
SDNScore: A Statistical Defense Mechanism
Against DDoS Attacks in SDN Environment

Kübra Kalkan∗, Gürkan Gür∗,† and Fatih Alagöz∗

∗SATLAB, Dept. of Computer Engineering
†Telecommunications & Informatics Technologies Research Center (TETAM)

Bogazici University, Istanbul, Turkey
Email: {kubra.kalkan, gurgurka, fatih.alagoz}@boun.edu.tr

Abstract—Software Defined Networking is a promising solution
for addressing challenges of future networks. Despite its advan-
tages such as flexibility, simplification and low costs, it has several
drawbacks that are largely induced by the centralized control
paradigm. Security is one of the most significant challenges
related to centralization. In that regard, Distributed Denial
of Service (DDoS) attacks pose crucial security questions in
software-defined networks. In SDN architecture, switches send
all packets to the controller if they do not have any applicable
rules in their flow tables. Basically, controller is the key place
that can take initiative in decisions. However, this characteristic
results in large communication overhead and delay until a DDoS
attack is detected and appropriate action is activated against
attack packets. Therefore, in this work we propose a hybrid
mechanism, namely SDNScore, where switches are not simply
data forwarders. Instead, they can collect statistics and can
decide if DDoS attack is in action. Then they coordinate with the
controller and decide on attack packets in cooperation. SDNScore
is a statistical and packet-based defense mechanism against DDoS
attacks in SDN environment. Since it has a statistical scoring
method, it can detect not only known but also unknown attacks.
In addition, it does not drop all packets in a flow which includes
both attack and legal packets, but rather acts on attack packets
using packet-based analysis.

Index Terms—SDN, network security, DDoS, filtering, defense
mechanism.

I. INTRODUCTION

Software Defined Networking (SDN) is a recent emerging
technology which defines a new design and management ap-
proach for networking [1]. The main property of this paradigm
is the separation of control and data planes. In traditional net-
works, routers apply high level routing algorithms and decide
where data packets should be forwarded. In SDN, decision
and forwarding functionalities are separated. Decision process
is provided by SDN controller whereas data forwarding is
handled by switches. Since decision algorithms do not run
on network devices, simpler network devices can be utilized
rather than complicated routers [2]. Moreover, in traditional
networks, each router has its own security, link failure and
forwarding mechanisms. If any of these mechanisms needs to
be updated, each network device should be handled individ-
ually. However, one can ideally manage all these issues at a
central point in SDN architecture.

Despite its advantages, SDN has several inherent challenges
such as reliability, scalability, latency, and controller place-

ment [3]. Security can be counted as one of the most vital
problems. In that regard, Denial of Service (DoS) attacks
provide a favorable way for attackers to damage security
of these systems. The main agenda of DoS attackers is to
make network-resident services unavailable for legal users.
An attacker generates enormous number of attack packets and
makes the system busy such that it cannot serve the requests
of legal users. If several machines participate in this attack,
it is called Distributed Denial of Service (DDoS) attack. It
can be created with steadily diminishing amounts of effort in
today’s pervasive Internet whereas its detection can be difficult
since malicious packets show up as legal but with very large
quantities.

SDN environment is favorable for DDoS attacks since it is
managed by the centralized controller by design [4]. When
a packet comes to a switch from an IP unmatched in its
flow table, it is forwarded to the controller as the default
behavior. Then, the controller sends a flow rule to the switch
for this IP. If attackers send a large number of packets from
several IPs, these will be forwarded to the controller. Then this
traffic will consume all available resources of the controller
and make the system unavailable for legal users. Besides,
the same attack can cripple the system by exploiting the
table capacity of switches. When a huge number of spoofed
packets are received by the switch, its memory will be totally
occupied. Similarly, the link between switch-controller can
become unavailable because of the congestion by malicious
traffic. All these issues pose SDN vulnerable for DDoS attacks
and thus DDoS defense as a critical research topic for SDN.

A critical characteristic of SDN architecture that nondelib-
erately serves DDoS attacks is the limited passive capabilities
of switches. Since they send all packets with unmatched IP
addresses to the controller, their medium becomes attractive
for DDoS attacks. In addition, they do not have enough
resources for very large volumes of traffic. In order to solve
these problems, security-oriented intelligence can be integrated
to switches. That will help to keep traffic in data plane as
much as possible. Several works have suggested this approach
such as [5], [6]. In our SDNScore model, we also utilize
switches with relevant processing and intelligence capabilities
for security.

In the literature, there are some works proposed for DDoS



defense in SDN. However, it is still an immature area since
there is no dominant solution and all models have some
drawbacks. In this work, we propose a packet-based statistical
defense mechanism against DDoS attacks for SDN. We have
been inspired by another packet based model, PacketScore [7],
for traditional networks. Our proposal can cope with not only
traditional attacks but also unknown new attacks. In order to
make statistical analysis, some properties are utilized in packet
scoring. The main difference of our proposal from PacketScore
is the selection of appropriate attributes for each attack. This
crucial property is provided by the support of the controller.
Our results suggest that SDNScore is an effective method for
DDoS defense in SDN.

This paper is structured as follows: In the next section,
a literature review is presented about defense mechanisms
against DDoS attacks in SDN. In Section III, our proposed
mechanism SDNScore is described. Section IV discusses
experimental results. Finally, Section V concludes the paper.

II. RELATED WORK

SDN brings flexibility and simplification while having
potential vulnerabilities for new threats. SDN architecture
inherits two main security challenges: trusted controller-
switch communication and single-point failure problem. Since
switches are controlled by one point, the whole system can be
damaged by capturing the controller. In addition, in order to
provide trusted communication between controller and switch,
authentication and authorization issues between controller
and switches need to be handled. SDN security studies in
the literature can be classified into two categories [2]: SDN
used as a security enabler or security provisioning for SDN.
Early studies are mostly focused on the first group and they
investigate DDoS attack defense [8], [9] . However, the works
in the second group suggest that there are vulnerabilities in
SDN itself considering various attacks [5], [10]. Thus, defense
mechanisms should be developed and optimized for SDN. Our
proposal SDNScore falls into this latter group.

In order to defend against DDoS attacks in SDN, a relatively
small number of works has been presented in the literature.
Some of these works suggest to bring some intelligence to
SDN switches [5], [6]. The motivation for this approach is
based on the idea of keeping flows in the data plane as much
as possible. When more flows are forwarded to the controller,
it is more prone to attacks by malicious users. If switches
become more capable on flow decisions, it will be safer for the
controller. Facilitating switches with some minor intelligence
features does not compromise the main paradigm of SDN.

Avant-Guard [5] is a framework to improve the security and
resiliency against DDoS and scanning attacks with greater in-
volvement of switches. It introduces two modules on switches:
connection migration and actuating triggers. Connection mi-
gration proxies TCP SYN requests and classifies them. If
these are regarded as legitimate, they are authorized and
migrated to the real target. Actuating triggers module perceives
changes and triggers an event. Then, flow rule installation is
handled automatically and response time is reduced. The most

conspicuous side effect of this mechanism is the performance
penalty. Since it utilizes connection migration, each flow needs
to be classified. In addition, this module can only defend
against one type of DDoS attack (TCP SYN Flood).

Another similar model in [6] proposes an entropy-based
lightweight DDoS fooding attack detection model running
in the OpenFlow edge switch. In this mechanism, entropy
is calculated for destination IP address. If entropy decreases
under a threshold, DDoS is detected. It determines the victim,
but it is not possible to dissociate the legal packets from the
attack ones. It achieves a distributed anomaly detection in SDN
and reduces the flow collection overload on the controller.

The proposed model in our work called SDNScore does
not have the limitations of the approaches cited above. It has
detection and mitigation properties for DDoS attacks including
unknown ones. In addition, it discards all detected attack
packets and does just rate-limit. SDNScore is a statistical
approach that is inspired by PacketScore proposed in [7].
PacketScore is a statistical filtering mechanism wherein each
packet is analyzed according to its attribute values and then
correspondingly scores are calculated according to them for
packet filtering. However, this method has a trade-off between
memory and accuracy. It does not have attribute selection
property in profile generation. Instead, it generates profiles
with predetermined fixed attributes. For instance, having more
attributes for more accurate decisions means more complex
profiles which results in larger memory footprint. The source
of the problem in this model is the lack of appropriate attribute
selection for each attack type. In SDNScore method, such
drawbacks are omitted. The following section explains how
these advantages are provided.

III. SDNSCORE MECHANISM

SDNScore consists of four modules, profiler, actuator,
comparator and scorer, to be loaded on the switch(es) and
another module, PairProfiler, for the controller. These com-
ponents cooperate for DDoS detection and mitigation in SDN
environment.

A. SDNScore Modules for Switches

Profiler generates nominal profiles in an attack-free period
whereas actuator inspects traffic and starts packet-based in-
spection if an attack is detected. Comparator finds most appro-
priate pair for packet attributes. According to that information,
Scorer analyzes incoming packets and makes selective discard-
ing. These modules are illustrated in Figure 1 and detailed in
the following subsections. Similarly, the terminology utilized
in this paper is listed in Table I.

1) Profiler: Each switch generates a nominal profile during
an attack-free period. It counts the number of packets that
have the same attribute value. The following properties are
considered as attributes although this set can be extended:
source IP, destination IP, source port, destination port, proto-
col type, packet size, TTL value and TCP flag. During nominal
profiling period, the profiler sends headers of all packets
to the controller. Accordingly, the controller generates pair



PROFILER

ACTUATOR

SCORER

COMPARATOR

Requests 
suspicious
pair profile

Sends 

suspicious 
pair profile

Triggers 
comparison

Triggers 
scoring

PAIR PROFILER

CONTROLLER

SWITCH

Fig. 1. SDNScore architecture: switch and controller modules.

TABLE I
SYSTEM PARAMETERS

Term Explanation

NominalProfile Profile in an attack-free period

CurrentProfile Profile in an attack period

SuspiciousPair Attribute pair with most probable signs for
current attack

A,B Attribute A and B

A = ap Attribute A with a value in packet p

B = bp Attribute B with b value in packet p

PCP(A=ap,B=bp,...) The number of packets in a current profile
that have the property of ap for attribute A
and bp for attribute B

PNP(A=ap,B=bp) The number of packets in a nominal profile
that have the property of ap for attribute A
and bp for attribute B

TPNP Total number of packets in a nominal profile

TPCP Total number of packets in a current profile

Sp Score value of packet p

Th Threshold score value for packet discarding

φ Acceptable traffic

ψ Total current incoming traffic

nominal profiles for each combination. At the end of this
period, it has each pair nominal profile whereas the switches
have single nominal profiles. Pair profiles are not stored in
the switches because that would occupy a large amount of
memory. Quantitatively, a switch needs to store eight tables
with above mentioned attributes whereas the controller needs
to store

(
8
2

)
= 28 tables. In addition to nominal profile

generation, all profiling instructions that will be held in packet
inspection period are also provided by the profiler. When
the actuator detects a congestion, it also informs profiler
and starts to generate current profiles. A current profile is
constructed during an attack period. Pair profiles are needed
during current traffic analyses whereas single profiles are only
used for choosing the most appropriate attribute selection. Pair
profiles are utilized during all attack periods since they provide
more detailed information about the traffic and enables more
accurate decisions. These generated profiles are used by the
other modules.

2) Actuator: In normal conditions, flow-based network
monitoring is provided in switches. Actuator inspects band-

width usage to determine surges. When traffic exceeds a
bandwidth threshold, system monitoring is switched to packet-
based inspection, and comparator and profiler modules are
activated. Packet based inspection provides generation of new
tables as single current profiles in profiler.

Since actuator monitors congestion consistently, when traf-
fic returns to normal intensity and drops below the threshold,
it informs other modules to switch to stand-by mode. Then
Actuator stops packet inspection and the system continues on
flow-based monitoring.

3) Comparator: After traffic surge is detected, actuator
activates this module. Since current single profiles are gener-
ated by profiler, this module compares single nominal profiles
with single current profiles. It determines the two specific
attributes that have the most deviation from nominal profiles.
These pairs are chosen as the most probable signs for ongoing
attack. Thus, it is called as SuspiciousPair. Then comparator
requests nominal profile of this pair from the controller.
For instance, if it detects that protocol type and destination
port have more deviation from nominal profile, the controller
sends the nominal profile comprised of protocol type and
destination port values and corresponding number of packets.
Then it triggers scorer to start packet inspection and selective
discarding.

4) Scorer: This module is activated after all tables are
generated. Scorer’s three main responsibilities are as follows:

a) Score calculation: Each packet’s score is calcu-
lated considering SuspiciousPair’s corresponding value. If
SuspiciousPair is determined as A and B, then packet p
with the attributes A = ap and B = bp will have the score Sp
as follows:

Sp =
PNP(A=ap,B=bp)/TPNP

PCP(A=ap,B=bp,...)/TPCP
(1)

b) Threshold calculation: The score of a packet needs
to be compared with a threshold Th. This threshold value is
determined according to the cumulative distribution of scores
by using load shedding algorithm [11]. That distribution is
shown as CDF (Th) = Φ where Φ is the portion of traffic
that should be dropped. The fraction of traffic permitted to
pass is 1 − Φ = φ

ψ whereas φ is the amount of acceptable
traffic and ψ is the total current incoming traffic.

c) Selective discarding: Each packet’s score value is
compared with the threshold. If it exceeds the threshold, this
packet is assumed to be malicious and discarded. Otherwise,
it is forwarded to the destination.

B. SDNScore Module for Controller: PairProfiler

The controller employs a module called PairProfiler to
provide necessary capabilities for SDNScore. In normal con-
ditions, while there is no surge condition, switches forward the
packets that do not have an entry for their IP addresses to the
controller. The controller decides how a flow packet should
be handled by executing applicable decision logic. Then, it
sends and inserts these appropriate rules for unknown IPs
into the flow table of the source switch. In our proposal, it



has additional duties before and after the attack detection.
PairProfiler’s primary work is to create pair nominal profiles.
While single profiles are generated by the profiler, all the
packets’ headers are also sent to the controller. This can
be a burden but it is required only once in an attack-free
period as explained in the following subsection. Since eight
attributes are utilized in profiling and each pair combination
is generated as pair nominal profiles,

(
8
2

)
= 28 profiles are

generated in the controller. After a congestion is detected by a
switch and the comparator determines the SuspiciousPair,
it requests the nominal profile of this pair from the controller.
Then, the controller responds to this request with the expected
information.

1) Analysis of Communication Overhead: In SDNScore, a
switch needs to send TCP and IP header data of each packet
in the profiling period. Therefore, it is important to calculate
the communication burden on the system. Since our model
utilizes a scoring technique similar to [7], we choose packet-
based intervals as periods which guarantees that a sufficient
number of packets are processed for profile creation. For our
analysis, we aim to calculate the maximum possible overhead.
Thus, we suppose that controller and switch communicate
via IPv6 since IPv6 header size is larger compared to IPv4.
In that case, a “payload-less” packet will need 24 bytes for
Ethernet header, 40 bytes for IPv6 header and 40 bytes for
TCP header which leads to 104 bytes. Since the switch also
needs to send all TCP and IP header information of the
incoming packets, we need to add this information length.
If the incoming packet is an IPV6 packet over TCP, it will
be 40 bytes + 40 bytes = 80 bytes. Then, the size of a
packet that just contains header information is 184 bytes in
total. Since there are TPNP packets in a profiling period and
TPNP = 5000 in our system setup, this communication incurs
184 bytes × 5000 = 920 KB as overhead. However, it is a
negligible burden for the communication capacity of today’s
routers since this is only needed in an attack-free period.

IV. SIMULATIONS AND PERFORMANCE EVALUATION

For performance analysis, we simulate our SDNScore mech-
anism and An Entropy-Based Distributed DDoS Detection
Mechanism in Software-Defined Networking (EBS) presented
in [6] and compare their experimental results. Network topol-
ogy and dataset, attack types, performance metrics and simu-
lation results are discussed in the following subsections.

A. Network Topology and Dataset

We simulated our SDNScore and EBS in C++ on a 3.3
GHz Intel Core i5 processor with 4 GB memory. For nominal
profile generation, 5000 packets are active whereas during the
DDoS attacks, ten-fold of this nominal traffic is generated per
period. Figure 2 depicts the topology used for experiments.
There are two switches managed by the controller. One switch
has five legal users (L1- L5) and five attacker users (A1-A5),
whereas the other switch has the victim and two more hosts
(H1, H2). These five attackers are assumed to be legal users
in the past. Then they are compromised by a malicious user

S1 S2

L1

L5

���������
���������

A1

VICTIM

���������
���������

A5

CONTROLLER

Attackers

H1

H2

Fig. 2. Network topology used in the experiments.

and they constitute a botnet to facilitate DDoS attacks. A real
dataset from MAWI Working Group Traffic Archive [12] is
utilized in traffic generation. It is a popular traffic dataset
used in the literature [13]–[15]. MAWILab works on traffic
measurement analysis in long-term on global Internet. It was
started in 2002 and it is still collecting data from Internet. The
part of data that we have used in our simulations was collected
on Jan 12, 2014. This dataset is utilized to generate nominal
profiles.

B. Attack Types

In the experiment topology, attack and legitimate nodes are
connected to a switch. Legitimate nodes generate legitimate
traffic that has similar properties and similar amount of traffic
to nominal profile packets. Nominal profile packets are cre-
ated according to the dataset as mentioned in Section IV-A.
Attack nodes generate both legitimate and attack traffic. In
our simulations, we perform attacks by creating new packets
that are similar to non-attack period’s traffic. We simulate the
following attacks:
• TCP SYN Flood Attack: The protocol type of an attack

packet is TCP and TCP flag is set to SYN Flag. Other
attributes are randomized.

• SQL Slammer Worm Attack: The protocol type of all
attack packets is UDP and the destination port is set to
1434. Also, the packet size is between 371- 400 bytes.
Other attributes are randomized.

• DNS Amplification Attack: The protocol type of attack
packets is DNS and the destination port is set to 53. Also,
the attack packet size is 60 bytes. Other attributes are
randomized.

• NTP Attack: The protocol type of attack packets is NTP
and the destination port is set to 123. Also, the attack
packet size is 90 bytes. Other attributes are randomized.

In addition to these known attacks, other attack types are
analyzed to compare the performance of our model and EBS
for unknown attacks. These attacks are setup as follows:
• Generic Attack: In this attack, attacker generates attack

packets with attribute values that are selected randomly
in their respective ranges.



• Generic Attack with Determined Attributes: Attacker
chooses several attributes and assigns most common
values to them whereas it uses random values for other
attributes. Choosing the most common values for de-
termined attributes enables the attacker to form attack
packets similar to legal packets. This approach makes
the attacker more powerful and gives the ability to get
through the filtering mechanism of the victim. If the
attacker utilizes two attributes it is named as Generic
Attack with Determined Two Attributes (GAD-2A). For
instance, it chooses protocol type “TCP” and destination
port “80”. Then, the attack packets with these attributes
can be mixed up with the legal packets. Similarly, if the
attacker chooses three and four attributes, that attack is
denoted as GAD-3A and GAD-4A, respectively.

C. Performance Metrics

In pattern recognition and information retrieval, true positive
(TP), true negative (TN), false positive (FP) and false negative
(FN) based metrics for binary classification are instrumental
to measure system performance. Since DDoS attack packet
identification is also a binary classification problem, we utilize
these metrics.

In our case, TP is the number of legal packets that are
identified correctly by the system and reach the destination
safely. TN is the number of attack packets dropped in the
network and stonewalled to prevent reaching the destination.
In that vein, FP is the number of legal packets that are falsely
discarded whereas FN is the the number of attack packets
that are falsely forwarded to the destination. Following metrics
calculated via these parameters are utilized for performance
measurement:
• Precision (PN): What fraction of the forwarded packets

corresponds to legal packets? ⇒PN = TP
TP+FP

• Recall (RL): What fraction of legal packets were for-
warded to destination?⇒ RL = TP

TP+FN
• Accuracy (AY): What fraction of the decisions were

correct? ⇒ AY = TP+TN
TP+TN+FP+FN

• F-measure (FM): This metric combines precision and
recall. In other words, it deals with the system’s success
regarding legal packets. It is the harmonic mean of
precision and recall: ⇒ FM = 2×PN×RL

PN+RL

D. Experimental Results

In this section, we demonstrate experimental results ac-
cording to the metrics explained in Section IV-C. Table II
shows precision, recall, accuracy and F-measure values for
SDNSec and EBS. EBS system detects the attack according
to the entropy of the destination port attribute. Then the
corresponding destination IP is determined as the victim which
is to receive most of the packets. When it determines that
victim, it drops all the attack packets including the legal ones
destined to that destination. According to the results in Table
II, SDNScore outperforms EBS for majority of the metrics. For
each attack type, appropriate attributes are to be considered.
For TCP SYN Flood attack, protocol type and TCP flag are

TABLE II
PRECISION, RECALL, ACCURACY AND F-MEASURE

Attack Type Model PN RL FM AY

TCP-SYN Flood Attack EBS: 0.57 1 0.73 0.75
SDNScore: 0.98 1 0.99 0.99

SQL Slammer Worm Attack EBS: 0.58 1 0.72 0.79
SDNScore: 1 1 1 1

DNS Attack EBS: 0.57 1 0.74 0.94
SDNScore: 0.99 1 0.99 0.99

NTP Attack EBS: 0.56 1 0.75 0.93
SDNScore: 0.99 1 0.99 0.99

the arbiters, whereas protocol type, destination port and packet
size are identifiers for DNS and NTP attacks. Protocol type
and destination port are the identifier pair for SQL Slammer
Worm attack. Since SDNScore uses the same pair for DNS
and NTP attack, results for both schemes are almost identical
for these attacks.

Precision and recall metrics represent the system perfor-
mance for legal traffic. Since F-Measure is the harmonic mean
of them, it also deals with the success of the system on legal
packets. Thus, SDNScore outperforms EBS as far as it does
not care about the legal packets that goes to the victim. The
results suggest that F-Measure values are about 0.70 for EBS
whereas it is 0.99 for SDNScore. Accuracy metric considers
not only legal but also attack packets. The results suggest
that SDNScore’s decisions are nearly perfect for the attacks
whereas EBS cannot meet SDNScore’s performance.

In order to compare the performance of our model and EBS
for unknown attacks, generic attack and generic attacks with
deterministic attributes are performed. Experimental results
are shown in Table III. In generic attack, attacker chooses
random values for each attribute. SDNScore mechanism gives
moderate results of 0.84 accuracy as seen in Table III. It gives
0.85 success on legal packets whereas it allows some attack
packets to pass. On the other hand, EBS gives 0.84 accuracy
whereas it performs about 0.75 success on legal packets. In
SDNScore, since all attributes are chosen randomly, some
packets’ corresponding values for SuspiciousPair attribute
are exactly same as legal packets and scores of these packets
do not exceed the threshold since there is not a high amount
of packets with these properties. Therefore, these packets can
manage to get through SDNScore.

If an attacker becomes more intelligent and tries to generate
attack packets more similar to the legal ones, it can choose
two attributes and give most popular values for them. Other
values are chosen randomly in that case. This corresponds
to the GAD-2A case. For instance, it makes attack packets
with protocol type = “TCP” and destination port = “80”.
Then SDNScore results in perfect decision on attack packets
(FN=0) whereas it drops some legal packets and thus TN rate
increases. Accordingly, its precision value decreases consider-
ably. In this case, SDNScore cannot cope with the legal packets
that have the same value with the attack packets. The legal
TCP packets that are sent to port 80 are given higher scores



TABLE III
PRECISION, RECALL, F-MEASURE AND ACCURACY FOR UNKNOWN

ATTACKS

Attack Type Model PN RL FM AY

Generic Attack EBS: 0.57 1 0.73 0.75
SDNScore: 0.99 0.75 0.85 0.84

GAD-2A EBS: 0.57 1 0.73 0.74
SDNScore: 0.55 1 0.71 0.80

GAD-3A EBS: 0.57 1 0.73 0.75
SDNScore: 0.81 1 0.90 0.98

GAD-4A EBS: 0.57 1 0.73 0.75
SDNScore: 0.81 1 0.90 0.98

since there is high amount of such packets. As their score
exceeds the threshold, they are marked as attack packets. The
performance level of SDNScore is on par with EBS figures
for this attack.

If the attacker increases the number of attack attributes
to three (GAD-3A) and gives most popular values for these
attributes, it tries to make his packets more similar to legal
ones. For instance, it generates attack packets with protocol
type = “TCP”, destination port = “80” and packet size = “40”.
In this case, SDNScore gives perfect results for attack packets
whereas it increases the accurate decision performance for
legal packets. As the number of utilized attributes increases,
the number of legal packets who have the determined proper-
ties decreases. Thus, the number of legal packets with scores
higher than the threshold decreases. Accordingly F-measure
value increases. SDNScore clearly outperforms EBS which is
insensitive to the number of packet attributes as seen in Table
III.

If the number of determined attributes is further increased
to four, SDNScore gives exactly the same result with three
attributes. This is because the number of legal packets who
have the same values with attack packets for four attributes is
almost equal to the number of legal packets who have the same
values with attack packets for three attributes. That situation
corresponds to the case of saturation where information gain
does not contribute to the performance gain anymore.

All these results suggest that SDNScore performs elegantly
for unknown attacks. Even in the conditions that the attacker
generates packets that are very similar to legal packets, our
mechanism gives favorable results and increases the accuracy
whereas EBS results do not change and thus fall behind
SDNScore.

V. CONCLUSION

In this work, SDNScore, which is a statistical defense
mechanism, is proposed against DDoS attacks in SDN envi-
ronment. Some intelligence embedded in suggested modules
is deployed on SDN switches and controller to enable this
mechanism. It is a defense mechanism including detection and
mitigation against DDoS attacks in software-defined networks.
It is effective against unknown attacks since it utilizes statis-
tical analysis and makes comparison with nominal traffic. It

determines most appropriate attributes for current traffic and
provides considerable improvement in accuracy. We compare
SDNScore with an existing entropy based model (EBS) [6]
according to precision, recall, f-measure and accuracy metrics.
The results suggest that SDNScore outperforms EBS in almost
all types of attacks.

As future work, we plan to perform experiments in an
SDN testbed. In addition, the role of the controller can
be enhanced for prevention. For instance, it can coordinate
different switches for preventing future attacks. Besides, it
can combine statistics from several switches to provide more
accurate scoring.

ACKNOWLEDGMENT

This work is supported by the Turkish State Planning Orga-
nization (DPT) under the TAM Project, number 2007K120610.

REFERENCES

[1] H. Selvi, S. Güner, G. Gür, and F. Alagöz, “The controller placement
problem in software defined mobile networks (SDMN),” Software De-
fined Mobile Networks (SDMN): Beyond LTE Network Architecture, pp.
129–147, 2015.

[2] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, “A survey
on software-defined networking,” IEEE Communications Surveys and
Tutorials, vol. 17, no. 1, pp. 27–51, Firstquarter 2015.

[3] M. Jammal, T. Singh, A. Shami, R. Asal, and Y. Li, “Software defined
networking: State of the art and research challenges,” Computer Net-
works, vol. 72, pp. 74–98, 2014.

[4] K. Kalkan and F. Alagöz, “A distributed filtering mechanism against
DDoS attacks: ScoreForCore,” Computer Networks, vol. 108, pp. 199–
209, 2016.

[5] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Avant-Guard: Scalable
and vigilant switch flow management in software-defined networks,”
in Proceedings of the 2013 ACM SIGSAC conference on computer &
communications security. ACM, 2013, pp. 413–424.

[6] R. Wang, Z. Jia, and L. Ju, “An entropy-based distributed ddos
detection mechanism in software-defined networking,” in Trust-
com/BigDataSE/ISPA, 2015 IEEE, vol. 1. IEEE, 2015, pp. 310–317.

[7] Y. Kim, W. C. Lau, M. C. Chuah, and H. J. Chao, “PacketScore:
Statistics-based overload control against distributed denial-of-service
attacks,” in INFOCOM 2004, vol. 4, 2004, pp. 2594–2604.

[8] S. A. Mehdi, J. Khalid, and S. A. Khayam, “Revisiting traffic anomaly
detection using software defined networking,” in Recent Advances in
Intrusion Detection. Springer, 2011, pp. 161–180.

[9] G. Yao, J. Bi, and P. Xiao, “Source address validation solution with
OpenFlow/NOX architecture,” in Network Protocols (ICNP), 2011 19th
IEEE International Conference on. IEEE, 2011, pp. 7–12.

[10] N. Gde Dharma, M. F. Muthohar, J. Prayuda, K. Priagung, and D. Choi,
“Time-based DDoS detection and mitigation for SDN controller,” in
Network Operations and Management Symposium (APNOMS), 2015
17th Asia-Pacific. IEEE, 2015, pp. 550–553.

[11] S. Kasera, J. Pinheiro, C. Loader, M. Karaul, A. Hari, and T. LaPorta,
“Fast and robust signaling overload control,” in Network Protocols, 2001.
Ninth International Conference on. IEEE, 2001, pp. 323–331.

[12] R. Fontugne, P. Borgnat, P. Abry, and K. Fukuda, “MAWILab: Combin-
ing Diverse Anomaly Detectors for Automated Anomaly Labeling and
Performance Benchmarking,” in ACM CoNEXT ’10, Philadelphia, 2010.

[13] H. Jiang, S. Chen, H. Hu, and M. Zhang, “Superpoint-based detection
against distributed denial of service (DDoS) flooding attacks,” in Local
and Metropolitan Area Networks (LANMAN), 2015 IEEE International
Workshop on, April 2015, pp. 1–6.

[14] Q. Chen, W. Lin, W. Dou, and S. Yu, “CBF: A packet filtering method
for DDoS attack defense in cloud environment,” in Dependable, Auto-
nomic and Secure Computing (DASC), 2011 IEEE Ninth International
Conference on, Dec 2011, pp. 427–434.

[15] K. Juszczyszyn and G. Kołaczek, “Motif-based attack detection in
network communication graphs,” in Communications and Multimedia
Security. Springer, 2011, pp. 206–213.


