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Abstract This study deals with missing link prediction, the problem of predicting the
existence of missing connections between entities of interest. We approach the problem
as filling in missing entries in a relational dataset represented by several matrices and
multiway arrays, that will be simply called tensors. Consequently, we address the link
prediction problem by data fusion formulated as simultaneous factorization of several
observation tensors where latent factors are shared among each observation. Previous
studies on joint factorization of such heterogeneous datasets have focused on a single
loss function (mainly squared Euclidean distance or Kullback–Leibler-divergence)
and specific tensor factorization models (CANDECOMP/PARAFAC and/or Tucker).
However, in this paper, we study various alternative tensor models as well as loss
functions including the ones already studied in the literature using the generalized
coupled tensor factorization framework. Through extensive experiments on two real-
world datasets, we demonstrate that (i) joint analysis of data from multiple sources
via coupled factorization significantly improves the link prediction performance, (ii)
selection of a suitable loss function and a tensor factorization model is crucial for
accurate missing link prediction and loss functions that have not been studied for
link prediction before may outperform the commonly-used loss functions, (iii) joint
factorization of datasets can handle difficult cases, such as the cold start problem
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that arises when a new entity enters the dataset, and (iv) our approach is scalable to
large-scale data.

Keywords Coupled tensor factorization · Link prediction · Heterogeneous data ·
Missing data · Data fusion

1 Introduction

Recent technological advances, such as the Internet, multi-media devices or social
networks provide abundance of relational data. For instance, in retail recommender
systems, typically a retailer will have access to retail data showing who has bought
which items, we may also have access to customers’ social networks, i.e., who is friends
with whom. Clearly, the social network data may provide valuable side information
and jointly analyzing data from multiple sources has great potential to increase our
ability for accurate prediction of missing data. In this study, we focus on a particular
task for relational data modeling: link prediction.

Applications in many areas including recommender systems and social network
analysis deal with link prediction, i.e., the problem of inferring whether there is a
relation between the entities of interest. For instance, if a customer buys an item, the
customer and the item can be considered to be linked. The task of recommending
other items the customer may be interested in can be cast as a missing link prediction
problem. However, the results are likely to be poor if the prediction is done in isolation
on a single view of data. Such datasets, whilst large in dimension, are already very
sparse (Getoor and Diehl 2005) and potentially represent only a very incomplete
picture of the reality (Clauset et al. 2008). Therefore, relational data from other sources
is often incorporated into link prediction models (Cao et al. 2010; Davis et al. 2011;
Menon and Elkan 2011; Popescul and Ungar 2003; Taskar et al. 2003; Yang et al.
2011, 2012).

An effective way of including side information via additional relational data in a
link prediction model is to represent different relations as a collection of matrices.
Subsequently, this collection of matrices are jointly analyzed using collective matrix
factorization, CMF (Long et al. 2006; Singh and Gordon 2008). Joint factorization
of matrices have proved useful in many social networking applications (Jiang et al.
2012; Koren et al. 2009; Ma et al. 2008; Menon et al. 2011; Yang et al. 2011; Yoo and
Choi 2012). However, matrices are often not sufficient for a faithful representation
of multiple attributes, and higher-order tensor and matrix factorization models are
needed. An influential study in this direction is by Banerjee et al. (2007), where a
general clustering method for joint analysis of heterogeneous data has been studied.
The goal here is clustering entities based on multiple relations, where each relation is
represented as a matrix (e.g., movies by review words matrix showing movie reviews)
or a higher-order tensor (e.g., movies by viewers by actors tensor showing viewers’
ratings).

Various algorithms have been proposed in the literature for coupled analysis of
heterogeneous data. Lin et al. (2009) propose a factorization method for community
extraction on multi-relational and multi-dimensional social data by using relational
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hypergraph representation. Their coupled factorization approach models higher-order
tensors using a specific tensor model, i.e., CANDECOMP/PARAFAC (CP) (Carroll
and Chang 1970; Harshman 1970; Hitchcock 1927), and has a Kullback–Leibler (KL)
divergence-based cost function. Also, a recent study by Narita et al. (2011) has con-
sidered joint factorization of coupled matrices and higher-order tensors based on
CP and Tucker (1963, 1966) models using a Euclidean (EUC) distance-based loss
function.

In this article, we address link prediction problem using coupled analysis of datasets
in the form of matrices and higher-order tensors. Unlike previous studies on coupled
analysis of heterogeneous datasets focusing on a certain loss function or a specific ten-
sor model, we use an approach, i.e., generalized coupled tensor factorizations, GCTFs
(Yilmaz et al. 2011), based on a probabilistic interpretation of tensor factorization
models as generalized linear models, which enables us to investigate alternative ten-
sor models and cost functions in addition to the approaches already studied in the
literature. Table 1 shows the related work in coupled factorizations, which can all be
considered as special cases of the GCTF framework1 in terms of the loss functions
and tensor models they consider. We assess the performance of those related stud-
ies as special cases of GCTF (and baseline methods) in our experiments. The main
contributions of this article can be summarized as follows:

– Addressing link prediction using joint analysis of heterogeneous data based on
different tensor models, i.e., CP, Tucker and some arbitrary tensor factorization
models, as well as different loss functions, i.e., KL-divergence, IS (Itakura–Saito)-
divergence, EUC distance and various other cost functions based on β-divergences.

– Demonstrating on two real datasets that coupled tensor factorizations outperform
low-rank approximations of a single tensor and the selection of the tensor model
as well as the loss function is significant in terms of link prediction performance.

– Handling the cold-start problem in link prediction using the proposed models accu-
rately.

– Demonstrating the scalability of the proposed models on a large-scale dataset.

This is an extended version of our previous study (Ermis et al. 2012), where we
have used the GCTF framework for link prediction but only considering CP and Tucker
models using EUC distance and KL-divergence based loss functions on a small dataset.
In this paper, we assess the performance of arbitrary tensor factorization models and
various cost functions based on β-divergences (including IS-divergence) in order to
demonstrate the flexibility of the GCTF framework for the link prediction problem.
Numerical experiments demonstrate that loss functions that have not been studied for
link prediction before, such as IS, may outperform the commonly-used loss functions.
Therefore, it is extremely useful to explore alternative loss functions using the GCTF
framework for the link prediction problem for different datasets. Furthermore, we also
show the scalability of our approach on a large-scale real dataset.

The rest of the article is organized as follows. In Sect. 2, we survey the related
work on link prediction as well as joint factorization of data. Section 3 introduces

1 Some of the listed studies do not impose nonnegativity constraints on the factor matrices while GCTF
assumes that all factor matrices are nonnegative.
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our algorithmic framework, i.e., GCTF, while Sect. 4 discusses its adaptation for the
link prediction problem. Experimental results on real datasets are presented in Sect. 5.
Finally, we conclude in Sect. 6.

2 Related work

In order to deal with the challenging task of link prediction, many studies have pro-
posed to exploit multi-relational nature of the data and showed improved link predic-
tion performance by incorporating related sources of information in their modeling
framework. For instance, earlier work by Taskar et al. (2003) uses relational Markov
networks to model links between entities as well as their attributes. Popescul and
Ungan (2003) extract relational features to learn the existence of links (see Al Hasan
and Zaki 2011 for a comprehensive list of similar studies). More recently, Cao et al.
(2010) have proposed a nonparametric Bayesian framework for collective link pre-
diction by developing a multitask extension of the Gaussian-process latent variable
model. Also, Davis et al. (2011) explore triad information in heterogeneous networks
while Yang et al. (2012) use a new topological feature to capture the correlations
between different types of links for the link prediction problem.

For analysis of multi-relational data, Singh and Gordon (2008) as well as Long et
al. (2006) have introduced CMFs. Matrix factorization-based techniques have proved
useful in terms of capturing the underlying patterns in data, e.g., in collaborative
filtering (Koren et al. 2009; Menon et al. 2011), and joint analysis of matrices has
been widely applied in numerous disciplines including signal processing (Yoo et al.
2010), bioinformatics (Alter et al. 2003) and social network analysis (Jiang et al.
2012; Koren et al. 2009; Ma et al. 2008; Yang et al. 2011; Yoo and Choi 2012).
For instance, Ma et al. (2008) propose a method based on probabilistic factor analy-
sis to make social recommendation by integrating social network structure and the
user–item rating matrix. They fuse these two different data resources through the
shared user latent feature space. Also, Yoo and Choi (2012) extend such CMF models
to a Bayesian matrix co-factorization model to exploit side information, e.g., con-
tent information and user demographic data, into collaborative prediction problem
by using a variational inference algorithm. Besides, Yang et al. (2011) use a coupled
latent factor model with variety of differentiable loss functions to uncover missing
links.

Recent studies extend CMF to coupled analysis of multi-relational data in the form
of matrices and higher-order tensors (Banerjee et al. 2007; Smilde et al. 2000) since
in many disciplines, relations can be defined among more than two entities, e.g.,
when a user engages in an activity at a certain location, a relation can be defined
over user, activity and location entities. For instance, Zheng et al. (2012) model the
user–location–activity relations with a tensor representation, and propose a matrix
and tensor decomposition solution for collaborative location and activity filtering.
Banerjee et al. (2007) introduce a multi-way clustering approach for relational and
multi-relational data where coupled analysis of heterogeneous data is studied using
minimum Bregman information. Lin et al. (2009) also discuss coupled matrix and
tensor factorizations using KL-divergence modeling higher-order tensors by fitting a
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Table 1 Related studies on
coupled factorization of
heterogenous data

Methods Cost functions Tensor models

EUC KL IS CP Tucker

PCLAF (Zheng et al.
2010, 2012)

� �

Metafac
(Lin et al. 2009)

� �

Narita et al. (2011) � � �
Acar et al. (2011a) � �

CP model. While these studies use alternating algorithms, Acar et al. (2011a) propose
an all-at-once optimization approach for coupled analysis. Table 1 summarizes some
of the related work on coupled analysis of heterogeneous data in terms of the loss
functions and tensor models they study.

Missing link prediction is also closely related to matrix and tensor completion
studies. By using a low-rank structure of a data set, it is possible to recover missing
entries for matrices (Candès and Plan 2010) and higher-order tensors (Acar et al.
2011b; Gandy et al. 2011). A recent study by Narita et al. (2011) addresses the tensor
completion problem using additional data. Note that, in this article, we do not address
the temporal link prediction problem, where snapshots of the set of links up to time t
are given and the goal is to predict the links at time t + 1. Tensor factorizations have
previously been used for temporal link prediction (Dunlavy et al. 2011). We keep our
focus limited to missing link prediction in this article.

In addition, there are some existing work which compares the factorization-based
methods to other link prediction methods in heterogeneous networks. In their work
2011, Menon and Elkan list some popular link prediction approaches and compares
these methods. Then, they conclude that factorization models have many advantages
for heterogeneous data: the graphs with several thousands of nodes and millions of
edges can be trained using stochastic gradient descent and also, the factorization
models can be extended to incorporate side information and overcome the imbal-
ance problem. Jamali and Lakshmanan (2013) review some related wok in hetero-
geneous networks (Shi et al. 2012; Sun et al. 2011; Wang et al. 2011; Yu et al.
2012) and conclude that these methods are slower in prediction and not appropri-
ate to build scalable algorithms compared to model-based approaches such as CMF
that do not require to access the raw data after the learning phase. In this article,
our main focus is the factorization-based approaches with different models and loss
functions.

3 Methodology

In this section, we first briefly discuss β-divergences within the context of tensor
factorizations and then explain probabilistic latent tensor factorization, PLTF (Yil-
maz and Cemgil 2010) for factorization of a single tensor. Finally, we introduce the
GCTF framework (Yilmaz et al. 2011), which is the generalization of PLTF to coupled
factorization of multiple tensors.
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3.1 β-Divergences

A tensor factorization problem is specified by an observed data tensor X and a collection
of latent factors to be estimated to best fit the data, Z1:|α| = {Zα} for α = 1, . . . , |α|.
Error minimization between the observation X and the model output X̂ is one of the
significant methods used for computation of the latent factors. After computation, this
error is distributed back proportionally to the factors and they are adjusted accordingly
in an iterative update schema (Yilmaz 2012). We use various divergences between
the observed data X and model prediction X̂ denoted by D(X ‖ X̂) to quantify the
quality of the approximation. The iterative algorithm, then, optimizes the factors in
the direction of the minimum error

X̂∗ = argmin
X̂

D(X ‖ X̂).

In applications, D is typically taken as EUC distance or KL-divergence. On the
other hand, GCTF framework is defined for a large family of loss functions called the
β-divergences, which generalizes these commonly-used divergences. β-divergences
are defined as (Cichocki et al. 2009):

dp(X; X̂) = X2−p

(1− p)(2− p)
− X X̂1−p

1− p
+ X̂2−p

2− p
,

where p determines the cost function. Note that p = {0, 1, 2} corresponds to EUC,
KL, and IS cost functions, respectively. In Sect. 5, we illustrate why a specific cost
function works well in practice by conducting experiments on synthetic datasets. In
our experiments, while we mainly focus on the performance of p = {0, 1, 2}, we
also explore the performance of link prediction models for p-values in [0–2] interval
on our second dataset in order to show the effect of p on link prediction.

3.1.1 Estimation of the p parameter

There are existing matrix and tensor factorization algorithms that minimize the
β-divergence (Cichocki et al. 2009; Tan and Fevotte 2013; Yilmaz et al. 2011). These
algorithms estimate the mean parameter. However, it is possible to estimate a spe-
cific β-divergence for a dataset and power parameter p which is useful for choosing
a suitable divergence by utilizing the close connection between β-divergences and
a particular exponential family, the so-called Tweedie models (Yılmaz and Cemgil
2012). In Simsekli et al. (2013a), they focus on estimating p when p ∈ (1, 2) by using
several inference algorithms in any matrix and tensor factorization model and they
also working on estimating p for a wider interval (p = {0, 1, 2, 3}).

3.2 Probabilistic latent tensor factorization

PLTF enables one to incorporate domain specific information to any arbitrary factor-
ization model and provides the update rules for multiplicative gradient descent and
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expectation–maximization algorithms. In this framework, the goal is to compute an
approximate factorization of X in terms of a product of individual factors Zα. Here,
we define V as the set of all indices in a model, V0 as the set of visible indices, Vα as
the set of indices in Zα, and V̄α = V − Vα as the set of all indices not in Zα. We use
small letters as vα to refer to a particular setting of indices in Vα.

PLTF tries to solve the following approximation problem

X (v0) ≈ X̂ (v0) =
∑

v̄0

∏

α

Zα (vα) . (1)

Since the product
∏

α Zα(vα) is collapsed over a set of indices, the factorization
is latent. The approximation problem is cast as an optimization problem where we
minimize the divergence D(X, X̂).

In this paper, we use nonnegative variants of the most widely-used low-rank tensor
factorization models, i.e., Tucker model and the more restricted CP model for com-
parison with our coupled models in Sect. 5. These models can be defined in the PLTF
notation as follows. Given a three-way tensor X, its CP model is defined as:

X (i, j, k) ≈ X̂(i, j, k) =
∑

r

Z1(i, r)Z2( j, r)Z3(k, r), (2)

where the index sets V = {i, j, k, r}, V0 = {i, j, k}, V1 = {i, r}, V2 = { j, r} and
V3 = {k, r}. A Tucker model of X is defined in the PLTF notation as follows:

X (i, j, k) ≈ X̂(i, j, k) =
∑

p,q,r

Z1(i, p)Z2( j, q)Z3(k, r)Z4(p, q, r), (3)

where the index sets V = {i, j, k, p, q, r}, V0 = {i, j, k}, V1 = {i, p}, V2 =
{ j, q}, V3 = {k, r} and V4 = {p, q, r}.

The update equation for non-negative generalized tensor factorization can be used
for both (2) and (3) and is expressed as (Yilmaz and Cemgil 2010):

Zα ← Zα ◦ Δα(M ◦ X̂−p ◦ X)

Δα(M ◦ X̂1−p)
s.t. Zα (vα) > 0, (4)

where ◦ is the Hadamard product (element-wise product), M is a 0–1 mask array
with M(v0) = 1 (M(v0) = 0) if X (v0) is observed (missing). Here p indicates the
cost function and remember that p = {0, 1, 2} corresponds EUC, KL, and IS cost
functions, respectively. In this iteration, we define the tensor valued function Δα(A)

as:

Δα(A) =
∑

v̄α

A (v0)
∏

α
′ 	=α

Z
α
′
(
v
α
′
)
, (5)

Δα(A) is an object, the same size of Zα, obtained simply by multiplying all factors
other than the one being updated with an object of the order of the data. Hence the key
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observation is that the Δα function is just computing a tensor product and collapses
this product over indices not appearing in Zα, which is algebraically equivalent to
computing a marginal sum.

As an example, for KL cost, we rewrite (4) more compactly as:

Zα ← Zα ◦Δα(M ◦ X/X̂)/Δα(M). (6)

This update rule can be used iteratively for all non-negative Zα and converges to a
local minimum provided we start from some non-negative initial values. For updating
Zα, we need to compute the Δ function twice for arguments A = Mν ◦ X̂−p

ν ◦ Xν and
A = Mν ◦ X̂1−p

ν . It is easy to verify that update equations for the KL-non-negative
matrix factorization problem (for p = 1) are obtained as a special case of (4).

Furthermore, we show the multiplicative update rule for the CP model given in
Eq. 2 generated by PLTF with KL cost function. The model estimate and the fixed
point equation for Z1 are as follows:

Z1(i, r)← Z1(i, r)

∑
j,k(M(i, j, k)X (i, j, k)/X̂(i, j, k))Z2( j, r)Z3(k, r)

∑
j,k M(i, j, k)Z2( j, r)Z3(k, r)

.

(7)

As a further example, this rule specializes for the update of Z4 factor in the Tucker
model given in Eq. 3 to

Z4(p, q, r)← Z4(p, q, r)

×
∑

i, j,k Z1(i, p)Z2( j, q)Z3(k, r)M(i, j, k)X̂(i, j, k)/X (i, j, k)
∑

i, j,k Z1(i, p)Z2( j, q)Z3(k, r)M(i, j, k)
. (8)

Other factor updates are similar. Note that these updates respect the sparsity pattern
of the data X as specified by the mask M and can be efficiently implemented on
large-but-sparse data as we illustrate with our experiments in Sect. 5 and Appendix 6.

3.3 Generalized coupled tensor factorization

The GCTF model takes the PLTF model one step further where, in this case, we have
multiple observed tensors Xν that are supposed to be factorized simultaneously:

Xν

(
v0,ν

) ≈ X̂ν

(
v0,ν

) =
∑

v̄0,ν

∏

α

Zα (vα)Rν,α

, (9)

where ν = 1, . . . , |ν| and R is a coupling matrix that is defined as follows:

Rν,α =
{

1 if Xν and Zα connected,

0 otherwise.
(10)
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Table 2 Update rules for
different pν values

pν Cost function Multiplicative update rule

0 Euclidean Zα ← Zα ◦
∑

ν Rν,αφ−1
ν Δα,ν (Mν◦Xν )

∑
ν Rν,αφ−1

ν Δα,ν (Mν◦X̂ν )

1 Kullback–Leibler Zα ← Zα ◦
∑

ν Rν,αφ−1
ν Δα,ν (Mν◦X̂−1

ν ◦Xν )
∑

ν Rν,αφ−1
ν Δα,ν (Mν )

2 Itakura–Saito Zα ← Zα ◦
∑

ν Rν,αφ−1
ν Δα,ν (Mν◦X̂−2

ν ◦Xν )
∑

ν Rν,αφ−1
ν Δα,ν (Mν◦X̂−1

ν )

Note that, distinct from PLTF model, there are multiple visible index sets (V0,ν) in
the GCTF model, each specifying the attributes of the observed tensor Xν .

The inference, i.e., estimation of the shared latent factors Zα, can be achieved via
iterative optimization (see Yilmaz et al. 2011). For non-negative data and factors, one
can obtain the following compact fixed point equation where each Zα is updated in
an alternating fashion fixing the other factors Z

α
′ for α

′ 	= α

Zα ← Zα ◦
∑

ν Rν,αφ−1
ν Δα,ν(Mν ◦ X̂−pν

ν ◦ Xν)
∑

ν Rν,αφ−1
ν Δα,ν(Mν ◦ X̂1−pν

ν )
, (11)

where Mν is a 0–1 mask array with Mν(v0,ν) = 1 (Mν(v0,ν) = 0) if Xν(v0,ν) is
observed (missing). Here, pν determines the cost function as in (4) while dispersion
parameter φν is used for data driven regularization and weighting in coupled factor-
ization of heterogeneous datasets. In Şimşekli et al. (2013b), they tackle learning the
dispersion parameters φν when p ∈ {0, 1, 2, 3} by using a probabilistic approach,
which makes use of the relation between the β-divergence and the family of Tweedie
distributions and enables to find the dispersion parameters by maximizing the likeli-
hood.

It is possible to choose different cost functions (different pν) for each observed data
in a coupled model if each Xν is modeled by a different type of distribution. Here, we
solved update equations under the assumption of each observation tensor is modeled
by the same type of distribution having the same dispersion parameter. This results in
the same cost function (pν) for all the observed tensors Xν and we can cancel out the
dispersion parameters from the update equations.

See Table 2 for update rules for different pν values. In this iteration, the key quantity
is the Δα,ν function that is defined as follows:

Δα,ν(A) =
⎡

⎣
∑

v0,ν∩v̄α

A
(
v0,ν

) ∑

v̄0∩v̄α

∏

α
′ 	=α

Z
α
′
(
v
α
′
)Rν,α

′
⎤

⎦ . (12)

4 Link prediction with coupled tensor factorization

In this section, by using the GCTF framework, we address the missing link prediction
task using different coupled models and loss functions on two real datasets, i.e., a small
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Fig. 1 UCLAF dataset
represented in the form of a
third-order tensor coupled with
two matrices in two different
modes

dataset called UCLAF2 and a large-scale dataset called Digg.3 We are not restricted to
a specific model topology since the GCTF framework enables us to design application-
specific models.

The choice of a particular factorization is strongly guided by the needs of an appli-
cation, and there are some methods which are used to determine the right factorization
model. First, the marginal likelihood of the observed data under a tensor factorization
model is often necessary for certain problems such as model selection. This quantity
can be estimated from variational Bayesian approach and the Gibbs output which is
known as the Chib’s method. Variational Bayes is applied to GCTF in Ermis and
Cemgil (2013) and Chib’s method is applied to PLTF in Simsekli and Cemgil (2012)
in order to estimate the marginal likelihood for the tensor factorization frameworks.
By computing the marginal likelihood, we can compare the tensor factorization mod-
els and choose the best model for a dataset. However, computing the marginal likeli-
hood requires additional computational cost. Second one is to do cross-validation type
experiments on each dataset and compare performances of the factorization models
by omitting the known links from the dataset then making prediction for these links.
Our simulations are close to the second method. At the beginning, we accept different
percentages of links as missing, then predict the values of these links. Here, we first
describe the datasets and then discuss the suitable factorization models by the defined
method without computing the marginal likelihood in order to save time.

4.1 UCLAF dataset

UCLAF dataset (Zheng et al. 2010) is extracted from the GPS data that include infor-
mation of three types of entities: user, location and activity (see Fig. 1 for an illustration
of the data). The relations between user–location–activity triplets are used to construct
a three-way tensor X1. In tensor X1, an entry X1(i, j, k) indicates the frequency of
user i visiting location j and doing activity k there; otherwise, it is 0. Since we address
the link prediction problem in this study, we define the user–location–activity tensor
X1 as:

X1(i, j, k) =
{

1 if user i visits location j and performs activity k there,
0 otherwise.

2 http://www.cse.ust.hk/~vincentz/aaai10.uclaf.data.mat.
3 http://www.public.esu.edu/~ylin56/kdd09sup.html.
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To construct the dataset, raw GPS points were clustered into 168 meaningful loca-
tions and the user comments attached to the GPS data were manually parsed into
activity annotations for the 168 locations. Consequently, the data consists of 164 users,
168 locations and 5 different types of activities, i.e., ‘Food and Drink’, ‘Shopping’,
‘Movies and Shows’, ‘Sports and Exercise’, and ‘Tourism and Amusement’ (Zheng
et al. 2010).

The collected data also includes additional side information: the user–location pref-
erences from the GPS trajectory data and the location features from the POI (points
of interest) database, represented as the matrix X2 and X3, respectively. In our model
the user–location preferences matrix has entries X2(i, m) of size I × J, where I is
the number of users and J is the number of locations. However, in our model we use
a separate index m for the location index in X2 instead of j. The rationale behind
this choice is to relax the model as the entries in X1 and X2 are measuring distinct
quantities: X2(i, m) represents the frequency of user i visiting location m and stayed
there over a time threshold while X1 only indicates an activity by a specific user i at
location j. The relation between the location entries j and m in X1 and X2 are coupled
via a common factor over the users. Finally, we represent the location–feature values
with matrix X3 of size J × N , where J is the number of locations, that has the same
location type in X1, and N is the number of features. In particular, an entry X3( j, n)

represents the number of different POIs at a location j. Using the location features, we
could gain information about location similarities.

In this dataset, 18 users have no location and activity information. Therefore,
we have used the data from the remaining 146 users. In order to decrease the
effect of outliers, location–feature matrix is preprocessed as follows: X3( j, n) =
1 + log(X3( j, n)) if X3( j, n) > 0; otherwise, X3( j, n) = 0. In our experiments,
number of users is I = 146, number of locations J = 168, number of activities K = 5 and
number of location features N = 14.

We have a three-way observation tensor X1 with elements 0 and 1, where 0 denotes
a known absent link and 1 denotes a known present link, and two auxiliary matrices
X2 and X3 that provide side information. Our aim is to restore the missing links in
X1. This is a difficult link prediction problem since X1 contains less than 1 % of all
possible links or an entire slice of X1 may be missing. Using low-rank factorization
of a tensor to estimate missing entries will be ineffective, in particular, in the case of
structured missing data such as missing slices.

In order to fill in the missing links in tensor X1, we form four different coupled
models changing in the way tensor X1 is factorized, i.e., using a CP, Tucker, Paratuck-
style (Harshman et al. 1996) or some arbitrary factorization. For all models, we use KL
divergence and EUC as cost functions in our non-negative decomposition problems.
Table 3 summarizes the models and the corresponding equations.

Table 3 Different coupled
models on UCLAF dataset

Models Equation numbers

Model 1 (CP) 13–15

Model 2 (Tucker) 17–19

Model 3 (Paratuck) 20–22

Model 4 (Arbitrary) 23–25
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4.1.1 Model 1 (CP)

In the first model, we applied the coupled approach to a CP-style tensor factorization
model by analyzing the tensor X1 jointly with the additional matrices X2 and X3
in order to solve the sparsity problem in X1 effectively. This gives us the following
model:

X̂1(i, j, k) =
∑

r

A(i, r)B( j, r)C(k, r), (13)

X̂2(i, m) =
∑

r

A(i, r)D(m, r), (14)

X̂3( j, n) =
∑

r

B( j, r)E(n, r). (15)

Here, we have three observed tensors, that share common factors; therefore, we have
a coupled tensor factorization problem. The coupling matrix R with |α| = 5, |ν| = 3
for this model is defined as follows:

R =
⎡

⎣
1 1 1 0 0
1 0 0 1 0
0 1 0 0 1

⎤

⎦ with
X̂1 =∑

A1 B1C1 D0 E0,

X̂2 =∑
A1 B0C0 D1 E0,

X̂3 =∑
A0 B1C0 D0 E1.

(16)

Note that, X1 and X2 share the common factor matrix A with entries A(i, r);we can
interpret each row of A(i, :) as user i’s latent position in a |r | dimensional ‘preferences’
space. The factor matrix B with entries B( j, r) represents the latent position of the
location j in the same preferences space. The user i at location j tends to make the
activity k where the weight A(i, r)B( j, r) is large for at least one r, i.e., there is a
match between the users preference and what the location ‘has to offer’. The location
specific factor B is also influenced by the location–feature matrix X3.

We show the computation for A, i.e. for Z1, which is the common factor of X1 and
X2 and the computation for B, i.e. for Z2, which is the common factor of X1 and X3
in Appendix 6.

4.1.2 Model 2 (Tucker)

Following the same line of thought, we apply the coupled approach using a Tucker
factorization to form our second model, which is as follows:

X̂1(i, j, k) =
∑

p,q,r

A(i, p)B( j, q)C(k, r)D(p, q, r), (17)

X̂2(i, m) =
∑

p

A(i, p)E(m, p), (18)

X̂3( j, n) =
∑

r

B( j, q)F(n, q). (19)
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In this model, once again, the factor A is shared by X1 and X2, while the fac-
tor B is shared by X1 and X3. In contrast to the coupled CP model in (13), this
model assumes that user i at location j tends to make the activity k with the weight∑

p,q A(i, p)B( j, q)C(k, r)D(p, q, r). Here, a latent preference space interpreta-
tion is less intuitive but the model has more freedom to represent the dependence.

4.1.3 Model 3

In this model, we apply the coupled approach to a Paratuck-style (Harshman et al.
1996) tensor model by analyzing the tensor X1 jointly with the additional matrices X2
and X3. This gives us the following model:

X̂1(i, j, k) =
∑

p,q

A(i, p)B( j, q)C(k, p)D(k, q)G(p, q), (20)

X̂2(i, m) =
∑

p

A(i, p)E(m, p), (21)

X̂3( j, n) =
∑

q

B( j, q)F(n, q). (22)

4.1.4 Model 4

As our final model, we use an arbitrary tensor model to jointly analyze tensor X1 with
the additional matrices X2 and X3. Here, we introduce a new dummy index d and call
this model Model 4, which is defined as follows:

X̂1(i, j, k) =
∑

d,r

A(i, d)B(d, r)C( j, r)D(k, r), (23)

X̂2(i, m) =
∑

d,r

A(i, d)B(d, r)E(m, r), (24)

X̂3( j, n) =
∑

r

C( j, r)F(n, r). (25)

4.2 Digg dataset

We address link prediction problem also on a large-scale dataset collected from Digg in
order to show the scalability of the proposed approach. Digg is a social news resource
that allows users to submit, Digg and comment on news stories. Lin et al. (2009) have
collected data from a large set of user actions from Digg. The dataset is a subset of
data scrapped from Digg by Choudhury et al. (2009) during January 2009. It includes
stories, users and their actions (submit, Digg, comment and reply) with respect to the
stories, as well as the explicit friendship (contact) relation among these users. It also
includes the topics of the stories and keywords extracted from the titles of stories. There
are five types of entities: user, story, comment, keyword and topic and six relationships
among them (see Lin et al. 2009 for a comprehensive illustration of relations).
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Table 4 Different coupled
models on Digg dataset

Models Equation numbers

Comment prediction
(with X1 and X2)

Comment prediction
(with X1–X3)

Digg
prediction

Model 1
(CP)

26, 27 31–33 37, 38

Model 2
(Tucker)

29, 30 34–36 39, 40

We will use three relationships in this study: user–story–comment (R1), story–
keyword–topic (R2) and user–story (R3). Lin et al. (2009) extract tuples with
timestamps ranging from 1 August to 27 August 2008, segment the data duration
into nine time slots (i.e. every 3 days), and construct a sequence of data tensors for
each dynamic relation in order to study the data evolution. Except for the contact
relation, all relations in this dataset have timestamps. However, in our work, since
we are not modeling the evolution in time, we integrate the nine segments together
and evaluate missing link prediction tasks on this integrated data. The total number
of tuples in each integrated data tensor per relation is 151779, 1157529 and 94551,
respectively. The prediction results are compared with the actual diggs and comments
as ground truth.

Based on the Digg scenario, we design two prediction tasks on Digg dataset:

(i) comment prediction: what stories a user will comment on,
(ii) Digg prediction: what stories a user will Digg.

For comment and Digg prediction, we form different coupled models. Table 4
summarizes these models and the corresponding equations.

4.2.1 Comment prediction

For comment prediction, the relation between the user–story–comment is used to
construct tensor X1 of size I × J × K where the number of users is I = 9,583, the
number of stories is J = 44,005 and the number of comments is K = 241,800. X1 is
defined as:

X1(i, j, k) =
{

1 if user i comments on story j with comment k,

0 otherwise.

Additionally, the data includes the topics of the stories and extracted keywords from
the stories’ titles. We represent this data as the three-way tensor X2. In our model the
story–keyword–topic tensor has entries X2( j, m, n) of size J × M × N , where the
number of stories is J = 44,005, the number of keywords is M = 13,714 and the number
of topics is N = 51.

Our aim is to restore the missing links in X1 (see Fig. 2a for an illustration of
the modeled data). Here, X1 contains less than 0.07 % of all possible links. We form
two coupled models in order to fill in the missing links in tensor X1 through joint
analysis of X1 and X2. For both models, we use EUC distance, KL divergence and IS

123



Link prediction in heterogeneous data

(a) (b) (c)

Fig. 2 Comment and Digg prediction on Digg dataset

divergence. We also explore the behaviour of the models using various cost functions,
i.e., p ∈ [0, 2], based on β-divergences.

Model 1 (CP) in the first model, we applied the coupled approach to a CP-style
tensor factorization model by analyzing the tensor X1 jointly with the additional tensor
X2 as follows:

X̂1(i, j, k) =
∑

r

A(i, r)B( j, r)C(k, r), (26)

X̂2( j, m, n) =
∑

r

B( j, r)D(m, r)E(n, r). (27)

Here, we have two observed tensors, X1 and X2, that share factor matrix B. The
coupling matrix R with |α| = 5, |ν| = 2 for this model is defined as follows:

R =
[

1 1 1 0 0
0 1 0 1 1

]
with

X̂1 =∑
A1 B1C1 D0 E0,

X̂2 =∑
A0 B1C0 D1 E1.

(28)

We can interpret each row of B( j, :) as story j’s latent position in a |r | dimensional
preferences space. The factor matrix A with entries A(i, r) represents the latent posi-
tion of user i in the same preferences space. The user i tends to comment on the story
j with comment k where the weight A(i, r)B( j, r)C(k, ) is large for at least one r.

Model 2 (Tucker) we also apply the coupled approach using a Tucker factorization
as follows:

X̂1(i, j, k) =
∑

p,q,r

A(i, p)B( j, q)C(k, r)D(p, q, r), (29)

X̂2( j, m, n) =
∑

q

B( j, q)E(m, q)F(n, q), (30)

where factor B is shared by X1 and X2. In contrast to the coupled CP model sketched
in Eq. 26, this model assumes that user i tends to comment on the story j with comment
k, with the weight

∑
p,q A(i, p)B( j, q)C(k, r)D(p, q, r).

Comment Prediction with different relational contexts we observe that different
combinations of relations affect the prediction performance. In addition to the rela-
tion between user–story–comment triplets (represented by tensor X1) and the relation
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between story–keyword–topic triplets (represented by X2), here we also incorporate
the relation between users and stories represented by matrix X3 (Fig. 2b).

In our model the user–story–comment tensor has entries X1(i, j, k). However, we
use a separate index t for the story index in X3 instead of j. The rationale behind
this choice is to relax the model as the entries in X1 and X3 are measuring distinct
quantities: X1(i, j, k) represents whether the user i comments on story j with comment
k, while X3 only indicates a vote (i.e. Digg) by a specific user i on story t. The relation
between story entries j and t in X1 and X3 are coupled via a common factor over the
users.

We form two coupled models for comment prediction through joint factorization
of X1, X2 and X3 in order to fill in the missing links in tensor X1. For both models,
we use EUC distance, KL divergence and IS divergence as cost functions.

Model 1 (CP) in the first model, we again applied the coupled approach to a CP-
style tensor model by analyzing tensor X1 jointly with additional tensors X2 and X3
as follows:

X̂1(i, j, k) =
∑

r

A(i, r)B( j, r)C(k, r), (31)

X̂2( j, m, n) =
∑

r

B( j, r)D(m, r)E(n, r), (32)

X̂3(i, t) =
∑

r

A(i, r)F(t, r). (33)

Here, we have three observed tensors with common factors. Note that X1 and X3
share factor matrix A with entries A(i, r);we can interpret each row of A(i, :) as user
i’s latent position in a |r | dimensional preferences space.

Model 2 (Tucker) likewise, we applied a Tucker-based coupled approach as follows:

X̂1(i, j, k) =
∑

p,q,r

A(i, p)B( j, q)C(k, r)G(p, q, r), (34)

X̂2( j, m, n) =
∑

q

B( j, q)D(m, q)E(n, q), (35)

X̂3(i, t) =
∑

p

A(i, p)F(t, p). (36)

4.2.2 Digg prediction

For Digg prediction, the relation between users and stories is used to construct matrix
X1 of size I × J where the number of users is I = 9,583 and the number of stories is
J = 44,005. The user–story matrix X1 is defined as:

X1(i, j) =
{

1 if user i votes (i.e. Digg) on news stories j,
0 otherwise.
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Additionally, the data includes the topics of the stories and extracted keywords
from titles of stories. We represent this data as a three-way tensor X2. In our model the
story–keyword–topic tensor has entries X2( j, k, m) of size J × K × M, where the
number of stories J = 44,005, the number of keywords is K = 13,714 and the number
of topics is M = 51.

Here, our aim is to restore the missing links in X1 (Fig. 2c). This is also a difficult
link prediction problem since X1 contains less than 0.008 % of all possible links. Once
again, we form coupled models based on CP and Tucker models in order to fill in the
missing links in matrix X1. For both models, as cost functions, we use EUC distance,
KL divergence, IS divergence as well as various cost functions, i.e., p ∈ [0, 2], based
on β-divergences.

Model 1 (CP) we applied the coupled approach based on a CP-style tensor model
by analyzing matrix X1 jointly with tensor X2 as follows:

X̂1(i, j) =
∑

r

A(i, r)B( j, r), (37)

X̂2( j, k, m) =
∑

r

B( j, r)C(k, r)D(m, r). (38)

Here, X1 and X2 share factor matrix B with entries B( j, r); we can interpret each
row of B( j, :) as story j’s latent position in a |r | dimensional preferences space. The
factor matrix A with entries A(i, r) represents the latent position of user i in the
same preferences space. The user i tends to vote for the story j, where the weight
A(i, r)B( j, r) is large for at least one r, i.e., there is a match between the users
preference and what the story ‘has to offer’.

Model 2 (Tucker) we also use a Tucker model for the coupled approach as follows:

X̂1(i, j) =
∑

p

A(i, p)B( j, p), (39)

X̂2( j, k, m) =
∑

p,q,r

B( j, p)C(k, q)D(m, r)G(p, q, r). (40)

5 Experimental results

This section reports our experimental study on two real world datasets: UCLAF and
Digg. For both datasets, we first demonstrate that coupled tensor factorizations outper-
form low-rank approximations of a single tensor in terms of missing link prediction.
Then, within the context of coupled tensor factorizations, we compare different tensor
models and loss functions including the ones previously proposed in the literature (see
Table 1) and show that selection of the tensor model and loss function is significant in
terms of link prediction performance, especially when the data is sparse. Our exper-
iments demonstrate that loss functions that have not been studied for link prediction
before, such as IS-divergence, outperform the commonly-used loss functions.

Furthermore, we study the case with completely missing slices, which corresponds
to the cold-start problem in our link prediction setting and demonstrate that it is still
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possible to predict missing links using the proposed coupled models whereas low-rank
approximations of a single tensor would fail to do so.

5.1 Computational environment

All experiments were performed using MATLAB 2010b on 2.4 GHz Core i5 520M
processor and 4 GB RAM. Timings were performed using MATLABs tic and toc
functions.

5.2 Stopping conditions

We use the relative change in error value as a stopping condition. The error at
iteration i is calculated as e(i) = 1

2‖X (i) − X̂ (i)‖2 and the algorithm stops when
|e(i) − e(i−1)|/e(i−1) ≤ 10−6 where i is the iteration number. In addition, the maxi-
mum number of iterations is set to 1,000. We observe that the algorithm has generally
stopped due to the relative change criterion.

5.3 Computational complexity

Assuming that all datasets have equal number of dimensions, i.e., a tensor is an N ×
N × N array while the coupled matrix is of size N × N , then the leading term in
the computational complexity of the coupled model will be due to the updates for the
tensor model. For an R-component CP model, for instance, that would be O(N 3 R).

If a large number of entries is missing, then mask tensor M is sparse. In this case,
there is no need to allocate storage for every entry of the tensor X. Instead, we can
store and work with just the known values, making the method efficient in both storage
and time. Our approach also has ability to perform sparse computations, enabling it to
scale to very large real datasets using specialized sparse data structures, significantly
reducing the storage and computation costs. When we take into account the sparsity
pattern of the data, the time complexity of each iteration is roughly O(N ), which is
linear in terms of the total number of non-missing entries N. We also give empirical
results in Appendix 6.

5.4 Evaluation metrics

In our experiments, as evaluation metrics, we use area under the receiver operating
characteristic (ROC) curve (AUC) and P@K (the precision of the top K results) for link
prediction results and root mean square error (RMSE) for tensor completion results.

5.5 RMSE

RMSE is a measure of the ‘average’ error, weighted according to the square of the error.
In our experiments, we use RMSE to measure the tensor reconstruction performance.
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5.6 AUC

Link prediction datasets are characterized by extreme imbalance, i.e., the number of
links known to be present is often significantly less than the number of edges known
to be absent. This issue motivates the use of AUC as a performance measure since
AUC is viewed as a robust measure in the presence of imbalance (Stäger et al. 2006).

5.7 P@K

Precision at k (P@K) measures the precision at a fixed number of retrieved items (i.e.,
top K) of the ordered list r ′ and the unordered list r (Sanderson 2010). Assume TopK
and T opK ′ are the retrieved items of r and r ′, respectively, then the P@K is defined
as P@K = |T opK∩T opK ′|

K .

We use P@K to measure the performance of prediction. As might be expected,
the accuracy of link prediction also varies according to the precision measure chosen.
Due to its robustness P@K is a frequently used measure in the domain of information
retrieval and machine learning (Spiegel et al. 2011). We compute the precision based
on the top 10 stories retrieved for each user on Digg dataset. The overall P@10 for the
set of users is computed by taking the mean of P@10 per user.

The following results show the average link prediction performance of 10 indepen-
dent runs in terms of AUC, ROC curve and P@K.

5.8 UCLAF dataset

In this section, we assess the performance of the coupled models proposed in Sect.
4.1 in terms of tensor completion and/or missing link prediction.

5.8.1 Experimental setting

We design experiments to evaluate the performance of our models in terms of link
prediction. By setting different amounts of data to missing in user–location–activity
tensor X1, we compare the following models using both KL-divergence and the EUC
as cost functions:

– Low-rank approximations of a single tensor (i) CP and (ii) Tucker factorization of
user–location–activity tensor X1,

– Coupled tensor factorizations (i) CP factorization of X1 coupled with factorization
of user–location matrix X2 and location–feature matrix X3 (Eqs. 13–15), (ii) Tucker
factorization of X1 coupled with factorization of X2 and X3 (Eqs. 17–19), (iii)
Model 3 (Eqs. 20–22), and (iv) Model 4 (Eqs. 23–25).

We use two patterns of missing data: (i) randomly missing entries and (ii) randomly
missing slices. In all experiments, number of components, i.e., number of columns in
each factor matrix, Zi , is set to 2.
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Table 5 RMSE for different models with different percentages of training data

Models EUC KL

30 % 50 % 30 % 50 %

CP 0.27∓ 0.03 0.28∓ 0.04 0.24∓ 0.03 0.23∓ 0.03

Tucker 0.26∓ 0.02 0.26∓ 0.04 0.22∓ 0.02 0.22∓ 0.02

Coupled (CP) 0.24∓ 0.01 0.23∓ 0.02 0.19∓ 0.02 0.18∓ 0.02

Coupled (Tucker) 0.22∓ 0.01 0.22∓ 0.02 0.18∓ 0.01 0.18∓ 0.01

PCLAF (Zheng et al. 2010) 0.30∓ 0.01 0.29∓ 0.01 – –

5.8.2 Results

Tensor completion Table 5 shows tensor completion performances of standard CP
and Tucker models, coupled models and PCLAF (Zheng et al. 2010). PCLAF is a
personalized collaborative location and activity filtering algorithm, which uses a col-
lective tensor and matrix factorization. In addition to the data that we have used in our
models, PCLAF uses user–user and activity–activity similarity matrices in UCLAF
dataset. Also, PCLAF uses CP tensor factorization model and EUC distance as cost
function. For PCLAF algorithm, they run the experiments five times, and report the
average RMSE scores. Specifically, at each trial, they randomly split some percentage
(30 and 50 %) of the existing tensor entries for training and hold out the other for test-
ing. We also set the same amount of missing entities randomly and report the average
RMSE scores of 10 independent runs. Hence, our results are comparable to PCLAF
algorithm’s results. Eventually, we observe that our models outperform the PCLAF
approach, which has outperformed many collaborative filtering methods in Zheng et
al. (2012), especially when we use KL divergence which is a lot more natural than a
EUC cost for this data.

Link prediction in order to demonstrate the power of coupled analysis, we compared
the link prediction performance of standard CP and Tucker models with coupled ones
using EUC and KL cost functions at different amounts, i.e., {40, 60, 80, 90, 95}, of
randomly unobserved elements. For all cases, coupled models outperform the stan-
dard models clearly. Figure 3 shows the comparison of CP and coupled CP mod-
els with different cost functions when 80 % of the data is missing. As we can see,
the coupled models that try to use as much additional information as possible to
help alleviate the data sparsity issue perform better than the standard models; in
particular, when the percentage of missing data is high (see Table 6). When the
fraction of missing data was more than 80 %, the standard models could not find a
solution.

In order to demonstrate the effect of the cost function modeling the data, we have
also carried out experiments on both coupled CP and Tucker models at different
missing data fractions. For all cases, the KL cost function seems to perform better
than EUC, especially when the fraction of missing entries is high. Figure 4 illustrates
the performance of EUC distance and KL divergence for both coupled CP and Tucker
models when 90 % of the data is unobserved.
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Fig. 3 Comparison of CP and coupled (CP) models

Table 6 Link prediction results
on UCLAF with different
experimental settings

40 % 80 % 90 %

EUC KL EUC KL EUC KL

CP 0.920 0.946 0.808 0.867 – –

Tucker 0.943 0.960 0.896 0.917 – –

CP (coupled) 0.951 0.968 0.915 0.937 0.813 0.869

Tucker
(coupled)

0.965 0.983 0.934 0.948 0.871 0.908

Figure 5 shows the comparison of coupled CP and Tucker models in order to
illustrate the tensor model which models the data best. We can see that Tucker model
outperforms the CP model; because Tucker model is more flexible due to the full core
tensor which is helpful for us to explore the structural information embedded in the
data. In Fig. 6, we also compare coupled CP and coupled Tucker with some arbitrary
factorizations, i.e., Model 3 (given in Eqs. 20–22) and Model 4 (given in Eqs. 23–25).
We can see that Tucker model outperforms all the other models.

Finally, we demonstrate the effect of cardinality of latent indices R on link prediction
performance. Figure 7 illustrates the performance of coupled CP model when R = 2
and 5 for both EUC and KL divergences when 90 % of the data is unobserved. It is
clear that the average scores for both values of R are quite close. We use R = 2 for the
rest of the experiments.

Missing slice we also study the cold-start problem, which is particularly important
in link prediction because we may often have new users starting to use an applica-
tion, e.g., a location–activity recommender system. Since they are new users, they will
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Fig. 4 Comparison of EUC distance and KL divergence with 90 % missing data

Fig. 5 Comparison of coupled CP and Tucker models with KL

have no entry in X1, i.e., a completely missing slice (see Fig. 8 for illustration of the
problem). It is not possible to reconstruct a missing slice of a tensor using its low-rank
approximation. A similar argument is valid in the case of matrices for completely
missing rows/columns (Candès and Plan 2010). In such cases, additional sources of
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(a) (b)

Fig. 6 Comparison of four different coupled tensor factorization models with 90 % missing data

(a) (b)

Fig. 7 Comparison of R = 2 and 5 with CP model

information will be useful (Narita et al. 2011) to make recommendations to new users.
We observe that our coupled models could predict the links when there is no informa-
tion about a user in tensor X1, by utilizing the additional sources of information. We
test this case by setting randomly missing slices in X1.
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Fig. 8 Cold-start problem

(a) (b)

Fig. 9 Link prediction result with missing slices and KL cost

Figure 9 demonstrates the performance of coupled models with KL divergence
when 10- and 50 users’ data are missing. Also note that Tucker is superior to CP as
the amount of missing data increases.

Table 6 summarizes the experimental results given in this section on UCLAF dataset
in terms of AUC metric.

5.9 Digg dataset

In this section, we assess the performance of the coupled models proposed in Sect.
4.2 in terms of missing link prediction.

5.9.1 Experimental setting

We design experiments to evaluate the performance of our models given in Sect. 4.2 in
terms of missing link prediction on Digg dataset. Based on the Digg scenario, we have
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two prediction tasks on Digg dataset: (i) comment prediction and (ii) Digg prediction
that are explained in Sect. 4.2.

For the first prediction task, by setting different amounts of data to missing in user–
story–comment tensor X1, we compare the following models using EUC distance,
KL and IS divergences as cost functions. We also assess the performance of various
cost functions based on β-divergences.

– Low-rank approximations of a single tensor (i) CP and (ii) Tucker factorization of
user–story–comment tensor X1,

– Coupled tensor factorizations (i) CP factorization of X1 coupled with factorization
of story–keyword–topic tensor X2 (Eqs. 26, 27) and (ii) Tucker factorization of X1
coupled with factorization of X2 (Eqs. 29, 30),

– Coupled tensor factorizations (i) CP factorization of X1 coupled with factorization
of X2 and user–story matrix X3 (Eqs. 31–33) and (ii) Tucker factorization of X1
coupled with factorization of X2 and X3 (Eqs. 34–36).

For the second prediction task, by setting different amounts of data to missing in
user–story matrix X1, we compare the following models using EUC distance, KL and
IS divergences as cost functions. Just like in comment prediction, in addition to these
cost functions, we also consider additional loss functions based on β-divergences.

– Coupled tensor factorizations (i) matrix factorization of X1 coupled with CP fac-
torization of story–keyword–topic tensor X2 (Eqs. 37, 38) and (ii) matrix factor-
ization of X1 coupled with Tucker factorization of X2 (Eqs. 39, 40).

In all experiments, we set number of components, i.e., number of columns in each
factor matrix, Zi , to 5. We consider both randomly missing entries and randomly
missing slices.

5.9.2 Results

In order to demonstrate the power of coupled analysis, we compared the link prediction
performance of standard CP and Tucker models with coupled ones using EUC, KL
and IS cost functions at different amounts, i.e., {40, 80, 90}, of randomly unobserved
elements. Here, we show results of the experiments on both comment and Digg pre-
diction tasks. For all cases, coupled models outperform the standard models clearly.
Figure 10 shows the comparison of CP and coupled CP models with different cost
functions when 40 and 80 % of the data are missing. As we can see, coupled models
perform better than the standard models; in particular, when the percentage of missing
data is high. When the fraction of missing data was more than 80 %, the standard
models could not find a solution. In Fig. 10, we denote coupled models as coupled
(CP) in the legend; in the rest of the figures, we use only CP or Tucker in the legends
indicating coupled models.

In order to demonstrate the effect of the cost function modeling the data, we have
also carried out experiments on both coupled CP and Tucker models at different
missing data fractions. For all cases, the IS cost function seems to perform better than
EUC and KL for both prediction tasks, especially when the fraction of missing entries
is high. Figures 11 and 12 illustrate the performance of EUC distance, KL divergence
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(a) (b)

(c) (d)

Fig. 10 Comparison of CP and coupled (CP) models for comment prediction

and IS divergence for both coupled CP and Tucker models when 40 and 90 % of the
data is unobserved, for comment prediction and Digg prediction, respectively.

When the missing data rate becomes higher, the difference between performances
of cost functions become clearer.

In Figs. 11 and 12, we also observe that CP model outperforms the Tucker model
in terms of capturing the structural information embedded in the data. In addition,
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(a) (b)

Fig. 11 Comparison of EUC, KL and IS on comment prediction of the models in Eqs. 26, 27 for CP and
Eqs. 29, 30 for Tucker

(a) (b)

Fig. 12 Comparison of EUC, KL and IS on Digg prediction of the models in Eqs. 37, 38 for CP and Eqs.
39, 40 for Tucker
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(a) (b)

Fig. 13 Comparison of coupled models with different relations and IS cost on comment prediction of the
models in Eqs. 31–33

we compare the average timings of the two models. CP requires ∼568 s and Tucker
requires ∼2,654 s for comment prediction while CP requires ∼260 s and Tucker
requires ∼1,435 s for Digg prediction in average.

In order to demonstrate the effect of various relational context on comment predic-
tion, we also carried out experiments with different relational contexts. We observe
that different combinations of the relations affect the prediction performance. Model
of one of these combinations is given in Sect. 4.2. In this model, we incorporate the
relation R3 with R1 and R2 to increase prediction performance on users’ comment
activities. Figure 13 shows the comparison of models given in Eqs. 26, 27 and 31–34
when 40 and 90 % of the data is unobserved, respectively.

Missing slice we test this case by setting randomly missing slices in user–story–
comment tensor X1 for comment prediction task. Figure 14 demonstrates the perfor-
mance of coupled models with IS divergence when 10- and 50 users’ data are missing.
Also note that CP is superior to Tucker as the amount of missing data increases.

Finally, we compare the prediction performances of our models in Eqs. 26, 27 and
37–40 under 40 and 90 % missing data in terms of P@10 metric. The results of Digg
and comment predictions are given in Table 7.

Digg and comment prediction have also been studied in Lin et al. (2009) using the
MFT (Metafac factorization with time evolving data) approach. The overall comment
and Digg prediction performances of MFT algorithm were obtained as 0.135± 0.001
and 0.543 ± 0.007 in terms of P@10, respectively in Lin et al. (2009). While our
prediction results are clearly higher than those of MFT in terms of P@10, we cannot
directly compare them since we use the integrated Digg dataset instead of the seg-
mented data and do not deal with the temporal aspect of the data. However, in Table 7,
we observe that if we use the loss function and the tensor model used in MFT, i.e.,
CP model based on KL-divergence, then it performs worse than modeling the data
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(a) (b)

Fig. 14 Comment prediction result with missing slices and IS cost of the models in Eqs. 26, 27 for CP and
Eqs. 29, 30 for Tucker

Table 7 The average prediction
performance for Digg and
comment prediction, evaluated
by P@10 values, of the models
in Eqs. 26, 27 and 37–40

Bold values indicate the best
results

Digg prediction Comment prediction

40 % 90 % 40 % 90 %

GCTF–EUC 0.7154 0.6615 0.3632 0.3241

GCTF–KL 0.7414 0.6865 0.3751 0.3383

GCTF–IS 0.7858 0.7479 0.4075 0.3846

Table 8 Link prediction results on Digg with different experimental settings

Digg prediction Comment prediction

40 % 90 % 40 % 90 %

CP Tucker CP Tucker CP Tucker CP Tucker

EUC 0.855 0.831 0.817 0.801 0.845 0.831 0.810 0.780

KL 0.921 0.882 0.853 0.827 0.871 0.845 0.824 0.810

IS 0.939 0.923 0.895 0.869 0.901 0.885 0.882 0.859

using IS-divergence. This clearly shows that GCTF framework is useful in terms of
making use of better loss functions for modeling datasets. Table 8 summarizes the
experimental results given in this section on Digg dataset in terms of AUC metric.

Effect of the cost function in addition, in order to demonstrate the effect of the cost
function modeling the data, we have also carried out experiments on both coupled CP
and Tucker models at different missing data fractions using different p values. Figure 15
illustrates the performance of arbitrary cost functions (with different p values) for the
coupled CP model for both comment and Digg prediction when 90 % of the data is
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(a) (b)

Fig. 15 Comparison of different cost functions

(a) (b)

(c)

Fig. 16 Comparison of different p values for estimation of real data

unobserved. These results also confirm that IS-divergence, i.e., p = 2, performs better
than KL-divergence, i.e., p = 1, which performs better than EUC distance, i.e., p = 0.

Furthermore, in order to provide more insight regarding to the performance of
different cost functions, we designed experiments on a synthetic dataset. Here, we
generate data with different choices for p, that correspond to special cases of the
exponential family distributions for any p-named Tweedie’s family (Kaas 2005) such
as the Gaussian (p = 0), Poisson (p = 1) and Gamma (p = 2) distributions (Yılmaz and
Cemgil 2012). These p values, i.e., p = 0, 1, 2, correspond to EUC, KL and IS cost
functions, respectively. Then, we estimate the data by using all p values used for data
generation. Figure 16 visualizes an example estimation. It can be observed that the
best fit between the generated and estimated data occurs when we use the same p
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value. These experiments demonstrate that the performance of the cost function is
highly related to the distribution of data. For instance, IS-divergence performs better
than EUC distance and KL-divergence for Digg dataset, so we can conclude that Digg
is more likely to be distributed by a Gamma distribution.

6 Conclusions

In this article, we have studied link prediction problem using coupled analysis of rela-
tional data represented as datasets in the form of matrices and higher-order tensors. The
problem is formulated as simultaneous factorization of higher-order tensors/matrices
extracting common latent factors from the shared modes. While most existing studies
on coupled analysis have been developed to fit a specific type of a tensor model using a
particular loss function, we have used GCTF framework, which enables us to develop
coupled models for joint analysis of multiple datasets in a compact way using various
tensor models and cost functions. In our coupled analysis for the link prediction prob-
lem, in addition to the commonly-used KL-divergence and EUC distance-based loss
functions, we have also studied IS-divergence as well as various other cost functions
based on β-divergences.

Through extensive experiments on real datasets, we assess the performance of
various alternative tensor models and loss functions for the link prediction problem.
Numerical experiments clearly demonstrate that not only joint analysis of data from
multiple sources via coupled factorization improves the link prediction performance
but also the selection of right loss function and tensor model is crucial for accurately
predicting missing links.

As a future direction and next step of this work, we aim to determine the relative
weights of data included in the model, framed as dispersion parameter estimation;
since the dispersion parameters play a key role on inference as they form a balance
between the information obtained from multimodal observations.
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Appendix

Computation for common factors

Here, we show the computation for A:

ΔA,1(Q) =
⎡

⎣
∑

j,k

Qi, j,k
(

B j,r Ck,r
)
⎤

⎦ = Q1(BC),

ΔA,2(Q) =
[
∑

m

Qi,m (
Dm,r )

]
= Q2 D,
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B. Ermiş et al.

A← A ◦ Q1(BC)+ Q2 D

X̂−p
1 (BC)+ X̂−p

2 D
,

and B:

ΔB,1(Q) =
⎡

⎣
∑

i,k

Qi, j,k
(

Ai,r Ck,r
)
⎤

⎦ = Q1(AC),

ΔB,2(Q) =
[
∑

n

Q j,n (
En,r )

]
= Q2 E,

B ← B ◦ Q1(AC)+ Q3 E

X̂−p
1 (AC)+ X̂−p

3 E
,

given in Model 1, Sect. 4.1.

Computational complexity

We have conducted experiments on tensor completion problem to demonstrate that
time complexity of the modeling framework is O(N ) for sparse datasets, where N
is the number of known entries. We consider two situations in these experiments: (i)
500×500×500 three-way array with 99 % missing data (1.25 million known values),
and (ii) 1, 000× 1, 000× 1, 000 three-way array with 98 % missing data (20 million
known values). We have used CP tensor factorization model with R = 3 components
to generate data, then added 20 % random Gaussian noise. We have then fitted a CP
model using EUC distance-based loss function and used the extracted CP factors to
reconstruct the data. Figure 17 shows the average tensor completion performance of
10 independent runs in terms of RMSE score. In the 500 × 500 × 500 case, all ten
problems have been solved with an RMSE score around 0.20, with computation times
ranging between 400 and 500 s and in the 1, 000×1, 000×1, 000 case, all ten problems

(a) (b)

Fig. 17 Results of our algorithm for large-scale problems. The means are shown as solid lines
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are also solved with an RMSE score around 0.20. The computation times have ranged
from 8,000 to 12,000 s, approximately 20 times slower than the 500×500×500 case,
which has 16 times more non-missing entries.
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