Lecture 33 The Arnoldi Iteration

NLA Reading Group Spring '13 by Hakan Güldaş

	A = QR	$A = Q H Q^*$
orthogonal structuring	Householder	Householder
structured orthogonalization	Gram–Schmidt	Arnoldi

Arnoldi is analogue of Gram-Scmidt for similarity transformations to Hessenberg form rather than QR factorization.

It can be stopped part-way, partial reduction to Hessenberg form.

Mechanics of the Arnoldi Iteration

We want to transform A unitarily into upper Hessenberg form :

$$A = QHQ^*, \text{ or } AQ = QH.$$

$$\begin{bmatrix} A \\ \end{bmatrix} \begin{bmatrix} q_1 \\ \cdots \\ q_n \end{bmatrix} = \begin{bmatrix} q_1 \\ \cdots \\ q_{n+1} \end{bmatrix} \begin{bmatrix} h_{11} \\ \cdots \\ h_{21} \\ \cdots \\ \vdots \\ h_{n+1,n} \end{bmatrix}$$

$$AQ_n = Q_{n+1}\tilde{H}_n,$$

$$Aq_n = h_{1n}q_1 + \cdots + h_{nn}q_n + h_{n+1,n}q_{n+1} (33.4)$$

This is a recurrence relation for q_n

Algorithm 33.1. Arnoldi Iteration

$b = arbitrary, q_1 = b/ b $	
for $n = 1, 2, 3, \ldots$	
$v = Aq_n$	
for $j = 1$ to n	
$h_{jn} = q_j^* v$	
$v = v - h_{jn}q_j$	
$h_{n+1,n} = \ v\ $	[see Exercise 33.2 concerning $h_{n+1,n} = 0$]
$q_{n+1} = v/h_{n+1,n}$	

This is modified Gram-Schmidt that implements 33.4

QR Factorization of a Krylov Matrix

Krylov subspaces generated by A and b

$$\mathcal{K}_n = \langle b, Ab, \dots, A^{n-1}b \rangle = \langle q_1, q_2, \dots, q_n \rangle \subseteq \mathbb{C}^m$$

n × *m* Krylov matrix :

$$K_n = \begin{bmatrix} b & Ab & \cdots & A^{n-1}b \\ & & & \end{bmatrix}$$

$$K_n = Q_n R_n$$

Arnoldi iteration is based upon the QR factorization of the matrix with columns $b, Ab, ..., A^{n-1}b$

Simultaneous iteration and the QR algorithm is based upon the QR factorization of the matrix with columns $A^n e_1, A^n e_2, \dots A^n e_m$

	quasi-direct	iterative
straightforward but unstable	simultaneous iteration	(33.6) – (33.7)
subtle but stable	QR algorithm	Arnoldi

Projection onto Krylov Subspaces

 $Q_n^*Q_{n+1}$ is the $n \times (n+1)$ identity $Q_n^*Q_{n+1}\tilde{H}_n$ is the $n \times n$ Hessenberg matrix obtained by removing the last row of \tilde{H}_n

$$\{q_1, \ldots, q_n\}$$
 is a basis for \mathcal{K}_n
 $Q_n^*A Q_n$ is the representation of A in the basis $\{q_1, \ldots, q_n\}$

Theorem 33.1. The matrices Q_n generated by the Arnoldi iteration are reduced QR factors of the Krylov matrix (33.6):

$$K_n = Q_n R_n. \tag{33.11}$$

The Hessenberg matrices H_n are the corresponding projections

$$H_n = Q_n^* A Q_n, \tag{33.12}$$

and the successive iterates are related by the formula

$$AQ_n = Q_{n+1}\tilde{H}_n. aga{33.13}$$

Lecture 34 How Arnoldi Locates Eigenvalues

NLA Reading Group Spring '13 by Hakan Güldaş

Computing Eigenvalues by the Arnoldi Algorithm

- Compute H_n by Arnoldi algorithm
- Compute eigenvalues of H_n by standard methods (such as QR)
- These eigenvalues converge to extreme eigenvalues of A

Arnoldi and Polynomial Approximation

Let x be a vector in the Krylov subspace \mathcal{K}_n (33.5). Such an x can be written as a linear combination of powers of A times b:

$$x = c_0 b + c_1 A b + c_2 A^2 b + \dots + c_{n-1} A^{n-1} b.$$
(34.1)

 $P^n = \{ \text{monic polynomials of degree } n \}.$

Arnoldi/Lanczos Approximation Problem. Find $p^n \in P^n$ such that

$$\| p^n(A) b \| = \text{minimum}. \tag{34.3}$$

Theorem 34.1. As long as the Arnoldi iteration does not break down (i.e., K_n is of full rank n), (34.3) has a unique solution p^n , namely, the characteristic polynomial of H_n .

Invariance Properties

Theorem 34.2. Let the Arnoldi iteration be applied to a matrix $A \in \mathbb{C}^{m \times m}$ as described above.

Translation-invariance. If A is changed to $A + \sigma I$ for some $\sigma \in \mathbb{C}$, and b is left unchanged, the Ritz values $\{\theta_i\}$ at each step change to $\{\theta_i + \sigma\}$.

Scale-invariance. If A is changed to σA for some $\sigma \in \mathbb{C}$, and b is left unchanged, the Ritz values $\{\theta_i\}$ change to $\{\sigma\theta_i\}$.

Invariance under unitary similarity transformations. If A is changed to UAU^* for some unitary matrix U, and b is changed to Ub, the Ritz values $\{\theta_i\}$ do not change.

In all three cases the Ritz vectors, namely the vectors $Q_n y_j$ corresponding to the eigenvectors y_j of H_n , do not change under the indicated transformation.

How Arnoldi Locates Eigenvalues

If one's aim is to find a polynomial p^n with the property that $p^n(A)$ is small, an effective means to that end may be to pick p^n to have zeros close to the eigenvalues of A.

Consider an extreme case. Suppose that A is diagonalizable and has only $n \ll m$ distinct eigenvalues, hence a minimal polynomial of degree n. Then from Theorem 34.1 it is clear that after n steps, all of these eigenvalues will be found exactly, at least if the vector b contains components in directions associated with every eigenvalue. Thus after n steps, the Arnoldi iteration has computed the minimal polynomial of A exactly.

Arnoldi Lemniscates

A *lemniscate* is a curve or collection of curves

$$\{z \in \mathbb{C} : |p(z)| = C\},\$$

If we replace p above by p^n and put

$$C = \frac{\|p^n(A)b\|}{\|b\|},$$

this lemniscate is called Arnoldi lemniscate.

As the iteration number *n* increases, components of these lemniscates typically appear which surround the extreme eigenvalues of *A* and then shrink rapidly to a point, namely eigenvalues itself.

Geometric Convergence

Figure 34.3. Arnoldi lemniscates (34.4)-(34.5) at steps n = 5, 6, 7, 8 for the same matrix A. The small dots are the eigenvalues of A, and the large dots are the eigenvalues of H_n , i.e., the Ritz values. One component of the Arnoldi lemniscate first "swallows" the outlier eigenvalue, and in subsequent iterations it then shrinks to a point at a geometric rate.

Figure 34.4. Convergence of the rightmost Arnoldi eigenvalue estimate.

2

Figure 34.3 approximates the rate

$$|\lambda^{(n)} - \lambda| \approx \left(\frac{2}{3}\right)^n.$$

Consider the polynomial $p(z) = z^{n-1}(z - \tilde{\lambda})$, where $\tilde{\lambda}$ is some number close to λ .

At each of the eigenvalues of A in the unit disk, |p(z)| is of order 1 or smaller. At $z = \lambda$, however, it has magnitude

$$|p(\lambda)| \approx \left(\frac{3}{2}\right)^n |\tilde{\lambda} - \lambda|$$

(this would be an equality if λ were exactly equal to 3/2). When *n* is large, $(3/2)^n$ is huge. For this number also to be of order 1, $|\tilde{\lambda} - \lambda|$ must be small enough to balance it, that is, of order $(2/3)^n$, as in (34.6).