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We provide an overview of matrix and tensor factorization methods from a Bayesian perspective, 
giving emphasis on both the inference methods and modeling techniques. Factorization based models 
and their many extensions such as tensor factorizations have proved useful in a broad range of 
applications, supporting a practical and computationally tractable framework for modeling. Especially in 
audio processing, tensor models help in a unified manner the use of prior knowledge about signals, 
the data generation processes as well as available data from different modalities. After a general 
review of tensor models, we describe the general statistical framework, give examples of several audio 
applications and describe modeling strategies for key problems such as deconvolution, source separation, 
and transcription.
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1. Introduction

With the recent technological advances of sensor and commu-
nication technologies, the cost of data acquisition and storage is 
significantly reduced. Consequently, the last decade has witnessed 
the dramatic increase in the amount of data that can be easily col-
lected. One important facet of data processing is extracting mean-
ingful information from highly structured datasets that can be of 
interest for scientific, financial, or technological purposes.

The key to exploiting the potential of large datasets lies in 
developing computational techniques that can efficiently extract 
meaningful information. These computational methods must be 
scalable and tailored for the specifics of an application, but still 
be versatile enough to be useful in several scenarios. In this pa-
per, we will focus on audio processing and review one particular 
class of such models, that provide a favorable balance between 
high modeling accuracy, ease of implementation and ease of man-
agement of required computational resources. This class of mod-
els, coined under the name of tensor factorization models along 
with their Bayesian interpretations, will be the focus of this tuto-
rial paper. The mathematical setup may look somewhat abstract at 
a first sight, but the generic nature of the approach makes ten-
sors suitable for a broad range of applications where complicated 
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structured datasets need to be analyzed. In particular, we will 
show examples in the domain of audio processing where signifi-
cant progress has been achieved using tensor methods. While the 
modeling and inference strategies can be applied in the broader 
context of general audio and other non-stationary time series anal-
ysis, the hierarchical Bayesian nature of the framework makes the 
approach particularly suitable for the analysis of acoustical signals.

In audio processing, an increasing number of applications are 
developed that can handle challenging acoustical conditions and 
highly variable sound sources. Here, one needs to exploit the 
inherent structure of acoustic signals to address some of the 
key problems such as denoising, restoration, interpolation, source 
separation, transcription, bandwidth extension, upmixing, coding, 
event recognition and classification. Not surprisingly, many differ-
ent modeling techniques have been developed for those purposes. 
However, as is the case for computational modeling of all physical 
phenomena, we face here with a trade off: accuracy versus com-
putational tractability – a physically realistic and accurate model 
may be too complex to meet the demands of a given application 
to be useful in practice.

Typically, there is a lot of a-priori knowledge available for 
acoustic signals. This includes knowledge of the physical or cog-
nitive mechanisms by which sounds are generated or perceived, 
as well as the hierarchical nature by which they are organized 
in an acoustical scene. In more specific domains, such as mu-
sic transcription or audio event recognition, more specialized as-
sumptions about the hierarchical organization are needed. Yet, the
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resulting models often possess complex statistical structure and 
highly adaptive and powerful computational techniques are needed 
to perform inference.

Factorization-based modeling has been useful in addressing the 
modeling accuracy versus computational requirement trade off in 
various domains beyond audio signal processing [1], with promi-
nent examples such as text processing [2], bioinformatics [3], com-
puter vision [4], social media analysis [5], and network traffic anal-
ysis [6]. The aim in such modeling strategies is to decompose an 
observed matrix or tensor (multidimensional array) into seman-
tically meaningful factors in order to obtain useful predictions. 
Meanwhile, the factors themselves also provide a useful feature 
representation about the specifics of the domain.

In this paper, we review tensor based statistical models and as-
sociated inference methods developed recently for audio and mu-
sic processing and describe various extensions and applications of 
these models. In Section 2, we illustrate the ideas of factorization 
based modeling, and then in Section 3 we describe a probabilis-
tic interpretation of these models. The probabilistic interpretation 
opens up the way for a full Bayesian treatment via Bayesian hierar-
chical modeling. This leads to a very natural means for unification, 
allowing the formulation of highly structured probabilistic models 
for audio data at the various levels of abstraction, as we will il-
lustrate in Section 6. The paper concludes with remarks on future 
research directions.

2. Factorization-based data modeling

In this section, we will describe the basics of factorization 
based modeling, and describe extensions such as coupled tensor 
factorizations and nonnegative decompositions. This section will 
describe the main structure and the notation.

In many applications, data can be represented as a matrix, for 
example, the spectrogram of an audio signal (frequency vs time), 
a dataset of images (pixel coordinates vs instances), word frequen-
cies among different documents (words vs documents), and the 
adjacency structure of a graph (nodes vs nodes) to name a few. 
Here the indices of the matrix correspond to the entities, and the 
matrix elements describe a relation between the two entities. Ma-
trix Factorization (MF) models are one of the most widely used 
methods for analyzing the data that involve two entities [7–10]. 
The goal in these models is to calculate a factorization of the form:

X1(i, j) ≈ X̂1(i, j) =
∑

k

Z1(i,k)Z2(k, j) (1)

where X1 is the given data matrix, X̂1 is an approximation to 
X1, and Z1, and Z2 are factor matrices to be estimated. Even 
though we have a single observed matrix in this model, we use 
a subscript in X1 since we will consider factorization models that 
involve more than one observed matrix or tensor, later in this sec-
tion. Here, X1 is expressed as the product of Z1 and Z2, where 
Z1 is considered as the dictionary matrix and Z2 contains the cor-
responding weights. From another perspective, X1 is approximated 
as the sum of inner products of the columns of Z1 and the rows 
of Z2, as illustrated at the top of Fig. 2. Note that, if Z1 would 
have been fixed, the problem would have been equivalent to ba-
sis regression where the weights (expansion coefficients) Z2 are 
estimated [11]. In contrast, in matrix factorization the dictionary 
(the set of basis vectors) is estimated along with the coefficients. 
This modeling strategy has been shown to be successful in vari-
ous fields including signal processing, finance, bioinformatics, and 
natural language processing [8].

Matrix factorization models are applicable when the observed 
data encapsulates the relation of two different entities (e.g., i and 
j in Eq. (1)). However, when the data involves multiple entities 
Fig. 1. Illustration of a) a vector X(i): an array with one index, b) a matrix X(i, j) an 
array with two indices, c) a tensor X(i, j, k): an array with three or more indices. In 
this study, we refer vectors as tensors with one mode and matrices as tensors with 
two modes.

of interest, such as ternary or higher order relations it cannot be 
represented without loss of structure by using matrices. For ex-
ample a multichannel sound library of several instances may be 
represented in the time-frequency domain conveniently as an ob-
ject with several entities, say the power at each (frequency, time, 
channel, instance). One could in principle ‘concatenate’ each spec-
trogram across time and instances to obtain a big matrix, say (fre-
quency × channel, time × instance) but this representation would 
obscure important structural information – compare simply with 
representing a matrix with a column vector. Hence one needs nat-
urally multiway tables, the so-called tensors, where each element 
is denoted by T (i, j, k, . . .). Here, T is the tensor and the indices 
i, j, k, . . . are the entities. The number of distinct entities dictates 
the mode of a tensor. Hence a vector and a matrix are tensors of 
mode one and two respectively. Tensors are illustrated in Fig. 1 and 
we will give a more precise and compact definition in Section 3.

For modeling multiway arrays with more than two entities 
the canonical polyadic decomposition [12,13] (also referred as, CP, 
PARAFAC, or CANDECOMP) is one of the most popular factorization 
models. The model, for three entities, is defined as follows:

X2(i,m, r) ≈ X̂2(i,m, r) =
∑

k

Z1(i,k)Z3(m,k)Z4(r,k) (2)

where the observed tensor X2 is decomposed as a product of three 
different matrices. Analogous to MF models, this model approxi-
mates X2 as the sum of ‘inner products’ of the columns of Z1, Z3, 
and Z4 as illustrated at the bottom of Fig. 2. This model has been 
shown to be useful in chemometrics [14], psychometrics [12], and 
signal processing [8].

Tucker model [15] is another important model for analyz-
ing tensors with three modes, which is a generalization of the 
PARAFAC model. The model is defined as follows:

X3(i, j,k) ≈ X̂3(i, j,k)

=
∑

p

∑
q

∑
r

Z1(i, p)Z2( j,q)Z3(k, r)Z4(p,q, r) (3)

where X3 is expressed as the product of three matrices (Z1:3) and 
a ‘core tensor’ (Z4). When the core tensor Z4 is chosen as super 
diagonal (Z4(p, q, r) �= 0 only if p = q = r), Tucker decomposition 
reduces to PARAFAC.

2.1. Coupled factorization models

In certain applications, information from different sources are 
available and need to be combined for obtaining more accurate 
predictions [16–20]. In musical audio processing, one example is 
having a large collection of annotated audio data and a collection 
of symbolic music scores as side information. Similarly, in prod-
uct recommendation systems, a customer–product rating matrix
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Fig. 2. Coupled MF-PARAFAC illustration. The observed matrix X1 is approximated as the sum of inner products of the columns of Z1 and the rows of Z2. Similarly, X2 is 
approximated as the sum of ‘inner products’ of the columns of Z1, Z3, and Z4. The overall model is coupled since the matrix Z1 is shared in both factorizations. Here K
denotes the size of the index k: k ∈ {1, . . . , K }.
can be enhanced with connectivity information from a social net-
work and demographic information from the customer. For these 
problems, a single factorization model would not be sufficient for 
exploiting all the information in the data and we need to de-
velop more comprehensive modeling strategies in order to be able 
to combine different data sources in a single factorization model. 
Such models are called as coupled tensor factorization methods, 
where the aim is to simultaneously factorize multiple observed 
tensors that share a set of latent factors.

Let us consider an example coupled matrix–tensor factorization 
model where two observed tensors X1 and X2 are collectively de-
composed as

X1(i, j) ≈ X̂1(i, j) =
∑

k

Z1(i,k)Z2(k, j)

X2(i,m, r) ≈ X̂2(i,m, r) =
∑

k

Z1(i,k)Z3(m,k)Z4(r,k) (4)

where X1 is decomposed by using an MF model and X2 is de-
composed by using a PARAFAC model. The factor Z1 is the ‘shared 
factor’ in both decompositions, making the overall model coupled. 
Fig. 2 illustrates this model. In Section 6, we will illustrate the 
usefulness of various factorization models on audio processing ap-
plications.

2.2. Non-negative tensor factorizations

So far, we have described some of the most important matrix 
and tensor factorization models. However, even if two factorization 
models have the exact same topology (e.g., both models are MF 
models with the same number of parameters), depending on the 
constraints placed over the latent factors, the factorizations might 
have completely different interpretations. For instance, in the MF 
models, one option is not to restrict the factors by not placing any 
constraints over them. On the other hand, we can have orthogonal-
ity constraints on the factors, where the factorization would turn 
into the principal component analysis.

Even if we place highly restrictive constraints such as orthog-
onality, the estimated factors would be dense and their physi-
cal interpretations in applications would be quite limited as long 
as their elements are allowed to take any positive and negative 
values. In this study, we will consider non-negative factorization 
models [8], where we will restrict all the elements of the factors 
to be non-negative. Here, the non-negativity constraint implicitly 
imposes an additive structure on the model, where the contribu-
tions of the latent factors are always added since there will not be 
any cancellations due to negative values, as opposed to the afore-
mentioned cases. Therefore, this strategy promotes sparsity on the 
factors since most of the entries in the factors would be close to 
zero in order the model to be able to fit the data, and more im-
portantly the estimated factors will have physical interpretations 
that might be essential in many fields, such as audio processing. 
On the other hand, as we will describe in more detail in Sections 3
and 4.2, by modeling tensors with probabilistic tensor factorization 
models, we essentially decompose the parameters of a probabilistic 
model that are non-negative by definition (e.g., the intensity of a 
Poisson distribution or the mean of a gamma distribution) and are 
constructed as the sum of non-negative sources [9]. In this model-
ing strategy, the non-negativity constraint on the factors is rather 
a necessity than an option.

In audio processing, which is the main application focus of 
this study, we model the energies of signals in the time-frequency 
domain that are known as the magnitude or power spectra. For 
modeling these spectra, the non-negativity constraint turns out 
to be very natural, since realistic sounds can be viewed as be-
ing composed of purely additive components, as will be detailed 
in Section 5. For example, music signals consist of multiple in-
struments, and the signal of each instrument consists of multiple 
notes played by the instrument. Speech signals consist of basic 
units such as phonemes and words. Cancellation of sounds hap-
pens only intentionally and in very specific scenarios, for example 
in echo cancellation systems.

3. Probabilistic modeling of non-negative tensor factorizations

In applications, as we will demonstrate in Section 6, we often 
need to come up with custom model topologies, where either the 
observed tensors or the latent factors involve multiple entities and 
cannot be represented by using matrices without loss of important 
structural information. In order to be able to model the real world 
data sets that might consist of several tensors and require custom 
factorization models, we need to handle a broad variety of model 
topologies.

The Generalized Coupled Tensor Factorization (GCTF) frame-
work [21] is a generalization of matrix and tensor factorization 
models to jointly factorize multiple tensors. The formal definition 
of the GCTF framework is as follows:

Xν(uν) ≈ X̂ν(uν) =
∑
ūν

∏
α

Zα(vα)Rν,α
(5)

where ν = 1, . . . , Nx is the observed tensor index and α =
1, . . . , Nz is the factor index. In this framework, the goal is to com-
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Table 1
Illustration of different factorization models in the GCTF notation. Here Nx is the number of observed tensors, Nz is the number of latent factors, V is the set of all indices 
in the model, Uν are the set of indices of Xν , Vα are the set of indices of Zα , R is the coupling matrix.

Nx Nz V Uν Vα R

MF (Eq. (1)) 1 2 {i, j,k} {i, j} {i,k}, {k, j} [1,1]
PARAFAC (Eq. (2)) 1 3 {i, j,k, r} {i, j,k} {i, r}, [1,1,1]{ j, r}, {k, r}
TUCKER (Eq. (3)) 1 4 {i, j,k, p,q, r} {i, j,k} {i, p}, { j,q}, [1,1,1,1]{k, r},{p,q, r}
MF-PARAFAC (Eq. (4)) 2 4 {i, j,k,m, r} {i, j}, {i,k}, {k, j},

[
1 1 0 0
1 0 1 1

]
{i,m, r} {m,k},{r,k}

Table 2
Tweedie distributions with corresponding normalizing constants and divergence forms. The general form of the distribution is given 
in Eq. (7).

p Divergence Distribution Normalizing constant Divergence form

2 − β β-divergence Tweedie K (x, φ, p) dp(x||x̂)
0 Euclidean Gaussian (2πφ)1/2 1

2 (x − x̂)2

1 Kullback–Leibler Poisson ex/φ�(x/φ+1)

(x/φ)x/φ x log
( x

x̂

)− x + x̂

2 Itakura–Saito Gamma �(1/φ)(eφ)1/φ x x
x̂

− log
( x

x̂

)− 1

3 – Inverse Gaussian (2πx3φ)1/2 1
2

(x−x̂)2

xx̂2
pute an approximate factorization of given observed tensors Xν in 
terms of a product of individual factors Zα , some of which are 
possibly shared. Here, we define

V as the set of all indices found in a model,
Uν as the set of visible indices of the tensor Xν ,
Vα as the set of indices in Zα ,

Ūν = V \ Uν as the set of invisible indices that are not present 
in Xν .

We use small letters as vα to refer to a particular setting of in-
dices in Vα (similarly uν ∈ Uν and ūν ∈ Ūν ). Furthermore, R is a 
coupling matrix that is defined as follows: Rν,α = 1 if Xν and Zα

are connected and Rν,α = 0 otherwise. In other words, the cou-
pling matrix Rν,α specifies the factors Zα that affect the observed 
tensor Xν . As the product 

∏
α Zα(vα) is collapsed over a set of 

indices, the factorization is latent. Here, we consider non-negative 
observations and factors: Xν(uν) ≥ 0 and Zα(vα) ≥ 0. This rather 
abstract notation is needed to express increasingly complicated 
tensor models without limiting one to a particular topology.

In order to illustrate the framework, we define the coupled 
PARAFAC-MF model of Eq. (4) in the GCTF notation as follows. 
The observed index sets are given as U1 = {i, j} and U2 = {i, m, r}. 
The index sets of the factors are given as: V 1 = {i, k}, V 2 = {k, j}, 
V 3 = {m, k}, V 4 = {r, k}. The coupling matrix is given as R =
[1100; 1011] and indicates that X̂1 is a function of Z1 and Z2 and 
X̂2 is a function of Z1, Z3, and Z4. Table 1 lists all the factoriza-
tion models described earlier in the paper as specific instances of 
the GCTF notation.

The GCTF framework assumes the following probabilistic model 
over each scalar element of the observed tensors [21]:

Xν(uν) ∼ T W pν

(
Xν(uν); X̂ν(uν),φν

)
, ν = 1, . . . , Nx (6)

where X̂1:Nx are the model output tensors that are defined in 
Eq. (5) and T W denotes the so-called Tweedie distribution. 
Tweedie densities T W p(x; ̂x, φ) can be written in the following 
moment form:

P(x; x̂, φ, p) = 1

K (x, φ, p)
exp

(
− 1

φ
dp(x||x̂)

)
(7)

where x̂ is the mean, φ is the dispersion, p is the power parameter 
and dp(·) denotes the β-divergence defined as follows:
dp(x||x̂) = x2−p

(1 − p)(2 − p)
− xx̂1−p

1 − p
+ x̂2−p

2 − p
(8)

The Tweedie distribution is an important special case of expo-
nential dispersion models, characterized by three parameters: the 
mean, dispersion, and power. This model is also known as the 
power variance model, since the variance of the data has the fol-
lowing form: var(x) = φx̂p .

By taking appropriate limits, we can verify that the rather ar-
bitrary looking divergence dp(·) defined in Eq. (8) yields a lot 
more familiar divergence functions such as the Euclidean distance 
square, Kullback–Leibler (KL) divergence, and Itakura–Saito (IS) di-
vergence for p = 0, 1, 2, respectively. Using a suitable divergence is 
important in applications; for example the IS divergence is scale 
invariant, where the divergence between two points x and y does 
not change when both points are multiplied by the same con-
stant, i.e. d2(x||y) = d2(ax||ay) [9]. Physically, this translates to our 
intuitive notion that the discrepancy between two sound signals 
should not change by just turning up their volume.

From the probabilistic perspective, different choices of p yield 
important distributions such as Gaussian (p = 0), Poisson (p = 1), 
compound Poisson (1 < p < 2), gamma (p = 2) and inverse Gaus-
sian (p = 3) distributions. Due to a rather technical condition, no 
Tweedie model exists for the interval 0 < p < 1, but for all other 
values of p, one obtains the very rich family of Tweedie stable 
distributions [22]. Table 2 illustrates the Tweedie distribution for 
p ∈ {0, 1, 2, 3}.

An important property of the Tweedie models is that the nor-
malizing constant K (·) does not depend on the mean parameter x̂. 
Therefore, provided that p and φ are given, it is easy to see that 
solving a maximum likelihood problem for x̂ is equivalent to min-
imization of the β-divergence. For instance, for the Gaussian case 
(see Table 2), the divergence function is the squared Euclidean dis-
tance and the dispersion is simply the variance. For all possible p
values, we have a similar form; the Tweedie models generalize the 
established theory of least squares linear regression to more gen-
eral noise models.

For regularization and incorporating prior knowledge, we place 
prior distributions over the latent factors. Depending on the appli-
cation, we might consider different prior distributions on the latent 
factors. For example, we can choose an exponential prior over the 
latent factors that can be used for all the cases of the power pa-
rameter p, shown as follows:
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Zα(vα) ∼ E(Zα(vα); Aα(vα))

where E denotes the exponential distribution. We can also choose 
more sophisticated priors for individual cases of p. For instance, in 
the case of Poisson observations (p = 1), we can choose a gamma 
prior model

Zα(vα) ∼ G(Zα(vα); Aα(vα), Bα(vα))

where G denotes the gamma distribution. The definitions of the 
distributions that are mentioned in this paper are given in Ap-
pendix A.

4. Inference

Once we observe the tensors X1:Nx , we would like to make in-
ference in the probabilistic model defined in Eq. (6). Depending on 
the application, we might be interested in obtaining

• Point estimates, such as maximum likelihood (ML) or maxi-
mum a-posteriori (MAP):

– ML: Z�
1:Nz

= argmax
Z1:Nz

log
[
P(X1:Nx |Z1:Nz )

]
– MAP: Z�

1:Nz
= argmax

Z1:Nz

log
[
P(X1:Nx |Z1:Nz )P(Z1:Nz )

]
• The full posterior distribution: P(Z1:Nz |X1:Nx)

where X1:Nx and Z1:Nz denote all the observed tensors and all the 
latent factors, respectively.

In this section, we will explain inference algorithms for each of 
these problems. Firstly, we will explain a gradient-based inference 
algorithm for maximum likelihood or a-posteriori estimation. Then 
we will explain a Markov Chain Monte Carlo procedure, namely 
the Gibbs sampler, for sampling the posterior distribution over the 
latent factors.

4.1. Maximum likelihood and maximum a-posteriori estimation

Given the dispersion φν and power parameters pν , ML estima-
tion of the factors Z1:Nz reduces to the problem of minimizing the 
β-divergence between the observations and the product of the la-
tent factors, given as follows:

minimize
∑
ν

∑
uν

1

φν
dpν

(
Xν(uν)||

∑
ūν

∏
α

Zα(vα)Rν,α )
subject to Zα(vα) ≥ 0, ∀α ∈ [Nz], vα ∈ Vα (9)

where, the power parameter pν determines the cost function to 
be used for Xν and the dispersion parameter φν determines the 
relative weight of the approximation error to Xν .

ML estimation of the latent factors Zα can be achieved via iter-
ative methods, by fixing all factors Zα′ for α′ �= α but one Zα and 
updating in an alternating fashion. For non-negative data and fac-
tors, we present multiplicative update rules that have the following 
form [21]:

Zα ← Zα ◦
∑

ν Rν,αφ−1
ν 	α,ν( X̂−pν

ν ◦ Xν)∑
ν Rν,αφ−1

ν 	α,ν( X̂1−pν
ν )

, (10)

where ◦ is the element-wise product and the division operator is 
also element-wise. The key quantity in the above update equation 
is the 	α,ν function that is defined as follows:

	α,ν(A) =
⎡
⎣ ∑

u ∩v̄

A(uν)
∑

ū ∩v̄

∏
α′ �=α

Zα′(vα′)Rν,α′
⎤
⎦ (11)
ν α ν α
For updating Zα , we need to compute this function twice for 
arguments A = X̂−pν

ν ◦ Xν and A = X̂1−pν
ν . Even though this 

function seems complicated, 	α,ν( X̂1−pν
ν ) − 	α,ν( X̂−pν

ν ◦ Xν) is 
nothing but the gradient of dβ(Xν || X̂ν) with respect to Zα , as 
detailed in Appendix B. Intuitively, the terms ( X̂−pν

ν ◦ Xν) and 
X̂1−pν

ν come from the derivative of the β-divergence and the term ∑
ūν∩v̄α

∏
α′ �=α Zα′ (vα′ )Rν,α′

is just the derivative of X̂ν with re-
spect to Zα , where the product is over all the factors but Zα (i.e., 
α′ �= α). The monotonicity of these update rules for Nx = 1 is ana-
lyzed in [23].

For MAP inference, the objective given in Eq. (9) will have an 
additional regularization term that involves Zα . The resulting algo-
rithm for MAP inference turns out to be similar to the ML schema. 
For exponential priors over the factors, the update equation be-
comes a simple modification:

Zα ← Zα ◦
∑

ν Rν,αφ−1
ν 	α,ν( X̂−pν

ν ◦ Xν)

Aα +∑
ν Rν,αφ−1

ν 	α,ν( X̂1−pν
ν )

. (12)

For other conjugate priors, the update rules have similar forms 
[24].

The benefit of the multiplicative updates is that they can be 
applied on any tensor factorization model and are rather simple 
to implement. The downside of the multiplicative updates is that 
they typically require a large number of iterations to convergence. 
Alternative optimization methods based on second-order optimiza-
tion [25–27] and active-set methods [28,27] can also be applied for 
specific types of models.

4.2. Full Bayesian inference via the Gibbs sampler

Maximum likelihood and a-posteriori estimation methods pro-
vide us useful and practical tools that can be used in various ap-
plications. However, in certain cases, they are prone to over-fitting 
since they fall short at capturing uncertainties that arise in the in-
ference process. Instead of aiming to obtain single point estimates 
of the latent variables, full Bayesian inference aims to characterize 
the full posterior distribution over the latent variables. Apart from 
being able to handle the uncertainties and therefore being robust 
to over-fitting, full Bayesian inference has many advantages over 
the point estimation methods in various tasks such as the model 
selection problem. In this section, we will develop a Monte Carlo 
method for characterizing the full posterior over the latent factors.

Monte Carlo methods are a set of numerical techniques to esti-
mate expectations of the form:

〈ϕ(x)〉π(x) =
∫

ϕ(x)π(x)dx ≈ 1

N

N∑
i=1

ϕ(x(i)) (13)

where 〈ϕ(x)〉π(x) denotes the expectation of the function ϕ(x) un-
der the distribution π(x) and x(i) are independent samples drawn 
from the target distribution π(x), that will be the posterior distri-
bution in our case. Under mild conditions on the test function ϕ , 
this estimate converges to the true expectation as N goes to in-
finity. The challenge here is obtaining independent samples from a 
nonstandard target density π .

The Markov Chain Monte Carlo (MCMC) techniques generate 
subsequent samples from a Markov chain defined by a transition 
kernel T , that is, one generates x(i+1) conditioned on x(i) as fol-
lows:

x(i+1) ∼ T (x|x(i)). (14)

The transition kernel T does not need to be formed explicitly in 
practice; we only need a procedure that samples a new configu-
ration, given the previous one. Perhaps surprisingly, even though 
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Fig. 3. Graphical representation of the GCTF framework. The nodes represent the 
random variables and the arrows represent the conditional independence structure.

these subsequent samples are correlated, Eq. (13) remains still 
valid, and estimated expectations converge to their true values 
when number of samples i goes to infinity, provided that T sat-
isfies certain ergodicity conditions. In order to design a transition 
kernel T such that the desired distribution is the stationary dis-
tribution, that is, π(x) = ∫

T (x|x′)π(x′)dx′ , various strategies can 
be applied; the most popular one being the Metropolis–Hastings 
(MH) algorithm [29]. One particularly convenient and simple MH 
strategy is the Gibbs sampler where one samples each block of 
variables from the so called full conditional distributions.

Deriving a single Gibbs sampler for all the cases of the power 
parameter p is not straightforward, therefore one needs to focus 
on individual cases of the Tweedie family. For the Poisson model 
(p = 1), we define the following augmented generative model:

Zα(vα) ∼ G(Zα(vα); Aα(vα), Bα(vα)) factor priors

�ν(v) =
∏
α

Zα(vα)Rν,α intensities

Sν(v)|Z1:Nz ∼ PO(Sν(v);�(v)) sources

Xν(uν) =
∑
ūν

Sν(v) outputs

In the model defined in Eq. (6), the observed tensors Xν directly 
depend on the latent factors Zα . Here, we form a so called com-
posite model where we augment the model in Eq. (6) by defining 
the intensity tensors �ν and the source tensors Sν as intermediate 
layers, where in this model, the observed tensors are determinis-
tic functions of the sources. Fig. 3 illustrates this model. Note that, 
the Tweedie models with p = 0 and p = 2, can also be represented 
as composite models [30]; however, the other cases have not been 
explored in the literature.

The Gibbs sampler for the GCTF model with Poisson observa-
tions can be formed by iteratively drawing samples from the full 
conditional distributions as follows:

S(i+1)
ν ∼ p(S|Z (i)

1:Nz
, Xν,�) ν = 1 . . . Nx (15)

Z (i+1)
α ∼ p(Zα|S(i)

1:Nx
, Z ′¬α, X1:Nx ,�) α = 1 . . . Nz (16)

where Z ′¬α denotes the most recent values of all the factors but 
Zα , � denotes the prior distribution parameters {Aα, Bα}Nz

α=1, and 
the full conditionals are defined as:

p(Sν |·) =
∏
uν

M
(

Sν(uν, Ūν); �ν(uν, Ūν)

X̂ν(uν)

)

p(Zα |·) =
∏
vα

G
(

Zα(vα);α(vα),�α(vα)

)

where

α(vα) = Aα(vα) +
⎡
⎣∑

ν

Rν,α

⎛
⎝∑

v̄

Sν(v)

⎞
⎠
⎤
⎦

α

�α(vα) = Bα(vα) +
⎡
⎣∑

ν

⎛
⎝∑

v̄α

∏
α′ �=α

Zα′(vα′)Rν,α′

⎞
⎠
⎤
⎦

Here, M denotes the multinomial distribution. Verbally, given a 
particular instance of observed indices uν , the full conditional of 
Sν is a multinomial distribution over all the latent indices Ūν . Note 
that, the algorithms presented in [10] and [31] are special cases of 
the presented sampling algorithm.

The marginal likelihood of the observed data under a tensor 
factorization model p(X1:Nx) is often necessary for certain prob-
lems such as model selection. By using the samples generated by 
the Gibbs sampler, the marginal likelihood P (X1:Nx) can be esti-
mated by using Chib’s method [32]. Besides, more efficient sam-
plers can be formed by using space alternating data augmentation 
[33,31].

5. Audio processing applications

In addition to the rich theoretical structure of non-negative ten-
sor factorizations, they have a plenty of practical applications. Be-
cause of their ability to efficiently model the high-level structure of 
audio signals, tensor factorizations have been used to solve grand 
signal processing challenges such as source separation and robust 
pattern recognition. They have also provided completely new so-
lutions to problems that are more specific to audio signals, such 
as audio bandwidth extension, dereverberation, and audio upmix-
ing. We will first describe the audio representations that are used 
in tensor factorizations, and then describe different audio process-
ing applications where tensor factorizations have successfully been 
applied.

5.1. Time-frequency representation

An audio signal represents the air pressure as the function of 
time and contains both positive and negative values. In the sim-
plest scenario the signal is recorded with only one microphone, 
and the signal is therefore one dimensional. In order to enable 
modeling these kinds of audio signals with non-negative tensor 
factorization, we typically represent them using a spectrogram that 
characterizes the intensity of sound as the function of time and 
frequency. Fig. 4 represents an example audio signal and its spec-
trogram.

Unlike raw audio signals that can show huge variations, spec-
trogram representations of sounds possess typically easily perceiv-
able patterns. For example, in the example figure, one can see that 
the notes are harmonic (there are large amplitudes at regular fre-
quency intervals), and the spectrum of each note is rather static 
over time. This allows modeling them efficiently with non-negative 
tensor factorizations. Sound types with more diverse characteris-
tics can also be modeled with tensor factorizations, provided that 
an appropriate model that takes into account the structure of the 
sound is used.

A standard procedure to calculate the spectrogram consists of 
the following steps:

1. Segment the signal into fixed-length frames. Typical frame 
length range between 10 ms and 100 ms. Adjacent frames are 
typically overlapping 50% or 25%.

2. Window each frame with a window function such as the Ham-
ming window to smooth discontinuities at frame boundaries.

3. Calculate the spectrum within each frame by applying discrete 
Fourier transform.

4. Calculate the magnitude spectrum by taking the absolute val-
ues of each entry of the spectrum. The spectrum can also be 
decimated e.g. by integrating magnitudes within Mel bands.
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Fig. 4. An example audio signal (top panel) consisting of note sequence C4, G4, C4 +
G4 played by piano, and its spectrogram (bottom panel).

The resulting data matrix X(i, j) is indexed by frequency index i
and frame index j. In the case of multichannel audio where mul-
tiple microphones are available, the above procedure would be 
applied separately to each channel, so result in a 3D data tensor 
indexed by time, frequency, and channel.

In some applications such as signal classification [34] or poly-
phonic music transcription [35] it suffices to apply tensor factor-
izations on the data matrices, without the need to reconstruct 
time-domain audio signals. However, in many applications such as 
signal denoising and source separation [36,37], the target output 
is an audio signal, and there is need to reconstruct an audio sig-
nal based on the factor matrices. Steps 1–3 above are invertible, 
but Step 4 discards the phase information, and is therefore not in-
vertible. There exist methods for reconstructing signals from mag-
nitude spectrograms [38,39], but a simple and efficient approach 
uses simply the phases of the complex spectrogram obtained at 
Step 3, and assigns them for the output data matrices.

5.2. Source separation and signal denoising

Many real-world audio signals are mixtures consisting of mul-
tiple sources. For example, in music recordings there are typically 
multiple instruments playing, and speech signals captured by mo-
bile phones contain some interfering sources from the background. 
Many signal processing algorithms (classification, coding, etc.) as-
sume a single source, and therefore there is a large need for source 
separation algorithms that extract the signal produced by an indi-
vidual source from a mixture.

In the context of tensor factorizations, mixture data matrix 
X(i, j) is modeled as the sum of sources S(i, j, n) (see Section 4.2) 
as

X(i, j) =
N∑

n=1

S(i, j,n), (17)

where n is the source index and N is the number of sources. For 
example in the case of speech denoising, we would have N = 2, 
and source n = 1 would correspond to speech, and n = 2 would 
correspond to noise [40].
Each source is modeled with tensor factorization. For example, 
the NMF factorization for source n is given as

S(i, j,n) ≈ Ŝ(i, j,n) =
∑

k

Z1(i,k,n)Z2(k, j,n). (18)

By combining the above equations, we can conveniently write 
the model for the mixture data matrix also as a tensor factoriza-
tion as

X(i, j) ≈ X̂(i, j) =
N∑

n=1

∑
k

Z1(i,k,n)Z2(k, j,n). (19)

Provided that the data matrices of individual sources become 
correctly estimated, each source can be reconstructed separately 
according to Eq. (18).

Depending how much a priori knowledge about the sources is 
utilized, a source separation problem can be termed as being un-
supervised, supervised, or semisupervised:

• Unsupervised: all the factor matrices are estimated using the 
mixture signal only [37], and no training data is used to esti-
mate them.

• Supervised: isolated training data of each source exists and has 
been used to obtain factor matrices Z1(i, k, n) representing the 
source spectra at a training stage, which are then kept fixed 
[41,40].

• Semi-supervised: isolated training data exists at least for one of 
the sources which is used to estimate entries of Z1(i, k, n) for 
those n for which training data is available. However, isolated 
training data does not exist for all the sources and Z1(i, k, n)

for the rest of the sources needs to be estimated from the 
mixture data matrix [42,43]. Furthermore, in some cases there 
might be side information available for some sources, such as 
a collection of symbolic music data that is related to a certain 
source. Incorporating such side information to the estimation 
process via coupled factorization models can further improve 
the separation accuracy [44].

5.3. Dereverberation

In natural environments the signal recorded by a microphone is 
a convolution of a source signal and the impulse response from the 
source to the microphone. Large amounts of reverberation make 
the signal less intelligible and difficult to process and analyze with 
algorithms that assume undistorted source signals. Therefore there 
is need for algorithms that either dereverberate the signal, or those 
that are able to process and analyze reverberant signals. Tensor 
factorizations can be used for both purposes.

The data matrix X(i, j) of reverberant signal can be modeled as

X(i, j) ≈ X̂(i, j) =
∑

t

U (i, t)H(i,

d︷︸︸︷
j − t)

=
∑

t

∑
d

U (i, t)H(i,d)δ(d − j + t)

=
∑
t,d

U (i, t)H(i,d)Z3(d, i, t) (20)

where δ(x) = 1 if x = 0 and δ(x) = 0 otherwise, U (i, t) is the data 
matrix of unreverberant, dry signal, and H(i, d) is the convolution 
filter in the time-frequency domain [45,46]. Tensor Z3(d, i, t) =
δ(d − j + t) is fixed.

Note that above we assume that the unreverberant signal ma-
trix U (i, t) and the convolution filter response matrix H(i, d) are 
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non-negative. Modeling arbitrary time-domain signals and convo-
lutions would require using complex-valued signal and response 
matrices, and therefore the above formulation provides only an 
approximation of realistic reverberations. On the other hand, the 
non-negativity is an efficient regularization, that overcomes some 
problems present in standard deconvolution problems.

The above formulation is a specific instance of non-negative 
tensor factorizations, which allows estimating U (i, j) and H(i, d)

directly using techniques described in Section 4. In practice, bet-
ter reverberation results are obtained by modeling U (i, j) with 
another tensor factorization (for example NMF, [45]), or by regu-
larizing it by using a sparse prior for its entries [46].

5.4. Robust classification

Pattern recognition of audio signals is the core of many ap-
plications, for example automatic speech recognition, automatic 
music transcription, and multimedia information retrieval. As was 
explained in Section 5.2, many real-world audio signals consist 
of multiple sources. This makes the recognition of an individual 
source within a mixture challenging, since acoustic features ex-
tracted from the mixture do not represent the target source only, 
but are distorted by other sources.

Source separation techniques described in Section 5.2 could 
naturally be used as a pre-processing step to separate the target 
signal from a mixture. However, the artifacts produced by source 
separation may have a negative effect on the recognition accuracy, 
and classification approaches that directly utilize tensor factoriza-
tion have been found more efficient in some scenarios [34].

Provided that there is isolated training material from each of 
the target sources classes, we can model the mixture signal as the 
sum of source and class specific tensor models as in the source 
separation approach in Eq. (19). For frame j, the likelihood for each 
class n can then be calculated as 

∑
k Z2(k, j, n) [34], without the 

need to actually reconstruct source signals. Non-linear mappings 
from tensor Z2(k, j, n) to likelihoods can also be used [47].

The coupled tensor factorization framework allows also learn-
ing mappings between acoustic data and class likelihoods from 
mixture signals [48,49]. At a training stage, this approach factors 
acoustic data matrix X1(i, j) and reference class likelihood matrix 
X2(c, j) jointly as

X1(i, j) ≈
∑

k

Z1(i,k)Z2(k, j) (21)

X2(c, j) ≈
∑

k

Z3(c,k)Z2(k, j). (22)

At the actual usage stage, the learned Z1(i, k) is kept fixed, and 
Z2(k, j) is estimated to model the observed acoustic data matrix 
according to Eq. (21). After that Z2(k, j) is projected to give an 
estimate of the class likelihood matrix according to Eq. (22) with 
fixed Z3(i, k).

5.5. Restoration and missing data imputation

In some scenarios only a part of an audio signal has been 
reliably observed, which affects its perceptual quality as well as 
suitability for computational analysis. For example, when audio 
streamed from the Internet, a segment of the signal may be un-
available because of packet losses. Similarly, physical damage in-
flicted to a vinyl recording may introduce ‘clicks’ where a short 
audio segment is lost. Part of audio can also be considered lost, 
if a recording includes interfering sources which dominate a time-
frequency segment of a signal. Redundancy in the audio signal can 
be used to get an estimate of the missing data.
Within the tensor factorization framework, a missing data sce-
nario can be formulated in terms of the observed data matrix 
X(i, j) (that may contain missing segments whose values are as-
sumed to be zero), and a fixed binary mask M(i, j), where entries 
with values 1 correspond to reliable, observed data points of X , 
and values 0 indicate lost data points. A generic model for X is 
given as

M(i, j)X(i, j) ≈ M(i, j) X̂(i, j), (23)

where X̂(i, j) is a tensor model. From the probabilistic point of 
view, when a data sample is missing, i.e., M(i, j) = 0, this is equiv-
alent that the noise variance on X(i, j) is infinite. Therefore, this 
particular sample does not contribute to the likelihood. When the 
latent factors are being estimated, only the observed elements are 
taken into account; in other words we minimize the following dis-
crepancy:∑

i, j,
M(i, j)=1

dβ(X(i, j)|| X̂(i, j)). (24)

Here, the binary mask M enables the estimation process to use 
only the reliable, observed data points for which M(i, j) = 1. An 
estimate for missing data points for which M(i, j) = 0 is simply 
given by X̂(i, j). Since typical audio data matrices are low rank 
and can be approximated with tensor factorizations, redundancy 
in the data allows recovering the missing entries [50,51].

It should be noted that when complete frames of data are miss-
ing, i.e. for some j all the values X(i, j), i = 1 . . . I are missing, 
basic NMF cannot recover the data, and one needs to use a tensor 
factorization that explicitly models the relation between frames. 
For example convolutive techniques [52,36] that will be discussed 
in Section 6.1 can be used for this purpose. For music signals, the 
restoration quality can be further improved by introducing sym-
bolic music data as side information [21,53]. It should also be 
noted that the above techniques can only recover the magnitudes 
of the missing data, and there is need to use other methods to 
estimate missing phases.

5.6. Coding and upmixing

Even though perceptual audio codecs are widely adopted and 
can provide significant compression gains while preserving high 
audio quality, there is always need for higher compression gains. 
Existing audio coding methods are mainly based on perceptual 
coding, that rely on coding perceptually less relevant parts of a 
signal coarsely. They do not utilize long-term redundancies, which 
are present in most of the audio signals to be coded. Since tensor 
factorizations effectively model the redundancy in the data, they 
have potential in audio coding as well.

Tensor factorizations can be used for audio coding simply by 
representing the audio data matrix X(i, j) to be encoded with a 
tensor model, such as the one in Eq. (1). The parameters of the 
tensor matrices are then quantized and transmitted [54]. Criteria 
that maximize the perceptual quality of the factorization can be 
used to estimate the factor matrices [54].

A major drawback of the discussed tensor models for audio 
coding is their capability to model magnitude spectrogram data 
matrices only. For signal reconstruction, the phases need to be 
coded separately. Since the phases are much more stochastic, they 
cannot be compressed with tensor factorizations, and coding them 
requires a significant numbers of bits [54].

There exist also ways that avoid coding the phases. For ex-
ample, we can do audio upmixing to reconstruct multichannel au-
dio signals represented using a tensor model as follows. At the 
encoding stage, a multichannel audio recording is modeled with 
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Fig. 5. Example spectrogram factored into a product of two factor matrices with the basic NMF model.
3D tensor factorization to learn the prominent repeating spectral 
structures and their amplitudes within each channel. Then, the 
multichannel audio is downmixed to one or two channels, and 
the resulting signal is coded using a conventional audio codec. 
Also the estimated data tensor matrices are coded, and transmit-
ted together with the coded downmixed signal. At the decoder, 
the downmixed signal can be upmixed to multiple channels using 
the tensor factorization parameters. Even with fairly simple ten-
sor model quantizations the approach produces performance that 
is comparable to state-of-the-art multichannel audio codecs [55].

A slightly similar idea can be used in informed source separation, 
where an encoder estimates the parameters of individual sound 
sources with a tensor model using data from isolated recordings, 
before they are mixed to form the target mixture signal. The ten-
sor model parameters and the mixture signal are then coded and 
transmitted. The decoder can extract individual sources from the 
mixture using the tensor model parameters [56]. Estimating the 
tensor model parameters from isolated material allows better sep-
aration quality in comparison to approaches where the separation 
is done blindly, i.e, not using information about the signals before 
mixing.

6. Audio processing models

The general tensor factorization framework presented in Sec-
tion 3 allows a wide variety of different models. The goal of this 
section is to illustrate the general framework by giving examples 
of some commonly used models and their interpretations, and also 
show how the models can be made increasingly more complex but 
still realistic for audio processing.

Let us start with the simple and most commonly used model, 
NMF, presented already in Eq. (1), which is given as

X̂(i, j) =
∑

k

Z1(i,k)Z2(k, j). (25)

The interpretation of this model is that the spectrogram is mod-
eled as a sum of components indexed by k, each of which has 
a static spectrum Z1(i, k) and time-varying gain Z2(k, j). Many 
realistic audio sources can be modeled with this model: for ex-
ample, individual tones produced by musical instruments have of-
ten rather stationary spectrum, which amplitude just changes over 
time [37]. Speech is composed of basic units such as phonemes, 
and can also be modeled as a sum of components [34]. An exam-
ple factorization of a simple music signal spectrogram with this 
model is illustrated in Fig. 5.

6.1. Convolutive matrix factorization

A shortcoming of the basic NMF model is that each frame 
is modeled independently from each other, and rearranging the 
frames does not affect the factorization. However, natural sounds 
have very strong temporal dynamics, meaning that adjacent frames 
are dependent on each other, and it is often advantageous to ex-
plicitly model these dependencies. There exist several dynamic ex-
tensions of NMF, including smooth NMF [37,9], non-negative hid-
den Markov model [57], non-negative dynamical systems [58–60], 
factorial scaled hidden Markov model [61], and high-resolution 
NMF [62,63].

The most commonly used extension is the non-negative matrix 
factor deconvolution [64], given as

X̂(i, j) =
∑

k

∑
d

Z1(i,k,d)Z2(k, j − d). (26)

In this model, instead of static component spectra Z1(i, k) that 
were used in Eq. (25), we use spectrogram patches Z1(i, k, d) hav-
ing also a time dimension d = 0, . . . , D . Each patch represents 
a short spectrogram object. The factor Z2 defines the amplitude 
for these spectral patches for each occurrence of each patch. The 
model is illustrated in Fig. 6.

In order to make the convolutive model match with the general 
tensor factorization formulation given in Eq. (5), we can rewrite 
Eq. (26) as
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Fig. 6. Example spectrogram factored into a product of two factor matrices with the non-negative matrix factor deconvolution.
X̂(i, j) =
∑

k

∑
d

Z1(i,k,d)Z2(k,

τ︷ ︸︸ ︷
j − d)

=
∑

k

∑
d

∑
τ

Z1(i,k,d)Z2(k, τ )δ(τ − j + d)

=
∑

k

∑
d

∑
τ

Z1(i,k,d)Z2(k, τ )Z3(τ , j,d), (27)

where Z3(τ , j, d) = δ(τ − j +d) is fixed. Methods presented in Sec-
tion 4 can be used to infer factor matrices Z1(i, k, d) and Z2(k, τ )

of the model that are not fixed.
The above formulation uses convolution in time and is therefore 

able to model the temporal context. Convolution can equally well 
be done in frequency. When this model is applied on a constant-
Q time-frequency representation where the frequencies are dis-
tributed logarithmically, we can model different pitches of an in-
strument with a single component [65]. Convolution in time and 
frequency can also be combined into a 2D deconvolution model, 
which takes into account both the temporal and spectral con-
text [66].

6.2. PARAFAC model for multichannel audio

The models presented in the previous sections assumed a one-
channel audio signal, for example recorded with a single micro-
phone. In this case the data matrix X(i, j) is the time-frequency 
magnitude spectrogram of the signal. On the other hand, we can 
also have multichannel audio recordings captured with multiple 
microphones, or produced in a studio by mixing tracks of individ-
ual sound sources.

The most straightforward way to represent multichannel signals 
is to calculate the time-frequency representation similarly from 
each channel, to obtain 3D data tensor matrix X(i, j, c), where c
is the channel index. The simplest tensor factorization model for 
this data is the PARAFAC model presented in Eq. (2). Similarly to 
the basic NMF model, in this model, we assume that the data is 
an additive combination of components, each of which has a fixed 
spectrum Z1(i, k) and time-varying gain Z2(k, j). In addition to 
this, there is a channel gain factor matrix Z3(k, c), which indicates 
the gain of each component k in each channel c [67]. An illustra-
tion of this model is given in Fig. 7.

The above multichannel extension matches well with realistic 
multichannel audio recordings. For example when multichannel 
audio is produced at a recording studio, sources are positioned 
to different spatial locations by choosing their amplitude for each 
channel appropriately. When material is recorded with different 
microphones, the amplitude of a source captured by a microphone 
depends on the distance between the source and the microphone.

It should be noted that the above model cannot model phase 
differences between channels. Especially when multichannel ma-
terial is recorded with microphones that are close to each other, 
phase differences between channels are an important cue that en-
ables e.g. localization of sound sources. To enable modeling phase 
differences (dependencies between channels) in the tensor fac-
torization framework, complex-valued extensions of non-negative 
matrix factorization have been used [68–70]. The magnitude of the 
data is typically modeled using the standard NMF model, whereas 
for the phases a separate phase model needs to be used.

6.3. Excitation-filter models

The models discussed in the previous sections are quite generic 
and could be used to analyze many other types of signals as well. 
On the other hand, audio signals have certain properties that can 
also be taken into account in more detail when designing a ten-
sor factorization model. One such example is the excitation-filter 
model, where the signal is modeled as an excitation signal being 
filtered by a filter. For example in speech production, excitation 
signal generated by the lungs and vocal folds is acoustically filtered 
by the vocal tract. In the signal domain this can be modeled by the 
convolution of the excitation signal and the impulse response of 
the filter. In the magnitude spectrum domain that is typically used 
by tensor factorization models, this corresponds to point-wise mul-
tiplication of the excitation spectrum and the magnitude response 
of the filter [71].
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Fig. 7. An example stereo audio recording represented as a 3D tensor that consists of 2D spectrograms of the left and right channel is factored into a product of component 
spectral, gains and channel gains.

Fig. 8. Example spectrogram of piano music spectrogram X(i, j) factored into a product of a diagonal matrix with the learned filter Z3(i) on the diagonal, matrix Z1(i, k)

consisting of spectra of individual piano notes, and the matrix Z2(k, j) of frame-wise gains of the notes.
We can extend the basic NMF model in (1) by assuming that 
the spectrum Z1(i, k) of each component k corresponds to an ex-
citation spectrum, which are filtered with a single filter Z3(i). This 
model can be written as

X̂(i, j) =
∑

k

Z1(i,k)Z2(k, j)Z3(i), (28)

where, Z2(k, j) is the gain of each component in each frame. An 
illustration of this model is given in Fig. 8.

The above model is handy for example in adapting component 
spectra Z1(i, k) acquired at a training stage to model test data from 
different environment.

A generic excitation model for harmonic sound sources can 
for example consist of harmonic combs with different fundamen-
tal frequencies. The body responses of natural instruments are 
smooth in frequency, and in order to constrain the filter Z3(i) to 
be smooth, it can be modeled as a sum of spectral smooth elemen-
tary responses Z4(k, i) [72] as Z3(i) =∑

l Z4(l, i)Z5(l), where Z5(l)
are the response weights. This leads to total model

X̂(i, j) =
∑
k,l

Z1(i,k)Z2(k, j)Z4(l, i)Z5(l), (29)

which is still a specific instance of the GCTF framework. More 
sophisticated excitation-filter models for music processing are 
presented in [73,74]. A generalized NMF-based framework for 
excitation-filter models is presented in [75].

7. Discussion and conclusions

In this paper, we reviewed a general framework for modeling 
and computing non-negative tensor decompositions. In particular, 
we described hierarchical modeling strategies that can be used to 
model structured domains such as audio. Given the model speci-
fication, an inference method can be derived in a straightforward 
manner. In modern applications, it is often required that side in-
formation is employed in an effective manner. The coupled tensor 
factorizations are useful in such settings. While such models are a 
lot more powerful, the inference algorithms are conceptually quite 
similar to the basic matrix factorizations, if the necessary compu-
tational primitives are carefully defined. We described the general 
form of the multiplicative update algorithms and a Markov Chain 
Monte Carlo procedure, namely the Gibbs sampler, that are appli-
cable to any model topology that has multilinear structure.

We have also described a full family of probabilistic models, 
known as the Tweedie models [22], that is an important special 
case of the exponential dispersion models. One can obtain impor-
tant distributions as special cases of the Tweedie distribution, such 
as the Gaussian, Poisson and gamma distributions. Modeling tensor 
factorizations with Tweedie models enabled us to have a flexible 
algorithmic framework that covers a broad range of cost functions 
such as the Euclidean, Kullback–Leibler, and Itakura–Saito diver-
gences.

In coupled factorizations, the dispersion and power parameters 
of a model play an important role, since they together determine 
the cost function to be optimized. Typically, these parameters are 
selected manually. One possible future direction is to explore the 
applications of divergence learning methods [76] on audio process-
ing, where the dispersion and power parameters are also estimated 
along with the latent factors. Similarly, the model order typically 
has a large effect on the interpretability and accuracy of a model. 
Even though methods for automatic estimation of model order 
have been proposed [10], there is still need for development.

In the last decade, matrix and tensor decomposition based 
methods had a big impact on audio processing applications. Yet, 
there are still significant challenges for future research. One impor-
tant obstacle is scalability. Unfortunately, the inference algorithms 
described in this paper do not scale well with the size of the data, 
since they need to store all the data in the memory and pass over 
the whole dataset multiple times during the estimation process, 
making the inference impractical for very large data sets. Recently, 
parallel and distributed algorithms for making ML and MAP in-
ference in matrix and tensor factorizations have been proposed 
[77,78] for certain model topologies (MF and PARAFAC). However, 
parallel and distributed inference methods for factorization models 
with arbitrary topologies are need to be explored.

Another important future research direction is online inference. 
In many audio applications, it is desirable to work with stream-
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ing data to generate estimations on the fly. This is a topic in 
adaptive signal processing, where recursive estimation is the key 
mechanism. Currently, matrix and tensor decomposition methods 
are naturally formulated and solved as batch processing methods. 
It is desirable to develop theoretically sound methods that provide 
recursive solutions that work with a single pass over data. There is 
also need for developing more efficient optimization algorithms for 
basic tensor models so that they can be implemented in real-time 
systems.

In this paper we reviewed some of the most commonly used 
tensor models for audio signal processing. There exists a large 
number of models that were not covered, and it is expected that 
different variants of models will still be needed to model the struc-
ture of realistic audio signals and other information coupled with 
them. Data from audio and other domains have so far been cou-
pled with tensor models in a relatively small number of studies, 
and it is expected that significant scientific advancements can be 
achieved by coupling information from multiple domains with ten-
sor models.

This paper has described several models of increasing complex-
ity for various audio processing tasks. Yet, in most models, mod-
eling time frequency decompositions or merely power spectra is a 
simplification and discards detailed structure about the underlying 
signals. We anticipate that starting from the tensor factorization 
formalism, it would be possible to devise physically realistic mod-
els without compromising inferential efficiency.
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Appendix A. Probability density and mass functions

• Exponential Distribution:

E(x;a) = a exp(−ax) (A.1)

• Gamma Distribution:

G(x;a,b) = xa−1ba exp(−bx)

�(a)
(A.2)

• Multinomial Distribution:

M(s; x,p) = δ(x −
∑

i

si)x!
I∏

i=1

psi
i

si ! (A.3)

where s = {s1, . . . , sI } and p = {p1, . . . , pI }.

Appendix B. Derivation of the multiplicative update rules

In order to solve the optimization problem given in Eq. (9), we 
make use of a gradient descent (GD) algorithm that is defined as 
follows:

Z (i)
α = Z (i−1)

α − η(i)∇ZαL(X1:Nx) (B.1)

where i denotes the number and ∇ZαL(·) is the gradient of the 
objective function defined in Eq. (9). In this section, we will derive 
the multiplicative update rules (MUR) that are given in Eq. (10), 
that is actually a GD algorithm whose step sizes are chosen adap-
tively at each iteration.
Before deriving the partial derivatives with respect to Zα , let 
us write down the following derivatives that will become handy at 
the final derivation step. The general form the derivative of the β
divergence with respect to the second parameter is given as fol-
lows:

∂dp(x||x̂)
∂ x̂

= −xx̂−p + x̂1−p = x̂ − x

x̂p

Similarly, the derivative of the β-divergence dpν (Xν(uν); X̂ν(uν))

with respect to an element of the model output tensor X̂ν(uν) is 
given as follows:

∂dpν (Xν(uν); X̂ν(uν))

∂ X̂ν(uν)
= X̂ν(uν) − Xν(uν)

X̂ν(uν)pν
(B.2)

By using Eq. (B.2), we can obtain the partial derivatives that are 
required in the GD algorithm as follows:

∂L(X1:Nx)

∂ Zα(vα)
=
∑
ν

1

φν

∑
uν

∂dpν (Xν(uν); X̂ν(uν))

∂ X̂ν(uν)

∂ X̂ν(uν)

∂ Zα(vα)

=
∑
ν

[
Rν,α 1

φν

∑
v̄α

(
X̂ν(uν) − Xν(uν)

X̂ν(uν)pν

)

×
∏

α′ �=α

Zα′(vα′)Rν,α

]
(B.3)

It is easy to verify that Eq. (B.3) can be re-written in the following 
form:

∇ZαL(X1:Nx) =
∑
ν

[
Rν,αφ−1

ν 	α,ν( X̂1−pν
ν )

]

−
∑
ν

[
Rν,αφ−1

ν 	α,ν( X̂−pν
ν ◦ Xν)

]

where the function 	α,ν(·) is defined in Eq. (11). Provided all 
the factors and observed tensors are non-negative, we can ob-
serve that in the right hand side of the above equation, both terms 
are non-negative. By making use of this observation, MUR method 
makes use of the following step size in order to preserve the non-
negativity of the latent factors during the estimation process:

η(i) = Z (i−1)
α∑

ν

[
Rν,αφ−1

ν 	α,ν( X̂1−pν
ν )

] (B.4)

where the division is element-wise. By plugging this step size 
into Eq. (B.1), we obtain the multiplicative update rules given in 
Eq. (10). For MAP inference, the derivation procedure is the same 
up to adding one more term to the overall objective function.
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