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A=QR

A=QHQ"

orthogonal structuring | Householder

Householder

structured orthogonalization | Gram Schmidt

Arnoldi

Arnoldi is analogue of Gram-Scmidt for similarity transformations to

Hessenberg form rather than QR factorization.

It can be stopped part-way, partial reduction to Hessenberg form.




Mechanics of the Arnoldi lteration
We want to transform A unitarily into upper Hessenberg form :
A= QHQ", or AQ = QQH.
NI I 1T hy -+ hy,

4 o ‘21
< gir |* | 4n — gr |- | gn+1

h"ﬂ+1 NI

‘AQH — Qn—}—IHIH

4’49‘“ — h’lﬂ.ql T T h'ﬂ-ﬂ-qﬂ- + h'ft-+1,Tt-qT!-+1 (334)

This is a recurrence relation for g,




Algorithm 33.1. Arnoldi Iteration

b = arbitrary, ¢, = b/||b||
forn=1,2,3,...
v = Ag,
for j=1ton
h'jﬂ- — Q;U

v=v— hy,g;
hirn = ||V]] see Exercise 33.2 concerning h,, ., ,, = 0

qﬂ.+1 - ’U/h,-ﬂ_+11”

This is modified Gram-Schmidt that implements 33.4




QR Factorization of a Krylov Matrix

Krylov subspaces generated by A and b

K, = (b,Ab,..., A" ') = {q,,q,,.-.

T

n x m Krylov matrix :

K =1|bl|Ab]|---| A" 1

T

K, = Qan

T




Arnoldi iteration is based upon the QR factorization of the
matrix with columns b,Ab, ..., A™1p

Simultaneous iteration and the QR algorithm is based upon the
QR factorization of the matrix with columns A"e;,A"e,,...Ae_,

quasi-direct iterative

straightforward but unstable | simultaneous iteration | (33.6) (33.7)

subtle but stable QR algorithm Arnoldi




Projection onto Krylov Subspaces

Q“Q”H is the n x (n + 1) identity
Q”Q”HH is the n x n Hessenberg matrix

obtained by removing the last row of H "

h"ll T h"lﬂ.
h’21 h‘BQ

mn

n,n—1 nn

Hn,. — Q: ‘4 Qn




{q,,...,q,} is abasis for I,

()7 A (@, is the representation of A in the basis
{QU © vt qﬂ}

Theorem 33.1. The matrices (), generated by the Arnoldi iteration are re-
duced QR factors of the Krylov matriz (33.6):

Kn. - Qan' (3311)

The Hessenberg matrices H, are the corresponding projections

Hn - Q; ‘4 Qn! (3312)

and the successive iterates are related by the formula

*AQH — QTL.+1ﬁrg.' (3313)




Lecture 34

How Arnoldi Locates

Eigenvalues
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Computing Eigenvalues by the Arnoldi Algorithm
« Compute H, by Arnoldi algorithm

« Compute eigenvalues of H, by standard methods
(such as QR)

* These eigenvalues converge to extreme eigenvalues
of A




Arnoldi and Polynomial Approximation

Let x be a vector in the Krylov subspace K, (33.5). Such an x can be written
as a linear combination of powers of A times b:

r = C()b + (31443) + (32442?) + -+ Cn__144ﬂ_lb. (341)

P" = {monic polynomials of degree n}.

Arnoldi/Lanczos Approximation Problem. Find p" € P"™ such
that
| p"(A)b|| = minimum . (34.3)

Theorem 34.1. As long as the Arnoldi iteration does not break down (i.e.,
K, is of full rank n), (34.3) has a unique solution p", namely, the character-
istic polynomual of H,, .




Invariance Properties

Theorem 34.2. Let the Arnoldi iteration be applied to a matriz A € C™*™
as described above.

Translation-invariance. If A is changed to A+ ol for some o € C, and b
is left unchanged, the Ritz values {0} at each step change to {0, + o}.

Scale-invariance. If A is changed to cA for some o € C, and b is left
unchanged, the Ritz values {0} change to {00,}.

Invariance under unitary similarity transformations. If A s changed to
UAU”* for some unitary matriz U, and b is changed to Ub, the Ritz values
{0,} do not change.

In all three cases the Ritz vectors, namely the vectors Q,y; corresponding
to the eigenvectors y, of H, , do not change under the indicated transformation.




How Arnoldi Locates Eigenvalues

If one’s aim is to find a polynomial p™ with the property
that p"(A) is small, an effective means to
that end may be to pick p" to have

zeros close to the eigenvalues of A.

Consider an extreme case. Suppose that A is diagonalizable and has only
n < m distinct eigenvalues, hence a minimal polynomial of degree n. Then
from Theorem 34.1 it is clear that after n steps, all of these eigenvalues will
be found exactly, at least if the vector b contains components in directions
associated with every eigenvalue. Thus after n steps, the Arnoldi iteration
has computed the minimal polynomial of A exactly.




Arnoldi Lemniscates

A lemniscate 1s a curve or collection of curves

{zeC: |pz) =C},

If we replace p above by p" and put

this lemniscate is called Arnoldi lemniscate.

As the iteration number n increases, components of these lemniscates
typically appear which surround the extreme eigenvalues of A and then
shrink rapidly to a point, namely eigenvalues itself.




Figure 34.3. Arnoldi lemniscates (34.4)-(34.5) at steps n = 5,6,7,8 for the
same matriz A. The small dots are the ecigenvalues of A, and the large dots
are the eigenvalues of H,, i.e., the Ritz values. One component of the Arnoldi
lemmniscate first “swallows” the outlier eigenvalue, and in subsequent iterations
it then shrinks to a point at a geometric rate.




Figure 34.4. Convergence of the rightmost Arnoldi eigenvalue estirnate.




Figure 34.3 approximates the rate
- -2 T
o xx (2)

Consider the polynomial p(z) = 2"~ '(z—A), where A is some number

close to \.

At each of the eigenvalues of A in the unit disk, |p(z)| is of order 1

or smaller. At z = A, however, it has magnitude

"-; TR _
PO~ (5) A=A

(this would be an equality if A were exactly equal to i/ 2). When n is large,
(3/2)" is huge. For this number also to be of order 1, [\ — A| must be small
{mmlgh to balance it, that is, of order (2/3)", as in (df-l.{,m).




