1 in TP
hence the fault cannot be detected. The other faults can be
explained in a similar way. From the above experiments, we
observed that certain fault types are detected by each parallel
pattern type and describe these faults in Table III. In a real
hardware implementation, these faults would equate to bugs
in the reservation or coherency logic, e.g. a dropped message
equates to a bug in the reservation logic, while a modified data
value equates to a coherency bug.

VI. CONCLUSIONS AND FUTURE WORK

We developed MINIME-Validator, a tool that can be used
for automatically generating synthetic parallel testcases from
specifications given in Parallel Pattern Markup Language

2017 Design, Automation and Test in Europe (DATE)

(PPML). These synthetic testcases mimic the behavior of real
life applications while being much smaller than them. Thereby,
they can be run during presilicon validation for the full system,
whereas most traditional benchmark suites are too large to
run during simulation and do not specifically target parallel
pattern behavior. We defined PPML as a language that allows
to specify synthetic testcases using parallel programming
patterns. We validated the effectiveness of MINIME-Validator
for finding communication problems in a multicore hardware
architecture modelled using Graphite simulator. We observed
that the parallel pattern used in the testcase is related to the
type of bug found.

In the future, we plan to experiment with different architec-
tures and target specific coherency bugs as well as compare
our results with that of existing test suites.

REFERENCES

[1] E. Deniz and A. Sen, “Using machine learning techniques to detect
parallel patterns of multi-threaded applications,” International Journal
of Parallel Programming, vol. 44, no. 4, pp. 867-900, 2015.

E. Deniz, A. Sen, B. Kahne, and J. Holt, “Minime: Pattern-aware

multicore benchmark synthesizer,” IEEE Transactions on Computers,

vol. 64, no. 8, pp. 2239-2252, Aug 2015.

J. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio,

J. Eastep, and A. Agarwal, “Graphite: A distributed parallel simulator for

multicores,” in International Symposium on High Performance Computer

Architecture (HPCA), 2010.

A. Joshi, L. Eeckhout, R. H. B. Jr., and L. K. John, “Performance

Cloning: A Technique for Disseminating Proprietary Applications as

Benchmarks,” in IEEE International Symposium on Workload Charac-

terization, 2006.

A. Joshi, L. Eeckhout, and L. John, “The Return of Synthetic Bench-

marks,” in SPEC Benchmark Workshop, 2008.

[6] C. Hughes and T. Li, “Accelerating Multi-core Processor Design Space
Evaluation using Automatic Multi-threaded Workload Synthesis,” in
IEEE International Symposium on Workload Characterization, 2008.

[7] K. Ganesan and L. K. John, “Automatic generation of miniaturized
synthetic proxies for target applications to efficiently design multicore
processors,” IEEE Transactions on Computers, vol. 63, no. 4, pp. 833—
846, 2014.

[8] K. Hammond, M. Aldinucci, C. Brown, F. Cesarini, M. Dane-

lutto, H. Gonz?lez-V?lez, P. Kilpatrick, R. Keller, M. Rossbory, and

G. Shainer, “The ParaPhrase Project: Parallel Patterns for Adaptive

Heterogeneous Multicore Systems,” in Formal Methods for Components

and Objects. Springer Berlin Heidelberg, 2013, pp. 218-236.

S. Campa, M. Danelutto, M. Goli, H. Gonzalez-Vélez, A. M. Popescu,

and M. Torquati, “Parallel Patterns for Heterogeneous CPU/GPU Archi-

tectures: Structured Parallelism from Cluster to Cloud,” Future Gener-

ation Computer Systems, vol. 37, pp. 354-366, 2014.

[10] S. Yang, R. Wille, D. Groe, and R. Drechler, “Coverage-driven stimuli
generation,” in Digital System Design (DSD), 2012 15th Euromicro
Conference on, Sept 2012, pp. 525-528.

[11] D. A. Wood, G. A. Gibson, and R. H. Katz, “Verifying a multiprocessor
cache controller using random test generation,” /EEE Design & Test of
Computers, vol. 7, no. 4, pp. 13-25, 1990.

[12] B. W. Mammo, V. Bertacco, A. DeOrio, and I. Wagner, “Post-silicon
validation of multiprocessor memory consistency,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 34,
no. 6, pp. 1027-1037, June 2015.

[13] M. Elver and V. Nagarajan, “Mcversi: A test generation framework for
fast memory consistency verification in simulation,” in International
Symposium on High Performance Computer Architecture (HPCA), 2016.

[14] T. Mattson, B. Sanders, and B. Massingill, Patterns for parallel pro-
gramming. Addison-Wesley Professional, 2004.

[15] “MINIME-Validator, http://depend.cmpe.boun.edu.tr/tools/minime-
validator,” 2016.

[2

—_

@
&

[4

=

[5

—

[9

—

391

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

