
JID:YDSPR AID:2210 /FLA [m5G; v1.225; Prn:21/11/2017; 14:54] P.1 (1-15)

Digital Signal Processing ••• (••••) •••–•••
Contents lists available at ScienceDirect

Digital Signal Processing

www.elsevier.com/locate/dsp

A Bayesian change point model for detecting SIP-based DDoS attacks

Barış Kurt a,∗, Çağatay Yıldız a, Taha Yusuf Ceritli a, Bülent Sankur b, Ali Taylan Cemgil a

a Department of Computer Engineering, Bogazici University, 34342 Bebek, Istanbul, Turkey
b Department of Electrical and Electronics Engineering, Bogazici University, 34342 Bebek, Istanbul, Turkey

a r t i c l e i n f o a b s t r a c t

Article history:
Available online xxxx

Keywords:
VoIP security
SIP
DDoS
Simulation
Bayesian change point models

Session Initiation Protocol (SIP), as one the most common signaling mechanism for Voice Over Internet
Protocol (VoIP) applications, is a popular target for the flooding-based Distributed Denial of Service
(DDoS) attacks. In this paper, we propose a DDoS attack detection framework based on the Bayesian
multiple change model, which can detect different types of flooding attacks. Additionally, we propose a
probabilistic SIP network simulation system that provides a test environment for network security tools.

© 2017 Elsevier Inc. All rights reserved.
1. Introduction

VoIP is the technology of carrying voice and multimedia com-
munications through the Internet Protocol (IP) networks. Due to its
multimedia support and low infrastructure cost, VoIP systems are
worldwide taking over circuit-switched telephone networks. With
the introduction of 5G, the VoIP is predicted to become the domi-
nant methodology for voice and multimedia communications.

The VoIP systems transfer voice and multimedia data between
communicating parties through the packet-switched IP networks
based on data transfer protocols, such as the Real-time Transport
Protocol (RTP). In addition, they require session-level signaling pro-
tocols for managing their communication sessions. Considering its
lightweight nature, simplicity and ease of implementation, the SIP
[1] is one of the most popular open standard signaling proto-
cols designed for VoIP. SIP provides signaling functions necessary
to register clients, check their locations and availability, exchange
information on their data transmission capabilities, and provide
handshakes necessary for connection setups.

Despite all their attractive features, the downside is that VoIP
systems are more vulnerable to security threats compared to their
circuit switched predecessors. There are two basic sources of secu-
rity threats for VoIP systems. Firstly, VoIP systems are affected by
all the lower protocol layer threats, e.g., layer threats. Secondly,
VoIP systems using open standards protocols suffer from many
protocols-specific vulnerabilities, in other words, they are prone
to security threats specifically designed to exploit the vulnerabil-
ities of the underlying signaling protocols [2], [3]. These protocol-
specific attacks are usually not classified as network attacks by the

* Corresponding author.
E-mail address: bariskurt@gmail.com (B. Kurt).
https://doi.org/10.1016/j.dsp.2017.10.009
1051-2004/© 2017 Elsevier Inc. All rights reserved.
conventional network-level security systems. Therefore, VoIP sys-
tems need extra security mechanisms for detecting and preventing
VoIP specific attacks.

One of the most frequently observed type of cyber-attack is the
DDoS flooding attack [4], which is typically realized by sending a
vast amount of network protocol messages to a victim. These types
of attacks aim to exploit the weaknesses in the SIP protocol or
faults due to some poor implementation. An example of such DDoS
flooding attack is the INVITE attack. In this case, the attacker tries
to set up communication with many SIP users by sending INVITE
requests to the SIP proxy server. The server, which maintains a ta-
ble for each SIP session, holds an entry for each INVITE request and
awaits response from the call receiver for a fixed amount of time.
Eventually, the server reaches its memory capacity while trying to
keep track of an excessive amount of connections. Another typi-
cal DDoS attack is the SYN-flooding [5], where a target network
proxy is forced to maintain a barrage of Transmission Control Pro-
tocol (TCP) sessions, and eventually becomes unresponsive due to
overutilization of its resources. Thus DDoS flooding attacks aim to
cripple a target system by overusing and eventually depleting its
resources, such as bandwidth, CPU or memory, and making it un-
able to respond to the requests of its legitimate subscribers.

DDoS attacks can have negative impact on business since a tar-
get system cannot provide services to its customers during attacks.
The downtime of servers creates revenue loss and reputation dam-
age, which in turn leads to loss of revenue as well, for service
providers. Furthermore, the productivity of workforce is reduced
as employees cannot use affected systems for operations. Among
victims of DDoS attacks, well-known companies can be found. For
instance, GitHub was under attack for six days [6]. Another vic-
tim of such attacks was BBC where an online DDoS tool named
BangStresser, which delivers attacks as a service, might be used [7].

https://doi.org/10.1016/j.dsp.2017.10.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/dsp
mailto:bariskurt@gmail.com
https://doi.org/10.1016/j.dsp.2017.10.009

JID:YDSPR AID:2210 /FLA [m5G; v1.225; Prn:21/11/2017; 14:54] P.2 (1-15)

2 B. Kurt et al. / Digital Signal Processing ••• (••••) •••–•••
A recent survey reports an increase in DDoS attacks, arguing
that it might be a possible result of the proliferation of cheap and
easy-to-launch attack tools [8]. According to another report [9], the
number of attacks decreases while the average peak attack size
increases. For attacks targeting SIP based VoIP systems, there has
been an upward trend as well [10]. Defense strategies for these
common DDoS attacks have been studied extensively [11,12].

Many network security systems have been developed for the
detection of SIP-based DDoS attacks [13]. The majority of these
systems uses supervised methods, such as thresholding [14] and
rule-based pattern matching, as in [15,16]. These supervised meth-
ods require a training phase for learning patterns for each type
of attack and for building a dictionary of known attacks. Attack
detection is based on finding matching patterns between the cur-
rent network state with one of the known attack patterns in the
training set. However, when an unprecedented attack occurs, a su-
pervised system can easily fail to detect it, since the pattern of the
new attack will possibly be different than all the learned attack
patterns. It becomes imperative then to re-train the system by an
extended training data set which includes samples from the new
attack traffic.

In this paper, we focus on the detection of SIP-specific DDoS
flooding attacks [3,17]. We aim therefore to develop a more robust
and generalizable DDoS monitor based on anomaly detection prin-
ciples. Anomaly detection [18] is an unsupervised methodology
where the system is programmed to recognize significant devia-
tions from its learned data patterns, and mark them as anomalous
events. In our case, anomalous events are interpreted and marked,
subject to further analysis, as security threats. We assume that the
SIP server state has a stationary behavior under the so-called nor-
mal, “non-attack” SIP traffic, but that these statistics will change
noticeably under a DDoS flooding attack. To sense these attacks,
we have designed our feature vectors as consisting of a combina-
tion of incoming and outgoing SIP message counts plus the vector
of resource usage measurements of the SIP proxy software. Our
DDoS monitor is based on the Bayesian change point model [19]
which models the normal SIP server behavior and infers changes
that are possibly due to the DDoS attacks.

Collecting real-world VoIP network traces and annotating them
without violating the privacy of the users is a tedious task. There-
fore, for the proof of our concept, we conducted our experiments
in a simulated environment. We developed a real-time SIP net-
work simulator system, which models a social network for a group
of users. The simulator generates actual voice conversation calls by
setting up SIP sessions between users through a SIP proxy server.
Our DDoS detection mechanism is deployed next to the SIP proxy
server, so that it does not track RTP traffic between users. There-
fore, the simulated SIP sessions are silent communications, i.e.,
actual data transfer via RTP is not generated. We generate DDoS
attacks with the help of a commercial network vulnerability scan-
ning tool Nova-VSpy [20], simultaneously with the VoIP simulation.

The contributions of our work can be listed as:

– We develop a Bayesian change point model for detecting SIP-
oriented DDoS attacks. The proposed framework extends and
generalizes the previous change-point based detection meth-
ods. Our change point-based DDoS monitor can be customized
with different server parameters and different probabilistic ob-
servation models.

– A real-time SIP network traffic simulator based on social net-
work modeling is developed and the software made publicly
available. The proposed framework is tested with real-time
data generated by the simulator, interleaved with DDoS attack
data generated by a commercial network vulnerability scan-
ning tool.
1.1. Paper structure

The remainder of this paper is organized as follows. Section 2
presents previous studies on SIP DDoS detection and change point
models. Section 3 presents a SIP network terminology and de-
tails of the protocol. Section 4 presents our change point model
in details. Section 5 describes the experimental setup we used to
evaluate our methodology. The experimental results are given in
Section 6. Finally, Section 7, evaluates results of the experiments,
and draws conclusions.

2. Related work

There are comprehensive literature surveys on vulnerabilities
of the SIP protocol [2], VoIP security research [3], DoS attacks
targeting SIP networks [17], and security systems to counter SIP-
based DoS attacks [13]. One of the earliest and simplest attempts
to prevent single-source DoS flooding attacks in SIP systems was
proposed by Iancu [14] where a rate limiter is deployed at the
server to limit per-host SIP traffic. More elaborate methods were
proposed to detect both single and distributed DoS attacks em-
ploying rule-based schemes, statistical methods, anomaly detection
approaches, and machine learning tools.

Rule-based methods maintain a list of rules, or protocol finite
state machines, and check the current server state against con-
sistent patterns described in the rule set [15,21–23]. Ormazabal
et al. [24] propose a large scale SIP firewall solution by combin-
ing several rule-based filters and attack mitigation mechanisms.
While such rule-based systems are useful in detecting DoS attacks,
they require carefully designed and perpetually updated rule books
and fine-tuned thresholds. Since these systems can easily miss a
novel attack whose descriptive rule has not yet been learned, they
need to be reinforced with additional tools based on statistical ap-
proaches.

Machine learning methods were proposed as an alternative to
rule-based and statistical methods for DDoS flooding detection,
including support vector machines [25], evolutionary algorithms
[26], naive Bayes, and decision trees [27]. Tsiatsikas et al. [28,29]
give a comparison of 5 supervised classifiers and conclude that
these methods provide good results on low-rate DoS attacks with
little classification time overhead. Inherently, the success of su-
pervised algorithms depends on the quality of the data set used
during their training. For example in [29], authors employ dif-
ferent training sets for different basic scenarios. Obtaining such
high quality training data can be difficult in a real world im-
plementation of a supervised system. In contrast, we propose an
unsupervised system, with an optional training phase to optimize
its parameters. We show that setting those parameters empirically
with the help of domain expertise is sufficient.

Reynolds and Ghosal [30] were the first to propose applying
change point detection in SIP networks. They present a cumula-
tive sum (CUMSUM) algorithm in order to detect INVITE flooding.
Later, Rebahi and Sisalem [31] have developed a parametric ver-
sion of this algorithm. Zhang et al. [32] proposed to use additional
features to enhance the accuracy of CUMSUM. Geneiatakis et al.
[33] propose bloom filters to efficiently track incomplete SIP ses-
sions and to raise an alarm if these exceed a certain threshold. The
major disadvantage of these algorithms is that one needs to engi-
neer different sets of features in order to detect different types of
flooding attacks.

The works closest to our approach are the distance-based
anomaly detection methods [34,35], where a distance metric is
used to measure the dissimilarity between the distributions of
normal and observed traffic features. If the distance between the
normal and observed distributions is above a threshold, an alarm
is generated. Similar to our approach, these methods can be used

JID:YDSPR AID:2210 /FLA [m5G; v1.225; Prn:21/11/2017; 14:54] P.3 (1-15)

B. Kurt et al. / Digital Signal Processing ••• (••••) •••–••• 3
to detect any type of network attack provided that full SIP mes-
sage histogram is included in the feature set. Our method extends
and generalizes these anomaly detection methods by introduc-
ing Bayesian framework, which models the SIP server state with
a set of features that incorporates both network traffic and SIP
server resource usage data. In our method, the attack decision re-
lies on a robust posterior probability calculation rather than simple
thresholding. To our best knowledge, this work presents the first
Bayesian framework tailored specifically to model a SIP server in
order to detect SIP anomalies, hence fills an important gap in the
literature.

3. SIP network traffic

3.1. SIP terminology

SIP is designed to initiate, modify and terminate communi-
cation sessions among agents. Four general types of SIP entities
are defined in RFC 3261 [1]: user agents, proxy servers, redirect
servers and registrars. A user agent (UA) is the endpoint entity
that generate and receive SIP messages. In a typical SIP session,
UA’s communicate by sending request and response messages to
each other. The registrar is responsible for registering the UA’s, and
storing their location information. The registered UA’s communi-
cate with each other via the intermediary of proxy servers. The
proxy servers deliver the request and response messages between
UA’s. Finally, the redirect servers allow proxy servers to communi-
cate with other servers from external domains.

The SIP messages are divided into two basic categories: SIP
requests and SIP responses. Each SIP request sent by an UA is
answered by a corresponding SIP response. For examples, a UA
can make a REGISTER request to the registrar in order to get on-
line, make an INVITE request to another UA to start a call, or
make a BYE request to terminate an ongoing conversation. A SIP
response message generated for a request can be from one of
the 6 SIP response categories: 1xx-provisional, 2xx-success, 3xx-
redirection, 4xx-client, 5xx-server error or 6xx-global failure. For
example, a UA may response with a 200-OK message for accepting
an incoming request.

3.2. An example message flow

An illustrative example of SIP message communication is given
in Fig. 1. It shows the flow of exchanged messages between a
server and two users during a normal call. In this scenario, Al-
ice initiates a call to Bob by sending an INVITE packet to the SIP
Server. After authentication, the SIP server forwards this request to
Bob. Similarly, the response of Bob, in this case ACK packet show-
ing that the call is accepted, is transmitted to Alice through the
SIP server. At the end, BYE messages terminate the conversation
between Alice and Bob.

Once a SIP session is established, two endpoints start exchang-
ing multimedia data such as audio conversations, video streams,
etc. Recall that SIP, being a signaling protocol, is not involved in
the multimedia data exchange between agents. Handshake on the
kind and encoding type of data, on the address and ports to be
used for transfer, and other details regarding the data exchange is
usually achieved using Session Description Protocol (SDP) [36]. Ad-
ditionally, real-time media delivery relies on RTP [37].

Real-world SIP packet exchange scenarios usually involve more
than two servers and two agents. The above call setup case is il-
lustrative but simplistic. For example, it does not specify how the
server reaches out to the caller. A setup in which Alice and Bob
are not registered to the same server would require a location
server and the re-transmission of the INVITE message. Similarly,
other features supported by SIP – such as call transfer, call park,
Fig. 1. A call scenario in SIP network.

conference – lead to distinct call flows. In summary, SIP message
traffic data can be quite complex.

3.3. DDoS attacks in SIP networks

DDoS flooding attacks could rapidly affect network traffic char-
acteristics and cause service degradations. Their impact is contin-
gent on the attack parameters and differs substantially from one
attack to another. A DDoS detection method is expected to signal
an attack, in principle practically independent of its configuration.
Therefore, DDoS detector must be robust and highly sensitive, that
is, with high detection rate and low probability of false alarm un-
der a wide range of realistic network conditions.

Mirkovic et al. [4] classified DDoS attack mechanisms on the
basis of its impact on the victim. First, one would expect an in-
crease in the incoming network traffic – even beyond the server’s
bandwidth – as a result of a flooding attack. The severity of this
increase, however, is directly related to the resources the attacker
possesses and cannot be forecast beforehand. Second, the flood-
ing rate does not necessarily stay the same throughout the attack.
Mirkovic et al. also noted that slow rate boosts, i.e., creeping at-
tacks typically result in detection latency.

Another significant parameter is the SIP packet type used in
the flooding. Typical DDoS scenarios consider a SIP server be-
ing flooded by one type of packet such as INVITE, SUBSCRIBE,
or BYE. Nevertheless, DDoS attacks can also be performed using
a judiciously selected mixture of SIP requests. Thus, intelligently
mounted schemes such as slow boost attacks, multi-SIP packet at-
tacks, multi-agent attacks that try to obfuscate their synchronism
by time jittering require more advanced defense mechanisms and
concomitantly more computation time and power. Despite these
variabilities, the DDoS shield is expected to have low latency in
order to timely initiate attack prevention.

4. Methodology

In this work, we use a Bayesian approach for the detection of
abrupt changes in SIP traffic that could possibly correspond to a
DDoS attack. This approach is based on a hierarchical probabil-
ity model, more precisely a hidden Markov model, that relates

JID:YDSPR AID:2210 /FLA [m5G; v1.225; Prn:21/11/2017; 14:54] P.4 (1-15)

4 B. Kurt et al. / Digital Signal Processing ••• (••••) •••–•••
observed features from network packet traffic and server load mea-
surements (such as CPU usage and system calls) to hidden vari-
ables. These hidden variables indicate the state of the system, e.g.,
change and no-change, along with other hidden dynamical quan-
tities. Formally, we will refer to the features or observations as v
(visible) and the state change indicators as s. Other variables that
are not of direct relevance for our problem, but are needed for de-
scribing the state of the dynamical system will be referred as h
(hidden). Once the model is specified, the inferential goal is to cal-
culate the posterior probability

p(s|v) = p(v|s)p(s)

p(v)
∝

∫
p(v|h, s)p(h|s)p(s)dh

Apart from specific special cases, the above integral is in-
tractable. Fortunately for the change-point problem, we can de-
scribe a model where exact calculation becomes possible for rel-
atively short time sequences. We show that, with a rather simple
approximation heuristics such as pruning, we can get a constant-
space algorithm that can be feasibly implemented in real time.

In the sequel, we first present the way the observations (v) are
composed from the features collected from the SIP server; then we
describe the probability model which is an instance of a Bayesian
change point model, and the way this model can be used for online
estimation of DDOS attacks. Finally, we give details of our approx-
imation and provide a complexity analysis.

4.1. SIP server features as observations

The first step in a Bayesian approach is to provide a proba-
bilistic generative model for the observations collected from the
system. However, before going into the mathematical details of our
generative model, let us first give a clear definition of the observa-
tions. As we continuously monitor a SIP server, we collect real-time
statistics for a period of �t and form an observation vector vt as
a summary of the statistics collected during that period. vt is an
N dimensional vector composed of the number of SIP request and
response messages, server log messages, server statistics such as
number of TCP connections, together with the CPU and memory
usage measured at the end. The complete list of the features col-
lected from the system is given in Table 3 and explained in further
detail in Section 5.

4.2. Multiple change point model

The multiple change point model is a special form of hierar-
chical Markov models [19], where the observations conditionally
depend on latent states, and the states either follow the previous
regime or jump randomly to a new one. As far as network moni-
toring is concerned, these regime changes imply anomalous events,
and which may be related to some security threats. The generative
equations of the multiple change point model can be given as

h0 ∼ �(h0; w) (1)

st ∼ [st = 0]π + [st = 1](1 − π) (2)

ht |st,ht−1 ∼ [st = 0]δ(ht − ht−1) + [st = 1]�(ht; w) (3)

vt |ht ∼ �(vt;ht) (4)

where δ is Dirac delta function.
The observation vt , at time t , is assumed to be a random

variable sampled from a �(v; h) distribution with an unknown
parameter ht . Initially, h0 is drawn from a �(h; w) distribution.
Afterwards, at each time instance t , ht is either re-drawn from the
same initial distribution or set to the previous value ht−1. The de-
cision for change is given by a Bernoulli random variable st . The
model allows ht to change as many times as required during the
Fig. 2. Bayesian change point graphical model.

run of the algorithm. The graphical representation of the multiple
change point model is given in Fig. 2.

Our DDoS detection system includes a monitoring unit for ob-
serving and collecting network traffic data as well as SIP server
activities. The monitoring unit collects and compiles network and
server statistics into an observation vector, i.e., a feature vector,
vt at each ∼ �t (1 second) time interval, as the resume of events
that have occurred in the SIP server during that last observation
interval. For each such feature vector, the model infers whether
the observation vector is generated by the previous regime, that is
st = 0 and ht = ht−1, or whether the server state has jumped to a
new regime, which means st = 1 and ht ∼ �(ht; w). The observa-
tion model � and its prior distribution � are selected according
to the features collected from the server. The details of the data
features and the distributions used in the change point model are
given in Section 4.3.

The prior probability of change, π , and the parameters w of the
prior distribution �(h; w) are the hyperparameters of our model.
Provided that these hyperparameters are known, and the system
is fully observable, meaning that the change points s1:T , hidden
states h1:T and observations v1:T are known, we can calculate the
full joint likelihood as follows:

p(s1:T ,h0:T , v1:T) = p(h0)

T∏
t=1

p(st)p(ht |ht−1, st)p(vt |ht) (5)

In reality, the change point events s1:T and the hidden states
h1:T are not observed, and the problem of detecting a change point
event at time t is formulated as calculating the posterior probabil-
ity p(st = 1|v1:T). From the Bayes rule, we can write

p(st |v1:T) = p(v1:T , st)

p(v1:T)
∝ p(v1:T , st) (6)

The probability of change at time t can be inferred online by
calculating the filtering distribution p(st |v1:t), or in an offline man-
ner by the smoothing distribution p(st |v1:T). The calculations can
be done efficiently via the recursive Forward–Backward algorithm
[38]. The filtering density is calculated by the forward recursion of
the α messages:

α(st ,ht) ≡ p(st ,ht, v1:t) (7)

=
∑
st−1

∫
ht−1

p(ht |ht−1, st)α(st−1,ht−1)

× p(vt |ht) × p(st) (8)

Then, the change probability is calculated as

p(st |v1:t) ∝ p(st, v1:t) =
∫
ht

α(st ,ht) (9)

In an offline setting, where we can calculate decisions using
the full observations of the time series v1:T , we can smooth the

JID:YDSPR AID:2210 /FLA [m5G; v1.225; Prn:21/11/2017; 14:54] P.5 (1-15)

B. Kurt et al. / Digital Signal Processing ••• (••••) •••–••• 5
filtering distribution with backward recursions to get a stronger
estimate p(st |v1:T). The backward recursion can be written as

β(st,ht) ≡ p(vt+1:T |st ,ht) (10)

=
∑
st+1

∫
ht+1

p(ht+1|ht, st+1)β(st+1,ht+1)

× p(vt |ht) × p(st) (11)

The smoothed density is calculated as

p(st |v1:T) ∝
∫
ht

p(st,ht, v1:t)p(vt+1:T |st,ht) (12)

=
∫
ht

α(st,ht)β(st ,ht) (13)

Real-time anomaly detection tracks streaming data, so that pro-
cessing the v1:T observation sequence is not feasible in practice
since T is not bounded. Furthermore, anomaly detection is a time-
critical task, which implies that the change points must be recog-
nized as soon as possible. Therefore, calculating a smoothing dis-
tribution is feasible only if the system is allowed to make change
point decisions deferred by a fixed amount of time L, which is
called the lag. In such a case, the process is called fixed-lag smooth-
ing, where the change point inference for st is done at time t + L
by calculating the density p(st |v1:t+L) in lieu of p(st |v1:T). It is im-
portant to note that this process requires calculating a backward
recursion for L steps starting at each time point t + L, and this
increases the processing complexity.

4.3. DDoS detection via multiple change point model

We have described a multiple change point model with arbi-
trary hidden state distribution � and observation model �, with
the assumption that � is the conjugate prior of � for computa-
tional simplicity. Now we assign actual probability distributions for
the hidden state and observation models.

We let the observation model � be a coupled distribution of
multinomial and Poisson distributions. Multinomial distribution is
used to model the ratios of the magnitudes of the signals ratios
in an observed vectors. On the other hand, Poisson distribution
models the magnitudes of the tracked signals. Without loss of gen-
erality, we assume that the features whose ratios will be modeled
are stored in the first M positions of the observation vector v , de-
noted as v1:M and the remaining N − M positions are filled with
the features whose magnitudes are modeled. Then, we can write
the observation model as

�(v) = M(v1:M; p) ×
N∏

i=M+1

P(vi;λi) (14)

where the multinomial and Poisson distributions are defined as

M(x; p) =
(
∑

i xi + 1)∏
i
(xi + 1)

∏
i

pxi
i (15)

P(x;λ) = λxe−λ

(x + 1)
(16)

In this setup, the hidden state vectors h = (p; λ) are the re-
spective parameters of the multinomial and Poisson distributions.
Since the prior distribution of multinomial is Dirichlet distribution
and that of the Poisson is the Gamma distribution, the prior of
our state vector h becomes the product of these conjugate priors,
namely Dirichlet and Gamma, and can be written as:
Table 1
Model variables and parameters.

Variable Description

s1:T Reset switches
h1:T Hidden state vectors
v1:T Observation vectors
π Reset probability
� Prior distribution of hidden states
w Parameters of the � distribution
� Observation model
α Dirichlet distribution parameter
a,b Gamma distribution parameters

() Gamma function

Fig. 3. Expansion in the forward variable messages.

�(p, λ) = Dir(p;α) ×
N∏

i=M+1

G(λi;ai,bi) (17)

The Dirichlet and Gamma distributions are given as

Dir(p;α) =

(∑M
i=1 αi

)
∑M

i=1
(αi)

M∏
i=1

pαi−1
i (18)

G(λ;a,b) = ba

(a)
λa−1e−bλ (19)

where α is an M dimensional vector and a and b are N − M di-
mensional vectors such that each {ai, bi} is a hyper-parameter for
Gamma distribution. Hence, the hyper-parameters w of the model
is the set w = (α,a,b). The complete set of model variables and
parameters are given in Table 1.

4.4. Implementation details and complexity analysis

The inference for the change point model requires calculating
the α(st, ht) and β(st , ht) messages at the end of each observation
period. We simply need to store a table of probabilities for each
α(st = i, ht = j), such that i ∈ {0, 1} and j ∈ Dom(�) and update
this table according to the equations in (8). The same is true for
the β messages. When the hidden state distribution has continu-
ous domain, we have to express the α and β messages as mixtures
of � potentials. An � potential is described as

φ(p, λ) = exp(l)�(p, λ;α,a,b) (20)

where l is the logarithm of the normalizing constant, and α, a and
b are the parameters of the reset and observation distributions,
respectively.

At each time step, the switching variable attains one of the two
values, therefore, an additional � potential is added to the α and β
messages to indicate the change potential. α(ht , st = 1) is a single
potential and α(ht , st = 0) is a mixture of t potentials transferred
from the previous α message. This linear growth of the α mes-
sages for the forward recursion is illustrated in Fig. 3. Details of
the operations required to implement forward and backward re-
cursions are presented in Appendix A.

This linear growth is not sustainable for online continuous
tracking of the server state. One has to limit, then, the number

JID:YDSPR AID:2210 /FLA [m5G; v1.225; Prn:21/11/2017; 14:54] P.6 (1-15)

6 B. Kurt et al. / Digital Signal Processing ••• (••••) •••–•••
Algorithm 1 Bayesian Change Point Detection.
function BCPM(π , w , v1:T , LAG, THRESHOLD)

alpha ← []
for t = 1 . . . T do

alpha_p = Predict(alpha, π, w)

alpha = Update(alpha_p, vt)

if LAG > 0 then
beta = BackwardFilter(π, w, vt+1−LAG:t)
gamma = Smooth(alpha, beta)
cpp = ComputeCPP(gamma, len(beta))

else
cpp = ComputeCPP(alpha, 1)

end if
if cpp > THRESHOLD then

Alarm()
end if

end for
end function

Table 2
Average run time of the algorithm.

Routine Time (μs)

PREDICT 35
UPDATE 648
BACKWARD_FILTER 17
SMOOTH 1400
COMPUTE_CPP 7

Total 2107

of mixture potentials in the forward message by K , indicating
the maximum number of components. Once a message reaches
the maximum number of allowed components, at each subsequent
step, the component with the minimum normalizing constant is
pruned. Therefore, in the worst case, an α message has K com-
ponents and a β message L components, since we had decided to
run the backward-recursion for only L steps. It follows then that,
during filtering, at most K observation updates are required and
during the smoothing operations, where we multiply an α message
with a β message, K × L multiplications are performed. There-
fore, the number of operations at any time instance is O (K L). We
empirically set K = 100, and the lag parameter L = 5. In our ex-
periment setup, using more than 100 potentials had no significant
contribution, and while a lag value of 5 significantly improved the
accuracy of the system, bigger lag values did not yield much of an
improvement.

4.5. Real time analysis

Algorithm 1 presents the offline version of the main detection
loop of our algorithm. Here, offline is in the sense that the whole
data set is available at the beginning of the algorithm. In the online
version, the single loop in the algorithm will be run exactly once
after each observation period. We time the individual functions of
the algorithm, whose descriptions are also given in Appendix D.
The actual run time of the algorithm depends on the number of
features used, the value of the lag L, and maximum number of
components K . In this measurement we set L = 5, K = 100 and
used all available features. The algorithm is coded with C++ and
experiments are run offline, on an INTEL i7 CPU @2.7 GHz on a
data sequence of 2000 observations. We can see from Table 2 that
one iteration of the main loop executes in 2 ms (2107 μs) on the
average, which allows online deployment of our algorithm.

4.6. Parameter learning

During the inference stage, we had assumed that the hyper-
parameters of our multiple change point model, namely the re-
set probability π and the latent state prior parameters w were
given. In practice, these parameters must be set to appropriate val-
ues for accurate change point estimation. For a small number of
parameters, a grid search method can give good parameter esti-
mates; however for large models, i.e., for large dimensional w , the
search method is not applicable. Thus, we use a maximum likeli-
hood approach to find the best hyper-parameters as a function of
observations. Given observations v1:T , we would like to find the
parameters that maximize the log likelihood

Lπ,w(v1:T) ≡ log p(v1:T |π, w) (21)

= log
∑
s1:T

∫
h0:T

p(s1:T ,h0:T , v1:T , |π, w) (22)

Since this log likelihood expression is intractable due to the sum-
mation over latent parameters, we employ an iterative Expectation-
Maximization (EM) scheme to find the {π, w} estimates. By
Jensen’s inequality, the log likelihood is lower bounded as

Lπ,w(v1:T) ≥ 〈log p(s1:T ,h0:T , v1:T , |π, w)〉q(z)

− 〈log q(z)〉q(z) (23)

This bound is tight for q(z) = p(s1:T , h0:T |v1:T , π, w). The log-
likelihood can then be maximized iteratively as follows:

E-Step:

q(z)new = p(s1:T ,h0:T |v1:T ,πold, wold) (24)

M-Step:

(πnew , wnew) = arg max
π,w

〈
p(s1:T ,h0:T |v1:T ,πold, wold)

〉
q(z)new

(25)

The detailed derivations of the EM algorithm for Dirichlet-Multi-
nomial and Gamma-Poisson change point potentials are given in
Appendix B.

5. Experimental setup

5.1. Data generation

Our data generator, detailed in [39], is made up of four dis-
tinct modules: (1) a SIP server, (2) a traffic simulator, (3) a DDoS
attack generator and (4) a network traffic monitor. As a registrar
and SIP proxy server, we have used an Asterisk-based PBX soft-
ware named Trixbox [40]. To mimic the normal message traffic on
a SIP server, we have built Boun-Sim [39], a probabilistic SIP net-
work simulation tool that generates calls between a number of SIP
endpoint entities in real time. Concurrently with the normal traf-
fic simulation, a rich variety of DDoS attacks were generated by
a commercial vulnerability scanning tool, called NOVA V-Spy [20].
The fourth and final component in the setup is the network mon-
itor, a module that tracks the server, extracts and delivers features
to the change point monitor.

Our simulation tool is driven by a probabilistic generative
model to recreate typical user behaviors, such as making calls, an-
swering, rejecting or ignoring an incoming call, and holding on an
ongoing call. User actions generated by the Simulator are realized
as actual SIP communications, where SIP messages are exchanged
between UA’s and Trixbox. Simulator omits the RTP messages car-
rying the actual conversational data between users, since these do
not pass through the SIP server, and are not relevant to the out-
come of the simulation. Details of the Simulator parameters are
presented in Appendix C.

Note that the simulator parameters should be set according to
the capacity of Trixbox as number of calls per second may prevent

JID:YDSPR AID:2210 /FLA [m5G; v1.225; Prn:21/11/2017; 14:54] P.7 (1-15)

B. Kurt et al. / Digital Signal Processing ••• (••••) •••–••• 7
server from handling the traffic generated by the simulator Boun-
Sim. A detailed performance analysis of Asterisk server of version
1.6 can be found in [41] where the performance is degraded after
the number of simultaneous calls exceeds 600.

5.2. Data traces

We conduct experiments on four different simulated data sets.
Our data set generating mechanism is controlled by two bi-level
variables, one for network traffic intensity, the other for attack
intensity, and each can be either set as low or high. To set the
network traffic intensity, we tune the call rate parameters of the
users since phone calls constitute the main source of the network
traffic. The average number of SIP packets passing through the SIP
server per second in low and high data sets are 75 and 90, re-
spectively. To set the flood rate, we change the number of network
packets delivered from V-Spy to the server in each second. In a
low attack setting, the server is flooded by 100 packets per sec-
ond, whereas 500 packets are used in high attack settings. In the
sequel, we refer to these data sets as LOW–LOW, LOW–HIGH, HIGH–
LOW and HIGH–HIGH, where the two adjectives qualify, in order,
the network traffic intensity and the flood rate. All simulations are
realized by 500 active users registered to the server.

In order to demonstrate the robustness of our change point
model, we tested it with a dataset consisting of 40 different DDoS
attacks. These attacks are generated by tuning the following op-
tions of V-Spy:

• Attack Type: We flood the server with five different SIP re-
quest packets, randomly chosen from among REGISTER, INVITE,
OPTIONS, CANCEL and BYE requests. Each type of attack gener-
ates different types of changes in SIP server state.

• Transport Protocol: Since SIP operates independently of the
transport protocol, we generated attacks over both TCP and
User Datagram Protocol (UDP).

• Fluctuation: Nova V-Spy can generate floods with both con-
stant and fluctuating rates. In half of our experiments, we
generated floods with fluctuating rates.

• Content Size: Nova V-Spy can optionally insert dummy strings
to the end of SIP messages, which must also be within the
capability of the attack detector since this manipulation affects
the bandwidth consumption.

An example attack could be an “INVITE attack through UDP port
without any fluctuation and with large content size”. The attacks
last for about 20 seconds and we have left an interval of at least 25
seconds between two consecutive attacks; this results in a simu-
lation sequence of around half an hour duration in order for the
40 attacks to occur. IP addresses and the user id’s of attackers
were randomly chosen and the attacker terminals were unregis-
tered throughout the simulation.

5.3. Data features

Table 3 shows the features monitored for DDoS attack detec-
tion. We can divide the feature space roughly into five categories,
the first two categories collected from server’s network connection
side, and the last three categories collected from server’s resource
management side. The first two categories consist of a variety
of packet types in a SIP network: SIP Requests and SIP Responses
(Fig. 4); these packet types have different well-defined roles [1].
Notice that the actual features used in the detection model are the
count statistics or histogram of these message type occurrences
within an observation interval (e.g., 1 sec). The underlying assump-
tion here is that a significant change in the pattern of SIP message
histograms is a direct reflection of messaging traffic behavior, indi-
cating possibly an anomaly, i.e., an attack.

The other three feature categories are entitled as Resource Us-
age, Asterisk Stats and Asterisk Logs. The first of these consists of
the pair of CPU usage and memory usage of the virtual machine in
which Trixbox is installed. The second one is made up of features
that reflect the load created by Asterisk. The last category counts
the keywords in the log files generated by Asterisk. We conjecture
that all these features would diverge from their average values in
the case of an attack and hence potentially qualify as anomaly in-
dicators.

5.4. Evaluation

We measure the performance of our DDoS monitor on the ba-
sis of the F-score, which is defined as the harmonic mean of the
precision (P) and recall (R) measures. The F-score gets closer to
1 when both precision and recall are close to 1, and correspond-
ing to good performance; conversely, the F-score diminishes to 0,
when the system performs poorly either due to low precision or
low recall or both.

F-score = 2 × P × R

P + R
(26)

Precision (P) = # true alarms

alarms
= Ta

Ta + Fa
(27)

Recall (R) = # true alarms

ground truth
= Ta

Ga
(28)

where Ta and Fa are the true alarms (true positive) and false
alarms (false positive), and Ga is the true number of change points.
An alarm gt means signaling of a change event, and it is triggered
whenever the change point probability in Eq. (14) at time t ex-
ceeds a certain threshold λa .

gt =
{

0 if p(st |v1:t+L) < λa

1 otherwise
(29)

The true and false alarms are calculated by matching the alarms
g1:T , with the ground truth of change events ĝ1:T . In the design of
our experiment, the time stamps for the beginning of attacks are
manually set, but the actual effect of an attack is observed with
some delay due to the combined emergent behavior of the SIP
server, simulation and the vulnerability scanning tool Nova V-Spy.
Therefore we set the ground truths as attack time stamps which
are initially set and adjust them manually afterwards.

We declare a correct detection if the alarm gi is within a tol-
erance vicinity of the corresponding ground truth event ĝ j , that’s
|i − j| < w , and increment the number of true alarms. Alarms not
matched with any ground truth are regarded as false positives.

6. Results

We evaluate the performance of our proposed DDoS monitor
with model simulation data generated by various input feature
combinations.We test exhaustively the 5 feature categories in var-
ious category combinations, i.e., including them or not, into Pois-
son and Multinomial cases, respectively. This results in a total of
35 − 1 = 242 observation models, where each observation model
corresponds to one particular instance of category combination.

The hyper-parameters for each observation model need to be
adjusted for getting best F-scores. For this purpose, we first per-
form a grid search inside the parameter space. Since grid search
is feasible for only a limited number of parameters, we use shared
parameters for the priors of the Dirichlet and Gamma distributions.
In this setup, we assign a single parameter α for the Dirichlet pri-
ors by setting w D = [α,α, . . . ,α] and a single parameter a for all

JID:YDSPR AID:2210 /FLA [m5G; v1.225; Prn:21/11/2017; 14:54] P.8 (1-15)

8 B. Kurt et al. / Digital Signal Processing ••• (••••) •••–•••
Table 3
The five categories of features collected from the network side and resource side of the SIP server.

Category Feature Description

SIP Requests REGISTER Num. of “register” requests
INVITE Num. of “invite” requests
SUBSCRIBE Num. of “subscription” requests
NOTIFY Num. of “notification” requests
OPTIONS Num. of “options” requests
ACK Num. of “acknowledgment” requests
BYE Num. of “bye” requests
CANCEL Num. of “cancellation” requests
PRACK Num. of “provisional acknowledgement” requests
PUBLISH Num. of “event publish” requests
INFO Num. of “information update” requests
REFER Num. of “call transfer” requests
MESSAGE Num. of “instant message” requests
UPDATE Num. of “session state update” requests

SIP Responses 100 Num. of trying responses
180 Num. of “ringing” responses
183 Num. of “session progress” responses
200 Num. of “success” responses
400 Num. of “bad request” errors
401 Num. of “unauthorized” errors
403 Num. of “forbidden” errors
404 Num. of “not found” errors
405 Num. of “not allowed” errors
481 Num. of “dialog does not exist” errors
486 Num. of “busy” errors
487 Num. of “request terminated” errors
500 Num. of “server internal” errors
603 Num. of “decline” errors

Resource Usage TOT_CPU Percentage of total CPU usage
TOT_MEM Percentage of total virtual memory usage

Asterisk Stats A_CPU Percentage of CPU used by Asterisk
MEM Percentage of physical memory utilized by Asterisk
FH Num. of Asterisk file descriptors
THREADS Num. of Asterisk threads
TCP_CONN Num. of Asterisk TCP connections
UDP_CONN Num. of Asterisk UDP connections

Asterisk Logs A_WARNING Num. of Asterisk “warning” log messages
NOTICE Num. of Asterisk “notice” log messages
VERBOSE Num. of Asterisk “verbose” log messages
ERROR Num. of Asterisk “error” log messages
DEBUG Num. of Asterisk “debug” log messages
Table 4
Grid search space.

Parameter Search values

α 1,10,100
a 1,10,100
π 10−2,10−4,10−8

Gamma priors. We also set the scale parameter of Gamma priors,
b = 1. The search space is given in Table 4.

The configurations with the best average F-scores on 4 differ-
ent traces after the grid search are reported in Tables 5, 6 and 7.
Table 5 presents the results when change point probabilities are
computed online (using only forward recursion). In order to test
the conjecture that deferred change point decisions should yield
better performance, we run online smoothing algorithm (see Ta-
ble 6). Since the grid search may not be feasible for bigger dimen-
sional vectors, we also develop a maximum likelihood scheme for
estimating the hyper-parameters. To this effect, we employ the EM
algorithm described in Section 4.6 for the case of models that has
attained the highest F-scores according to the grid search. The re-
sults are given in Table 7.

From Tables 5–7 one can observe that SIP Requests contribute
to the feature set for all cases, hence they seem to be the most
important features collected from data. Second in importance, the
Resource Usage features help improving the accuracy of our sys-
tem. We also notice that the Dirichlet-Multinomial (DM) model
usually gives better accuracy than the Poisson-Gamma model. Fur-
thermore, as average F-scores are Table 6 are greater than those
in Table 5, we deduce that the accuracy of change estimations in-
creases provided we allow deferred change point decision with a
lag value of L = 5 seconds. Increasing the lag further enhances the
results only very slightly whereas the cost of latency in the attack
signal may become prohibitive.

We observe that the maximization of the hyper-parameters
with respect to their likelihood under the proposed models does
not necessarily maximize the F-scores; in other words, the F-
scores obtained after the maximum likelihood estimation of hyper-
parameter values are below the scores obtained by the grid search.
We conjecture that this may be due to the mismatch between the
model and the actual data, and will be the subject of future re-
search.

6.1. Comparison to a distance based method

We employed a simple distance based method for classifying
the normal and attack traffic in our data set, based on the previous
works [34] and [35]. In this method, we use the Hellinger distance
between a normal traffic feature vector p, which is learned from
the data, and traffic vectors qt , collected at each time instance t .

JID:YDSPR AID:2210 /FLA [m5G; v1.225; Prn:21/11/2017; 14:54] P.9 (1-15)

B. Kurt et al. / Digital Signal Processing ••• (••••) •••–••• 9
Fig. 4. Histogram of features from the HIGH–HIGH data set for 200 seconds.

Table 5
Best models after the grid search with scores collected by filtering.

Features Traffic F-score
(Avg.)SIP

Requests
SIP
Responses

Resource
Usage

Asterisk
Stats

Asterisk
Logs

Low–Low Low–High High–Low High–High

P R P R P R P R

DM DM 0.86 0.83 0.93 0.95 0.85 0.94 0.99 0.94 0.91
PG DM 0.94 0.88 0.93 0.95 0.88 0.71 0.95 1.00 0.90
PG 0.91 0.88 0.92 0.95 0.88 0.72 0.95 1.00 0.90
PG DM 0.89 0.86 0.90 0.95 0.89 0.71 0.98 0.98 0.89
PG DM 0.92 0.83 0.89 0.95 0.90 0.66 0.96 1.00 0.88
PG DM DM 0.92 0.82 0.94 0.93 0.90 0.65 0.95 1.00 0.88
DM 0.90 0.77 0.91 0.89 0.82 0.82 0.96 0.94 0.88
DM DM 0.94 0.74 0.91 0.96 0.89 0.64 0.98 0.98 0.87
DM DM DM 0.76 0.88 0.94 0.89 0.85 0.80 0.88 0.98 0.87
DM DM 0.81 0.83 0.84 0.94 0.86 0.82 0.90 0.95 0.87

Average 0.89 0.83 0.91 0.94 0.87 0.75 0.95 0.98 0.89

JID:YDSPR AID:2210 /FLA [m5G; v1.225; Prn:21/11/2017; 14:54] P.10 (1-15)

10 B. Kurt et al. / Digital Signal Processing ••• (••••) •••–•••
Table 6
Best models after the grid search with scores collected by online smoothing.

Features Traffic F-score
(Avg.)SIP

Requests
SIP
Responses

Resource
Usage

Asterisk
Stats

Asterisk
Logs

Low–Low Low–High High–Low High–High

P R P R P R P R

DM PG DM 0.91 0.96 0.93 0.96 0.93 0.94 1.00 0.98 0.95
PG DM 0.96 0.93 0.96 0.95 0.90 0.91 1.00 0.98 0.95
PG DM 0.93 0.95 0.92 0.98 0.92 0.91 1.00 0.98 0.95
PG PG DM 0.94 0.94 0.96 0.95 0.90 0.91 1.00 0.98 0.95
PG DM DM 0.89 0.96 0.95 0.96 0.87 0.95 1.00 0.98 0.95
PG PG DM 0.91 0.98 0.93 0.98 0.89 0.90 1.00 0.98 0.94
PG DM PG 0.91 0.96 0.94 0.95 0.88 0.93 1.00 0.98 0.94
PG DM 0.90 0.96 0.94 0.95 0.90 0.90 1.00 0.98 0.94
PG PG 0.92 0.95 0.94 0.95 0.93 0.85 1.00 0.98 0.94
DM DM 0.89 0.93 0.95 0.96 0.90 0.94 0.96 0.98 0.94

Average 0.92 0.95 0.94 0.96 0.90 0.91 1.00 0.98 0.94

Table 7
Best models according to maximum likelihood parameter estimation.

Features Traffic F-score
(Avg.)SIP

Requests
SIP
Responses

Resource
Usage

Asterisk
Stats

Asterisk
Logs

Low–Low Low–High High–Low High–High

P R P R P R P R

PG DM 0.85 0.94 0.78 0.98 0.80 0.94 0.85 1.00 0.88
PG PG DM 0.76 0.94 0.77 1.00 0.81 0.93 0.80 1.00 0.87
PG DM 0.68 0.96 0.72 0.98 0.80 0.91 0.77 1.00 0.84
DM PG DM 0.68 0.98 0.66 0.98 0.76 0.97 0.68 1.00 0.81
PG DM 0.68 0.96 0.64 0.98 0.71 0.94 0.71 1.00 0.80
PG PG 0.53 0.95 0.69 0.98 0.75 0.90 0.71 1.00 0.78
PG PG DM 0.54 0.95 0.63 1.00 0.69 0.94 0.66 1.00 0.76
PG DM PG 0.50 0.95 0.66 1.00 0.71 0.94 0.65 1.00 0.76
PG DM DM 0.30 0.99 0.31 1.00 0.36 0.95 0.41 1.00 0.51

Average 0.61 0.96 0.65 0.99 0.71 0.93 0.69 1.00 0.78
During the training phase, we randomly select time instances i ∈ I ,
from the attack-free part of the data, and calculate p as

pk =
∑

i∈I vi,k∑
i∈I

∑K
k=1 vi,k

where K is the cardinality of the feature vector, which is made
up of the SIPRequests and SIPResponses from Table 3. The Hellinger
distance at each time t is calculated as

hdt = 1

2

K∑
k=1

(
√

(pk) − √
(qt,k))

2

We classify the traffic vt as attack if the distance hdt is greater
than a threshold τ . Fig. 5 shows the ROC curves of this method for
varying τ values, together with the true and false positive rates
of our best models we found by maximum likelihood estimation
(Table 7). When the Hellinger distance based methods reach our
true positive rate, their false positive rates reach 15 to 20%. Also,
while both methods have lower scores on low attack traffic sets,
the decrease in the accuracy of the distance based methods are
higher.

7. Conclusion

In this work, we have proposed a Bayesian multiple change
point model for detecting DDoS flooding attacks in VoIP networks,
which use SIP as their signaling mechanism. We have provided a
framework that can work with different types of input features
monitored at a SIP proxy server.The framework tracks the network
traffic and SIP server behavior and raises an alarm whenever a
change in those behaviors is detected.

Additionally, we have developed a probabilistic SIP network
simulation system, which can generate real-time SIP messaging se-
quences to establish telephone connections in a PBX community.
The simulation system provides a realistic test environment for SIP
security tools, in case of the absence of real world test data. This
simulation system is also made publicly available.

We tested our proposed system with traffic generated by the
SIP network simulator together with DDoS attacks generated by a
commercial network vulnerability scanning tool, Nova-VSpy.

Acknowledgments

This study is a Bogazici University – NETAS Nova V-Gate col-
laboration and funded by TEYDEB-3140701 project “Realization of
Anomaly Detection and Prevention with Learning System Architec-
tures, Quality Improvement, High Rate Service Availability and Rich
Services in a VoIP Firewall Product”, by the Scientific and Techno-
logical Research Council of Turkey (TUBITAK).

Appendix A. Implementation of forward–backward algorithm

As noted earlier, in order to compute (fixed lag) smoothed den-
sity, forward and backward messages must be multiplied. The good
news is multiplication of two � potentials is yet another � poten-
tial since the same applies to Dirichlet and Gamma potentials as
we show below:

c1Dir(p;α) × c2Dir(p;β)

= c1c2

(∑K

i=1 αi

)
∏K

i=1
(αi)

K∏
i=1

pαi−1
i

(∑K

i=1 βi

)
∏K

i=1
(βi)

K∏
i=1

pβi−1
i

= c1c2

(∑K

i=1 αi

)
∏K

(αi)

(∑K

i=1 βi

)
∏K

(βi)

K∏
p(αi+βi−1)−1

i

i=1 i=1 i=1

JID:YDSPR AID:2210 /FLA [m5G; v1.225; Prn:21/11/2017; 14:54] P.11 (1-15)

B. Kurt et al. / Digital Signal Processing ••• (••••) •••–••• 11
Fig. 5. Performance of Hellinger distance based anomaly detection on our data sets.
= c1c2

(∑K

i=1 αi

)
∏K

i=1
(αi)

(∑K

i=1 βi

)
∏K

i=1
(βi)

K∏
i=1

p(αi+βi−1)−1
i

×

(∑K
i=1 (αi + βi − 1)

)
∏K

i=1
((αi + βi − 1))

×
∏K

i=1
((αi + βi − 1))

(∑K

i=1 (αi + βi − 1)
)

= c1c2

(∑K

i=1 αi

)
∏K

i=1
(αi)

(∑K

i=1 βi

)
∏K

i=1
(βi)

∏K
i=1
(αi + βi − 1)

(∑K

i=1 (αi + βi − 1)
)

︸ ︷︷ ︸
normalizing constant

×Dir(p;α + β − 1) (A.1)

c1G(λ;α1, β1) × c2G(λ;α2, β2)

= c1c2
β

α1
1

(α1)
λα1−1 exp−β1λ β

α2
2

(α2)
λα2−1 exp−β2λ

= c1c2
β

α1
1 β

α2
2 λ(α1+α2−1)−1 exp−(β1+β2)λ

(α1)
(α2)
= c1c2
β

α1
1

(α1)

β
α2
2

(α2)
λα̃−1 exp−β̃λ

= c1c2
β

α1
1

(α1)

β
α2
2

(α2)

(α̃)

β̃α̃

β̃α̃

(α̃)
λα̃−1 exp−β̃λ

= c1c2
β

α1
1

(α1)

β
α2
2

(α2)

(α̃)

β̃α̃︸ ︷︷ ︸
normalizing constant

G(λ;α1 + α2 − 1, β1 + β2) (A.2)

What is more, update step of the forward–backward algorithm
requires computing the product of observation model � and reset
model �, which can be easily performed thanks to the conju-
gacy property. Alternatively, one may reformulate � distribution
in terms of a normalization constant and � distribution and take
advantage of that the multiplication of two � potentials is already
defined.

M(x; p) =
(
∑

i xi + 1)∏
i
(xi + 1)

∏
i

pxi
i

=
(
∑

i xi + 1)∏
i
(xi + 1)

(
∑

i(xi + 1))

(
∑

i(xi + 1))

∏
pxi

i

i

JID:YDSPR AID:2210 /FLA [m5G; v1.225; Prn:21/11/2017; 14:54] P.12 (1-15)

12 B. Kurt et al. / Digital Signal Processing ••• (••••) •••–•••
=
(
∑

i xi + 1)

(
∑

i(xi + 1))
Dir(p; x + 1) (A.3)

P(x;λ) = λxe−λ

(x + 1)

= G(λ; x + 1,1) (A.4)

Appendix B. Parameter estimation for the multiple change point
model

Here we present the detailed equations of the Expectation-
Maximization method for estimating model parameters.

B.1. E-step

At the E-step, we calculate the expectation of the complete data
log-likelihood as follows

Lπ,w = log p(s1:T ,h0:T , v1:T , |π, w) (B.1)

=
T∑

t=1

[
[st = 0](log(1 − π) + log δ(ht − ht−1)

)
+ [st = 1](logπ + log�(ht; w)

)
+ log�(vt;ht)

]
+ log�(h0; w) (B.2)

We can write the expectation of this complete likelihood under
the auxiliary distribution q(z) = p(s1:T ,h0:T |v1:T ,π, w) as follows,
by letting p(s0 = 1|v1:T ,π, w) = 1 in a compact way as

〈
Lπ,w

〉
q(z) =

T∑
t=0

[
〈st = 1〉q(z)

(
logπ + 〈log�(ht; w)〉q(z)

)
+ 〈st = 0〉q(z) log(1 − π)

+ 〈log�(vt;ht)〉q(z)

]
(B.3)

B.2. M-step

We maximize the expectation of the complete data log-
likelihood with respect to the parameters π and w .

B.2.1. Maximizing for π
Maximizing the expectation of the complete data log likelihood

for π is the same for all prior and observation models.

0 =
∂

〈
Lπ,w

〉
q(z)

∂π
(B.4)

0 = ∂

∂π

T∑
t=1

(
〈st = 1〉q(z) logπ

+ 〈st = 0〉q(z) log(1 − π)
)

(B.5)

π = 1

T

T∑
t=1

〈st = 1〉q(z) (B.6)

B.2.2. Maximizing for w
Maximizing the expectation of the complete data log likelihood

for w depends on the observation and prior distributions. We be-
gin by taking the derivative

0 =
∂

〈
Lπ,w

〉
q(z)

∂ w
(B.7)

= ∂

∂ w

T∑
t=1

〈st = 1〉q(z) 〈log�(ht; w)〉q(z) (B.8)
In this work, we used a coupled model where the signals are
assumed to be generated by a Poisson-Gamma or Multinomial-
Dirichlet models, hence in our case w = [α1:M ,a1:N ,b1:N], where
α1:M is the parameter of the Dirichlet prior and each {ai, bi} pair
is the parameter for a Gamma prior. For Dirichlet priors,

0 = ∂

∂αk

T∑
t=0

〈st = 1〉q(z) 〈log Dir(ht;α)〉q(z) (B.9)

= ∂

∂αk

T∑
t=0

〈st = 1〉q(z)

[∑
k

(αk − 1)
〈
log ht,k

〉
q(z)

+ log
(
∑

k

αk) −
∑

k

log
(αk)

]
(B.10)

=
T∑

t=0

〈st = 1〉q(z)

(〈
log ht,k

〉
q(z) + ψ(

∑
k

αk) − ψ(αk)

)
(B.11)

We can solve the above equation for αk with fixed-point itera-
tions [42]:

αnew
k = ψ−1

(1

C

T∑
t=0

〈st = 1〉q(z)
〈
log ht,k

〉
q(z) + ψ(

∑
k

αold
k)

)
(B.12)

where C = ∑
t 〈st = 1〉q(z) . We calculate the

〈
log ht,k

〉
q(z) from the

mixture of Dirichlet potentials as

〈
log ht,k

〉
q(z) = 1

Z

R∑
r=1

cr (
ψ(αr

k) − ψ(αr
0)

)
(B.13)

where R is the number of potentials and Z = ∑
r cr is the sum of

their normalizing constants.
For the Gamma distribution, the maximization leads to the fol-

lowing fixed-point iteration for a and equation for b [43]:

anew = ψ−1

(
1

C

T∑
t=0

〈st = 1〉q(z)

(〈
log ht,k

〉
q(z)

− log
〈
ht,k

〉
q(z)

)
+ log aold

)
(B.14)

b = 1anew∑T
t=0 〈st = 1〉q(z) 〈ht〉q(z)

(B.15)

The expected sufficient statistics for the Gamma parameters are
calculated from mixtures of Gamma potentials by:

〈ht〉q(z) = 1

Z

R∑
r=1

cr(arbr)

〈log ht〉q(z) = 1

Z

R∑
r=1

cr (
ψ(ar) − log(br)

)
(B.16)

again, R is the number of potentials and Z = ∑
r cr is the sum of

their normalizing constants.

Appendix C. SIP traffic generator model

Here we describe the generative process underlying the Boun-
Sim network simulator.

JID:YDSPR AID:2210 /FLA [m5G; v1.225; Prn:21/11/2017; 14:54] P.13 (1-15)

B. Kurt et al. / Digital Signal Processing ••• (••••) •••–••• 13
C.1. Social network of SIP users

In order to simulate a realistic network, we modeled the re-
lationships between users by a stochastic block model [44]. In a
stochastic graph model, graph nodes are distributed over groups
and the probability of having a connection between two nodes is
governed by inner and between group connection parameters. Sim-
ilarly we distributed N SIP users over K social groups. Whenever
a user decides to make a call, they pick a callee within their group
or from other groups with different probabilities. As a concrete ex-
ample, we can think of SIP users inside a company, divided into
different departments. A user may talk to their teammates more
often then people from other teams.

At the beginning of the simulation, the generative model first
generates the social network. The probability that a user belongs
to a certain group, π is drawn from a Dirichlet distribution with
a parameter α. Relative group sizes can be adjusted by the α pa-
rameter. We represent the group assignments of users by an N × K
dimensional binary G matrix, where each row gn represents a user
such that gn,k = 1 if and only if user n belongs to group k.

π ∼ Dir(π ;α) (C.1)

p(π |α) =
(
∑

k αk)∏
k
(αk)

∏
k

π
αk−1
k (C.2)

Then each user is assigned to a group from a categorical distribu-
tion.

gn ∼ Cat(gn;π) for each n ∈ [1, N] (C.3)

p(gn,k) =
∏

k

π
gn,k

k (C.4)

Typically, every stochastic block model has a K × K parameter
matrix B , such that Bi, j is the probability of having an edge be-
tween a node from group i to some other node in group j. We
created the B matrix such that inner group communications are
more probable than between group communications by setting the
Beta distribution parameters as a > b:

Bi,i ∼ Beta(Bi,i;a,b) ∀i ∈ [1, K] (C.5)

Bi, j ∼ Beta(Bi, j;b,a) ∀i �= j (C.6)

C.2. Phone book of SIP users

After the social network is constructed, the simulator creates a
phone book for each user, according to the users social behavior.
Let P be an N × N phone book matrix, such that Pm,n denotes the
probability that user m calls user n whenever m decides to call
someone.

Pm,n ∝
∏
i, j

B
Gm,i Gn, j

i, j (C.7)

or, in compact matrix notation,

P ∝ G BG T (C.8)

C.3. Registration of users

The simulation starts with all users offline. A user becomes on-
line by sending a REGISTER request to the SIP server. Each user
waits a random amount of time before registering to the server.
Let rn denote the amount of time user n waits offline. We generate
this waiting time from a Gamma distribution:

rn ∼ G(βi;ρ,φ) (C.9)

p(rn|ρ,φ) = β
ρ−1
i

e−x/φ

φρ
(ρ)
(C.10)
C.3.1. Call rates
A users call rate is governed by the time they wait idle after

communications. Whenever user n becomes idle, that is after reg-
istration or end of a call, a random waiting time tn is sampled from
an exponential distribution, and makes a random call at the end of
this time period. However, they can choose to answer an incoming
call during this period.

tn|βn ∼ Exp(tn;βn) (C.11)

p(tn|βn) = 1/βn exp(−tn/βn) (C.12)

Here, βn is the call rate parameter of user N , is sampled for every
user from a Gamma distribution

βi ∼ G(βi;k, θ) (C.13)

Hence, in addition to their social behavior, each user has a different
personal behavior.

C.3.2. Making a call
At the end of their waiting time, a user initiates a call by ran-

domly selecting another user from their phone book. Let cn denote
the callee that user n is about to call. We draw cn from a categor-
ical distribution

cn|Pn ∝ K(cn; Pn) (C.14)

such that Pn ∝ {Pn,1, . . . Pn,N} is the normalized probability vector
for user n, where Pn,m is the probability that user n calls m. When
the user n selects the callee, they send INVITE request to start a
conversation.

C.3.3. Responding to a call
Whenever a user receives a call, they can accept or reject the

call, and as a third option, may not notice the call at all. Each user
has three call response parameters, fn, an and hn , such that fn is
the call notice parameter, an call accepting parameter and hn is the
call hold parameter.

fn ∼ U(fn; fmin, fmax) (C.15)

an ∼ U(an;amin,amax) (C.16)

hn ∼ U(hn;hmin,hmax) (C.17)

Whenever a user receives a call, they notice the call with probabil-
ity fn and, if they do notice, accepts the call with probability an . If
the user is already on another call, they can put their ongoing call
on hold with probability hn and accepts the call.

C.3.4. Call durations
If a call is successfully established, both participants draw their

own call duration, and at the end of this duration, terminate the
call.

dn|δn ∼ Exp(dn; δn) (C.18)

dm|δm ∼ Exp(dm; δm) (C.19)

dc = min(dn,dm) (C.20)

Here, dn and dm denotes the call durations sampled by call partic-
ipants n and m and dc is the actual call duration.

JID:YDSPR AID:2210 /FLA [m5G; v1.225; Prn:21/11/2017; 14:54] P.14 (1-15)

14 B. Kurt et al. / Digital Signal Processing ••• (••••) •••–•••
Appendix D. Pseudo code of forward–backward helper routines

Algorithm 2 Backward Filtering Loop.
function BackwardFilter(π , w , v1:T)

beta ← []
prior ← [w, 0]
for t = T . . . 1 do

obs_pot ← Obs2Pot(vt)

// Change case
tmp_msg ← [prior*pot for pot in beta[end]]
new_msg ← [][obs_pot.w, logπ + LogLikelihood(tmp_msg)]]
// No change case
no_change ← [obs_pot*pot for pot in beta[end]]
for pot in no_change: pot[2]+=log(1 − π)
// Update beta
for pot in no_change: new_msg.append(pot)
beta.append(new_msg)

end for
return beta

end function

Algorithm 3 Forward–Backward Recursion Functions.
function Predict(alpha, π , w)

alpha_p ← []
alpha_p.append(w, LogLikelihood(alpha) + log(π))
for pot in alpha: alpha_p.append(pot[1], pot[2]+log(1 − π))
return alpha_p

end function

function Update(msg, vt)
msg_u ← []
obs_pot =← Obs2Pot(vt)
 see eq’s. (A.3) and (A.4)
msg_u = [pot*obs_pot for pot in msg]
 see eq’s. (A.1) and (A.2)
return msg_u

end function

function ComputeCPP(msg, d)
// Change case is represented by the mixture of first d potentials
p1 = exp(LogLikelihood(msg[1 : d])
p0 = exp(LogLikelihood(msg[d + 1 :])
return p1 /(p0 + p1)

end function

function Smooth(alpha, beta)
gamma ← []
for i = 1 . . . len(alpha) do

for j = 1 . . . len(beta) do
gamma.append(alpha[i] * beta[j])

end for
end for
return gamma

end function

References

[1] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,
M. Handley, E. Schooler, RFC 3261: SIP: Session Initiation Protocol, Technical
Report, IETF, 2007.

[2] D. Geneiatakis, T. Dagiuklas, G. Kambourakis, C. Lambrinoudakis, S. Gritzalis,
K.S. Ehlert, D. Sisalem, Survey of security vulnerabilities in session initiation
protocol, IEEE Commun. Surv. Tutor. 8 (2006) 68–81.

[3] A.D. Keromytis, A comprehensive survey of voice over IP security research, IEEE
Commun. Surv. Tutor. 14 (2012) 514–537.

[4] J. Mirkovic, P. Reiher, A taxonomy of DDoS attack and DDoS defense mecha-
nisms, Comput. Commun. Rev. 34 (2004) 39–53.

[5] W. Eddy, RFC 4987: z, Technical Report, IETF, 2007.
[6] J. Sanders, Chinese Government Linked to Largest DDoS Attack in GitHub His-

tory, Technical Report, 2015.
[7] M. Korolov, DDoS Attack on BBC May Have Been Biggest in History, Technical

Report, 2016.
[8] DDoS Trends Report, Technical Report, Corero, 2017.
[9] Verisign DDoS Trends Report, Technical Report, Verisign, 2017.
[10] M. Cooney, IBM Warns of Rising VoIP Cyber-Attacks, Technical Report, 2016.
[11] R.K. Chang, Defending against flooding-based distributed denial-of-service at-

tacks: a tutorial, IEEE Commun. Mag. 40 (2002) 42–51.
[12] T. Peng, C. Leckie, K. Ramamohanarao, Survey of network-based defense mech-

anisms countering the DoS and DDoS problems, ACM Comput. Surv. 39 (2007).
[13] S. Ehlert, D. Geneiatakis, T. Magedanz, Survey of network security systems to

counter SIP-based denial-of-service attacks, Comput. Secur. 29 (2010) 225–243.
[14] B. Iancu, Ser pike excessive traffic monitoring module, 2003.
[15] Y.-S. Wu, S. Bagchi, S. Garg, N. Singh, T.K. Tsai, SCIDIVE: A Stateful and Cross

Protocol Intrusion Detection Architecture for Voice-Over-IP Environments, IEEE
Computer Society, 2004, pp. 433–442.

[16] E.Y. Chen, Detecting DoS attacks on SIP systems, in: 1st IEEE Workshop on VoIP
Management and Security, IEEE, 2006, pp. 53–58.

[17] D. Sisalem, J. Kuthan, S. Ehlert, Denial of service attacks targeting a SIP VoIP
infrastructure: attack scenarios and prevention mechanisms, IEEE Netw. 20
(2006), Special Issue on Securing VOIP.

[18] V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: a survey, ACM Comput.
Surv. 41 (2009) 15.

[19] P. Fearnhead, Exact and efficient Bayesian inference for multiple changepoint
problems, Stat. Comput. 16 (2006) 203–213.

[20] V-Spy, Nova V-SPY, http://www.netas.com.tr/en/innovation-productization/
nova-cyber-security-products/. (Accessed 29 April 2016). Online.

[21] H. Sengar, D. Wijesekera, H. Wang, S. Jajodia, VoIP intrusion detection through
interacting protocol state machines, in: International Conference on Depend-
able Systems and Networks, DSN’06, IEEE, pp. 393–402.

[22] Y. Bouzida, C. Mangin, A framework for detecting anomalies in VoIP networks,
in: Third International Conference on Availability, Reliability and Security, ARES
08, IEEE, 2008, pp. 204–211.

[23] S. Ehlert, G. Zhang, D. Geneiatakis, G. Kambourakis, T. Dagiuklas, J. Markl, D.
Sisalem, Two layer denial of service prevention on SIP VoIP infrastructures,
Comput. Commun. 31 (2008) 2443–2456.

[24] G. Ormazabal, S. Nagpal, E. Yardeni, H. Schulzrinne, Secure SIP: a scalable pre-
vention mechanism for DoS attacks on SIP based VoIP systems, Springer, Berlin,
Heidelberg, pp. 107–132.

[25] M. Nassar, R. State, O. Festor, Monitoring SIP traffic using support vector ma-
chines, in: Proceedings of the 11th International Symposium on Recent Ad-
vances in Intrusion Detection, RAID ’08, Springer-Verlag, Berlin, Heidelberg,
2008, pp. 311–330.

[26] M.A. Akbar, M. Farooq, Application of evolutionary algorithms in detection of
SIP based flooding attacks, in: Proceedings of the 11th Annual Conference on
Genetic and Evolutionary Computation, GECCO ’09, ACM, New York, NY, USA,
2009, pp. 1419–1426.

[27] M.A. Akbar, M. Farooq, Securing SIP-based VoIP infrastructure against flooding
attacks and spam over IP telephony, Knowl. Inf. Syst. 38 (2014) 491–510.

[28] Z. Tsiatsikas, A. Fakis, D. Papamartzivanos, D. Geneiatakis, G. Kambourakis, C.
Kolias, Battling against DDoS in SIP – is machine learning-based detection an
effective weapon?, in: Proceedings of the 12th International Conference on Se-
curity and Cryptography, vol. 1: SECRYPT, ICETE 2015, INSTICC, ScitePress, 2015,
pp. 301–308.

[29] Z. Tsiatsikas, D. Geneiatakis, G. Kambourakis, S. Gritzalis, Realtime DDoS detec-
tion in SIP ecosystems: machine learning tools of the trade, Springer Interna-
tional Publishing, pp. 126–139.

[30] B. Reynolds, D. Ghosal, Secure IP telephony using multi-layered protection, in:
NDSS.

[31] Y. Rebahi, D. Sisalem, Change-point detection for voice over IP denial of service
attacks, in: KiVS 2007, 2007.

[32] H. Zhang, Z. Gu, C. Liu, T. Jie, Detecting VoIP-specific denial-of-servijordan
rudessce using change-point method, in: Proceedings of the 11th International
Conference on Advanced Communication Technology, vol. 2, IEEE Press, 2009,
pp. 1059–1064.

[33] D. Geneiatakis, N. Vrakas, C. Lambrinoudakis, Utilizing bloom filters for de-
tecting flooding attacks against SIP based services, Comput. Secur. 28 (2009)
578–591.

[34] H. Sengar, H. Wang, D. Wijesekera, S. Jajodia, Fast detection of denial-of-service
attacks on IP telephony, in: IWQoS.

[35] Z. Tsiatsikas, D. Geneiatakis, G. Kambourakis, Exposing resource consumption
attacks in internet multimedia services, in: Proceedings of 14th IEEE Interna-
tional Symposium on Signal Processing and Information Technology (ISSPIT),
Security Track, IEEE Press, 2014, pp. 1–6.

[36] M. Handley, V. Jacobson, RFC 4566: SDP: Session Description Protocol, Technical
Report, IETF, 2006.

[37] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, RFC 3550: RTP: A Transport
Protocol for Real-Time Applications, Technical Report, IETF, 2003.

[38] D. Barber, Bayesian Reasoning and Machine Learning, Cambridge University
Press, New York, NY, USA, 2012.

[39] Ç. Yıldız, B. Kurt, T.Y. Ceritli, B. Sankur, A.T. Cemgil, A real-time SIP network
simulation and monitoring system, SoftwareX (2017), in press, Special Issue on
Reproducible Research.

[40] Trixbox, http://www.fonality.com/trixbox. (Accessed 29 April 2016). Online.
[41] M. Voznak, Evaluating the performance of sip infrastructure, Geant-Terena

(2011).

http://refhub.elsevier.com/S1051-2004(17)30236-1/bib726F73656E6265726732303037s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib726F73656E6265726732303037s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib726F73656E6265726732303037s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib67656E65696174616B697332303036s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib67656E65696174616B697332303036s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib67656E65696174616B697332303036s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib6B65726F6D7974697332303132s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib6B65726F6D7974697332303132s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib6D69726B6F76696332303034s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib6D69726B6F76696332303034s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib6564647932303037s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib73616E646572737932303135s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib73616E646572737932303135s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib6B6F726F6C6F7632303136s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib6B6F726F6C6F7632303136s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib636F7265726F32303137s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib766572697369676E32303137s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib636F6F6E657932303136s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib6368616E6732303032s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib6368616E6732303032s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib70656E6732303037s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib70656E6732303037s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib65686C65727432303130s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib65686C65727432303130s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib777532303034s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib777532303034s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib777532303034s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib6368656E32303036s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib6368656E32303036s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib736973616C656D32303036s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib736973616C656D32303036s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib736973616C656D32303036s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib6368616E646F6C6132303039s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib6368616E646F6C6132303039s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib666561726E6865616432303036s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib666561726E6865616432303036s1
http://www.netas.com.tr/en/innovation-productization/nova-cyber-security-products/
http://www.netas.com.tr/en/innovation-productization/nova-cyber-security-products/
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib626F757A69646132303038s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib626F757A69646132303038s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib626F757A69646132303038s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib65686C6572743230303862s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib65686C6572743230303862s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib65686C6572743230303862s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib6E617373617232303038s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib6E617373617232303038s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib6E617373617232303038s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib6E617373617232303038s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib616B62617232303039s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib616B62617232303039s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib616B62617232303039s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib616B62617232303039s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib616B62617232303134s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib616B62617232303134s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib747369617473696B61733230313561s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib747369617473696B61733230313561s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib747369617473696B61733230313561s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib747369617473696B61733230313561s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib747369617473696B61733230313561s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib72656261686932303037s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib72656261686932303037s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib7A68616E6732303039s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib7A68616E6732303039s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib7A68616E6732303039s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib7A68616E6732303039s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib67656E65696174616B697332303039s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib67656E65696174616B697332303039s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib67656E65696174616B697332303039s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib747369617473696B617332303134s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib747369617473696B617332303134s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib747369617473696B617332303134s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib747369617473696B617332303134s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib68616E646C657932303036s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib68616E646C657932303036s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib736368756C7A72696E6E6532303033s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib736368756C7A72696E6E6532303033s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib62617262657232303132s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib62617262657232303132s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib73696D756C61746F7232303136s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib73696D756C61746F7232303136s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib73696D756C61746F7232303136s1
http://www.fonality.com/trixbox
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib766F7A6E616B323031316576616C756174696E67s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib766F7A6E616B323031316576616C756174696E67s1

JID:YDSPR AID:2210 /FLA [m5G; v1.225; Prn:21/11/2017; 14:54] P.15 (1-15)

B. Kurt et al. / Digital Signal Processing ••• (••••) •••–••• 15
[42] T. Minka, Estimating a Dirichlet Distribution, Technical Report, 2016.
[43] T. Minka, Estimating a Gamma Distribution, Technical Report, 2002.
[44] A. Goldenberg, A.X. Zheng, S.E. Fienberg, E.M. Airoldi, A survey of statistical

network models, Found. Trends Mach. Learn. 2 (2010) 129–233.

Barış Kurt is a Ph.D. student at the Computer Engineering Department
in Bogazici University. He received his B.S. and M.Sc. degrees from the
same department. His research interests are Bayesian statistics, machine
learning, approximate inference, Monte Carlo methods and network traffic
analysis.

Cagatay Yıldız received the BSc and MSc degrees in computer engi-
neering from Bogazici University, Istanbul in 2014 and 2017, respectively.
He is currently a PhD candidate at the Department of Computer Science
at Aalto University, Finland. His research interests mainly involve Bayesian
statistical methods and inference, machine learning and stochastic opti-
mization.

Taha Yusuf Ceritli received his B.Sc. (2015) from Electrical and Elec-
tronics Department at Bogazici University. He holds his M.Sc. (2017) from
Department of Computational Science and Engineering at the same univer-
sity. Currently, he is a Ph.D. student at The Alan Turing Institute/University
of Edinburgh. His research interests include Bayesian inference and ma-
chine learning.
Bülent Sankur is presently at Bogazici University in the Department of
Electrical-Electronic Engineering. His research interests are in the areas of
digital signal processing, security and biometry, cognition and multimedia
systems. He has served as a consultant in several industrial and gov-
ernment projects and has been involved in various European framework
and/or bilateral projects. He has held visiting positions at the University
of Ottawa, Technical University of Delft, and Ecole Nationale Supérieure
des Télécommunications, Paris. He has published over 210 journal and
conference papers and co-authored two books. He was the chairman of
EUSIPCO’05: The European Conference on Signal Processing, as well as
technical chairman of ICASSP’00. Dr. Sankur is presently an associate edi-
tor of Journal of Image and Video Processing, Image and Vision Computing,
and Annals of Telecommunications.

Taylan Cemgil received Ph.D. (2004) from SNN, Radboud University
Nijmegen, the Netherlands. Between 2004 and 2008 he worked as a post-
doctoral researcher at Amsterdam University and University of Cambridge,
UK. He is currently an associate professor of Computer Engineering at
Bogazici University, Istanbul, Turkey. His research interests are in Bayesian
statistical methods and inference, machine learning and signal processing.

http://refhub.elsevier.com/S1051-2004(17)30236-1/bib6D696E6B6132303136s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib6D696E6B6132303032s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib476F6C64656E6265726732303130s1
http://refhub.elsevier.com/S1051-2004(17)30236-1/bib476F6C64656E6265726732303130s1

	A Bayesian change point model for detecting SIP-based DDoS attacks
	1 Introduction
	1.1 Paper structure

	2 Related work
	3 SIP network trafﬁc
	3.1 SIP terminology
	3.2 An example message ﬂow
	3.3 DDoS attacks in SIP networks

	4 Methodology
	4.1 SIP server features as observations
	4.2 Multiple change point model
	4.3 DDoS detection via multiple change point model
	4.4 Implementation details and complexity analysis
	4.5 Real time analysis
	4.6 Parameter learning

	5 Experimental setup
	5.1 Data generation
	5.2 Data traces
	5.3 Data features
	5.4 Evaluation

	6 Results
	6.1 Comparison to a distance based method

	7 Conclusion
	Acknowledgments
	Appendix A Implementation of forward-backward algorithm
	Appendix B Parameter estimation for the multiple change point model
	B.1 E-step
	B.2 M-step
	B.2.1 Maximizing for π
	B.2.2 Maximizing for w

	Appendix C SIP trafﬁc generator model
	C.1 Social network of SIP users
	C.2 Phone book of SIP users
	C.3 Registration of users
	C.3.1 Call rates
	C.3.2 Making a call
	C.3.3 Responding to a call
	C.3.4 Call durations

	Appendix D Pseudo code of forward-backward helper routines
	References

