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CHAPTER 1

Preliminaries

1. Motivation

This text is not meant to be printed. It is designed to be read electronically. You will find many
hyperlinks to sources in the web. Especially incredible wikipedia.com, which this book is dedicated
to, gets many of them.

2. On definitions

Definitions are one of the starting points of mathematics. We should understand them well. By
definition what we actually do is to give a “name” to “something”. To start with, “that something”
should be well-defined, that is, everybody understand the same without any ambiguity. What is in it,
what is not in it should be clearly understood. Once we are all agree on “it”, we give a “name”.

The given name is not important. It could be some other name. Consider a text on geometry.
Suppose we replace every occurrence of rectangle with triangle. The entire text would be still perfectly
proper geometry text. This would be obvious if one considers the translation of the text to another
language.

Example 2.1. Suppose we all agree on parallelogram and right angle and try to define rectangle.
A parallelogram is called rectangle if it has a right angle. Here we have an object which satisfies the
conditions of both parallegram and right angle.

Note that in plain English we use the form “A is called B if A satisfies the followings . . . ” to
define B. This may be falsely interpreted as one way implication such as “A satisfies the followings
. . . �! B”. Actually what is intented is two-way implication such as “A is called B if and only if
A satisfies the followings . . . ”. More formally, it should be something like “A satisfies the followings
. . . �! B” and “B �! A satisfies the followings . . . ” at the same time. Instead of this long form,
we write “A satisfies the followings . . .  ! B” in short.

In the language of mathematics, we use “  ! ” symbol in our definition. For example let n be a
natural number. We want to define evenness of natural numbers.

n is even  ! n is divisible by 2.

Here the left hand side is not derived from the right hand side. It is just defined to be that way. In
order to emphasize this we use the following notation:

n is even
� ! n is divisible by 2.

Unfortunately. this symbol is also used in di↵erent meaning. “a  ! b” means b can be obtained
from a using some applications of rules, and similarly, a can also be obtained from b. This is the
regular use of “  ! ”.

We feel that regular use of “=” should be di↵erentiated from the usage of “=” in definitions. For
example in

1 + (1 + 1) = 1 + 2 = 3

the usage of “=” is the regular usage meaning the right hand side of “=” is obtained from the left
hand side by applying some rules. In the case of defining subtraction as

a� b = a+ b�1

where b�1 is the additive inverse of b, a� b is defined in terms of known binary operation + and unary
operation of additive inverse. Therefore these will be written as

1 + (1 + 1) = 1 + 2 = 3

a� b , a+ b�1

in this text.

3
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Example 2.2. Golden ration is the ratio of the sides of a rectangle which is presumable the
aesthetically best. It is usually represented by �. This can be given as:

� , 1 +
p
5

2
.

As a summary, we exclusively use , and
� ! in the definitions. Therefore, it does not make

sense trying to prove expressions such as A
� ! B or A , B. On the other hand, in the expressions

such as A  ! B or A = B, the right hand side should be able to obtained from the left hand side.
At the same time, the left hand side also should be able to obtained from the right hand side. That
is, they are “provable”.

In addition to this notation, the concept defined is presented in di↵erent color as in the case of
new concept .

Example 2.3. Z+ , { z 2 Z | z > 0 }.

Example 2.4. n is even
� ! n is divisible by 2.

3. Similar statements

Sometimes two statements are very similar. They di↵er in a very few points. For example definition
of evenness and oddness in natural numbers is given as follows:

Definition 3.1. n is even
� ! n is divisible by 2.

Definition 3.2. n is odd
� ! n is not divisible by 2.

In order to emphasize the di↵erences of such cases the following notation is used.

Definition 3.3. n is
even
odd

� ! n is
divisible
not divisible

by 2.

Example 3.1. Let ⇢ be a relation on A, that is ⇢ ✓ A⇥A.

⇢ is called

reflexive
symmetric
antisymmetric
transitive

� !

8a 2 A [a ⇢ a]
8a, b 2 A [a ⇢ b �! b ⇢ a]
8a, b 2 A [a ⇢ b ^ b ⇢ a �! a = b]
8a, b, c 2 A [a ⇢ b ^ b ⇢ c �! a ⇢ c]

.

4. Set of Numbers

We use the following symbols to represent the sets of various numbers.
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N The set of natural numbers N , { 0, 1, 2, . . . }
Z The set of integers Z , { . . . ,�2,�1, 0, 1, 2, . . . }
Z+ The set of positive integers Z+ , { 1, 2, . . . }
Z� The set of negative integers Z� , {�1,�2, . . . }
Z�0 The set of non negative integers Z�0 , Z+ [ { 0 }
Z 6=0 The set of non zero integers Z 6=0 , Zr { 0 }
Z0 The set of non positive integers Z0 , Z� [ { 0 }
Q The set of rational numbers Q , { p/q | p, q 2 Z and q 6= 0 }
Q+ The set of positive rational numbers Q+ , { p/q | p, q 2 Z+ }
Q� The set of negative rational numbers Q� , {�p/q | p, q 2 Z+ }
Q�0 The set of non negative rational numbers Q�0 , Q+ [ { 0 }
Q 6=0 The set of non zero rational numbers Q 6=0 , Qr { 0 }
Q0 The set of non positive rational numbers Q0 , Q� [ { 0 }
R The set of real numbers R
R+ The set of positive real numbers R+ , { r 2 R | r > 0 }
R� The set of negative real numbers R� , { r 2 R | r < 0 }
R�0 The set of non negative real numbers R�0 , R+ [ { 0 }
R 6=0 The set of non zero real numbers R 6=0 , Rr { 0 }
R0 The set of non positive real numbers R0 , R� [ { 0 }
C The set of complex numbers C , { a+ i b | a, b 2 R }
C 6=0 The set of non zero complex numbers C 6=0 , Cr { 0 }

where i2 = �1
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CHAPTER 2

Logic

1. Motivation

In the first half of 1900s mathematicians believed that entire mathematics can be constructed from
a set of axioms, inference rules and symbolic logic. In 1910’s, Bertrand Russell, now known due to his
works in philosophy, and Alfred North Whitehead published Principia Mathematica which provided
carefully designed construction of mathematics. They claim that every true mathematical statement
can be proved by this way. Unfortunately in 1931 Kurt Gödel proved, in his incompleteness theorem,
that there are some true statements that cannot be proven if the axiomatic system is consistent and
su�ciently powerful to express the arithmetic of the natural numbers. The famous incompleteness
theorem becomes one of the important milestones in Computer Science, too.

The logic is important for Computer Science in many ways. Search in the web is one of them.
When we do search using a search engine in the Internet, we express ourselves using logic. For example
typing

“Bertrand Russell Mathematica OR Kurt -philosopher”

to Google for search means we are looking pages which contains “Bertrand” and “Russell” words
together, either of the words “Mathematica” or “Kurt” but we do not want word “philosopher” in
our search. This can be rewritten in logic as “Bertrand” AND “Russell” AND *“Mathematica” OR
“Kurt”) AND NOT“philosopher”.

2. Foundations

We use the notation of [TZ82] in defining well-formed logical formula. We use spaces in order to
improve readability as in the case of 8x �(x) or � ^  which should formally be written as 8x�(x) or
� ^  .

2.1. Well-formed formula. It is not possible to evaluate an expression such as 2+3+⇥7 since
it is not properly formed.

Example 2.1. The following expressions are not meaningful. Try to interpret them.
i. p ^ q ^ ^ qq
ii. 1 + + + 1
iii. ⇥ / / + � � + 2 3 4
iv. 1 2 +
v. 1 2 3 ⇥ +

It is correct that these expressions cannot be interpreted in the usual interpretation which is called
infix notation. Actually the last two can be interpreted in postfix notation as 1 + 2 and 1 + (2 ⇥ 3),
respectively. The postfix notation is sometimes called reverse polish notation since it is the reverse of
prefix notation invented by Polish mathematician Jan Lukasiewicz around 1920’s.

Properly formed expressions is the starting point of logic. Formally properly expression is called
well-formed formula.

The language consists of:
Free variables: a0, a1, . . .
Bound variables: x0, x1, . . .
A predicate symbol: 2
Logical symbols: ¬, _ , ^ , �! ,  ! , 8, 9.
Auxiliary symbols: (, ), [, ].
�, , ⌘ are meta symbols.

Definition 2.1 (well-formed formula (w↵)).

A formula is well-formed formula (w↵)
� ! it is deducible from the following rules:

9
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10 2. LOGIC

i. If a and b are free variables, then [a 2 b] is a w↵.
ii. If � and  are w↵s, then ¬�, [� _  ], [� ^  ], [� �!  ], and [�  !  ] are w↵.
iii. If � is a w↵ and x is a bound variable, then 8x �(x) and 9x �(x) are w↵, where �(x) is the

formula obtained from the w↵ � by replacing each occurrence of some free variable a by the
bound variable x. We call 8x�(x) and 9x�(x) respectively, the formula obtained from � by
universally , or existentially qualifying on the variable a.

Example 2.2. Examples of w↵s are as follows where p = x0 and q = x1.
i. p and q are w↵s due to Definition 2.1(i).
ii. ¬p, p _ q, p ^ q, p �! q, p  ! q are w↵s due to Definition 2.1(ii).
iii. [p ^ q] _ ¬p, [p ^ q] _ ¬[p �! q] are w↵s due to Definition 2.1(i) and (ii) .
iv. 9x [x 2 a1] is a w↵. Since

[a0 2 a1] by Definition 2.1(i)
9x [x 2 a1] by existential qualifying on a0.

v. 9x [x 2 a1] ^ 8x [x 2 a1] is a w↵.

2.2. Logical Axioms.

Axiom 1 (Logical Axioms).
i. � �! [ �! �].
ii. [� �! [ �! ⌘]] �! [[� �!  ] �! [� �! ⌘]].
iii. [¬� �! ¬ ] �! [ �! �].
iv. 8x[� �!  (x)] �! [� �! 8x (x)] where free variable a on which we are quantifying does

not occur in �.
v. 8x�(x) �! �(a) where �(a) is the formula obtained by replacing each occurrence of the bound

variable x in �(x) by the free variable a.

2.3. Rules of Inference.

Axiom 2 (Rules of Inference).
i. From � and � �!  to infer  .
ii. From � to infer 8x�(x) where �(x) is obtained from � by replacing each occurrence of some free

variable by x.

Notation.

i. � and � �!  =)  .
ii. � =) 8x�(x).
Definition 2.2 (Logically Equivalence).

� is logically equivalent to  
� ! � is deducible using only the logical axioms. It is denoted by

�  !  .

2.4. Equality.

Definition 2.3 (Equality).

a=b
� ! 8x [x 2 a  ! x 2 b].

Proposition 2.1.
i. a = a.
ii. a = b �! b = a.
iii. a = b ^ b = c �! a = c.

Proof.

i. 8x[x 2 a  ! x 2 a].
ii. 8x[x 2 a  ! x 2 b] =) 8x[x 2 b  ! x 2 a].
iii. 8x[x 2 a  ! x 2 b] ^ 8x[x 2 b  ! x 2 c] =) 8x[x 2 a  ! x 2 c].

⇤
Question 2.1. Do you think that

• NAN = NAN where NAN is “not a number” in programming.
• h1

1

i
=
h1
1

i

where
⇥1
1
⇤
is an indeterminate form of limits in Calculus.
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p f 0
=

F

f 1
=

p

f 2
=

¬p

f 3
=

T

F F F T T
T F T F T

Table 1. Boolean functions of one variable

p q f 0
=

F

f 1
=

p
^

q

f 2
=

¬(
p
�!

q)

f 3
=

p

f 4 f 5
=

q

f 6
=

p
�
q

f 7
=

p
_

q

f 8
=

p
N
O
R
q

f 9
=

p
 
!

q

f 1
0
=

¬q

f 1
1

f 1
2
=

¬p

f 1
3
=

p
�!

q

f 1
4
=

p
N
A
N
D

q

f 1
5
=

T

F F F F F F F F F F T T T T T T T T
F T F F F F T T T T F F F F T T T T
T F F F T T F F T T F F T T F F T T
T T F T F T F T F T F T F T F T F T

Table 2. Boolean functions of two variables

Remark 2.1. If a = b and a w↵ holds for a, then it must hold for b.

a = b =) [�(a)  ! �(b)].

3. Propositional Logic

Definition 3.1. A proposition is a statement that is either true or false but not both. The truth
value of a true proposition is true, denoted by T and that of false proposition is false, denoted by F .

Notation. Propositions are represented by lower case letters such as p, r, q.

3.1. Compound Propositions. We generate new propositions from existing ones by means
of well-formed-formulation. Any w↵ is a generated new proposition based on already established
propositions.

Definition 3.2. The set B , {T, F } is called boolean domain where T and F denotes true and
false, respectively. An n�tuple (p1, p2, . . . , pn) where p

i

2 B is called a boolean n�tuple.

Definition 3.3. An n�operand truth table is a table that assigns a boolean value to all boolean
n�tuples. A propositional operator is a rule defined by a truth table.

Definition 3.4. An operator is called
monadic
dyadic

if it has
one
two

operand(s).

Remark 3.1.
i. A boolean n�tuple is an element of Bn, that is, (p1, p2, . . . , pn) 2 Bn.
ii. There are 2n di↵erent binary n�tuples.
iii. A truth table of a predicate p actually defines a function f

p

: Bn ! B.
iv. There are 22

n
di↵erent truth tables (functions) of binary n�tuples.

v. There are 22
1
= 4 monadic operators, identity , negation, constant-True, constant-False, as given

in Table 3.1.
vi. There are 22

2
= 16 dyadic operators as given in Table 3.1.

vii. Note that the functions in the Table 3.1 have interesting properties: Firstly, notice the relation
between f

i

and the binary representation of i if F and T are represented as 0 and 1, respectively.
For example f11 corresponds to TFTT = 1011. Secondly, f

i

= ¬f15�i

as in the case of f3 = ¬f12
viii. NAND and NOR are extensively used in logic design in Computer Engineering.
ix. p NAND q , ¬(p ^ q). That is, f14(p, q) = ¬f1(p, q).
x. p NOR q , ¬(p _ q). That is, f8(p, q) = ¬f7(p, q).
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Definition 3.5. Any w↵ is a compound propositions .

Remark 3.2. In other words, propositions formed from existing propositions using logical opera-
tors are called compound propositions .

Definition 3.6. Let p be a proposition. The negation of p, denoted by ¬p or p̄, is the statement
“It is not the case that p”.

Definition 3.7. Let p and q be propositions. The conjunction of p and q, denoted by p ^ q, is
the proposition “p and q”.

p ^ q ,
(
T, if both p and q are true,

F, otherwise.

Definition 3.8. Let p and q be propositions. The disjunction of p and q, denoted by p _ q, is
the proposition “p or q”.

p _ q ,
(
F, if both p and q are false,

T, otherwise.

Definition 3.9. Let p and q be propositions.

The
exclusive or
conditional statement
biconditional statement

, denoted by
p� q
p �! q
p  ! q

, is the function
f6
f13
f9

in the Table 3.1.

Remark 3.3.
i. Conditional p �! q, sometimes called implication.
ii. Some other English usages are “if p, then q”, “p implies q” and many more.
iii. p is called the hypothesis. q is called the conclusion.

Remark 3.4.
i. Biconditional p  ! q, sometimes called bi-implication or if-and-only-if , i↵ in short.
ii. Some other English usages are “p is necessary and su�cient for q”, “p i↵ q”.
iii. Note that p  ! q is equivalent to (p �! q) ^ (q �! p).

Definition 3.10. Two compound propositions �(x1, x2, . . . , xn) and  (x1, x2, . . . , xn) of the same

variables x1, x2, . . . , xn, are called equivalent
� ! they have the same truth tables. It is denoted by

�(x1, x2, . . . , xn) ()  (x1, x2, . . . , xn),

Remark 3.5. The biconditional, p  ! q, is an operator. The equivalence of two compound
propositions, p () q, is an equivalence relation on the set of all propositions.

Definition 3.11. Let p �! q.

The
converse
contrapositive
inverse

of p �! q is
q �! p
¬q �! ¬p
¬p �! ¬q

.

Corollary 3.1.

The
implication, p �! q
converse, q �! p

is equivalent to
contrapositive, ¬q �! ¬p
inverse, ¬p �! ¬q .

3.2. Application. Logic descriptions is used in all branches of science and engineering. Unam-
biguous, precise, consistent reporting is a must.

3.2.1. Translating English sentences. Consider a detective story such as one from Sherlock Holmes.
There are people P1, P2, . . . , Pn

. There are corresponding propositions p1, p2, . . . , pn where p
i

means
person P

i

is the murderer. Of course there is a description of the rest of the story which can be
represented as q(p1, p2, . . . , pn). In this formulization if person P3 is the murderer then the truth
assignment of (F, F, T, F, . . . , F ) makes q true, that is, q(F, F, T, F, . . . , F ) = T . Here we assume that
there is one murderer so there is only one entry p

i

= T .
3.2.2. System specifications. In engineering precise, formal descriptions are needed. Software de-

velopment is one of them. A typical software life cycle is as follows: A customer who needs a custom
tailored software solution defines what she wants. This definition will be given to the contracting
company. The developers start developing the software. At the end the software is delivered to the
costumer. The costumer checks if the developed software meets the specification.
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Equivalence Name
p ^ T ⌘ p Identity laws
p _ F ⌘ p
p ^ F ⌘ F Domination laws
p _ T ⌘ T
p ^ p ⌘ p Idempotent laws
p _ p ⌘ p
p ^ q ⌘ q ^ p Commutativity laws
p _ q ⌘ q _ p
p ^ (q ^ r) ⌘ (p ^ q) ^ r Associativity laws
p _ (q _ r) ⌘ (p _ q) _ r
p ^ (q _ r) ⌘ (p ^ q) _ (p ^ r) Distributivity laws
p _ (q ^ r) ⌘ (p _ q) ^ (p _ r)
p ^ (p _ q) ⌘ p Absorption laws
p _ (p ^ q) ⌘ p
p ^ ¬p ⌘ F Negation laws
p _ ¬p ⌘ T
¬(p ^ q) ⌘ ¬p _ ¬q De Morgan’s laws
¬(p _ q) ⌘ ¬p ^ ¬q
¬(¬p) ⌘ p Double negation law

Table 3. The laws of logic

In such a scenario the definition should be as precise as possible. Think about the consequences if
the definition is not precise, informal, possibly ambiguous. It is not that unusual that the definitions
have some conflict or contradicting requirements.

3.2.3. Boolean search. Search in web. It is already mentioned in the motivation that search engines
understand the language of predicates.
• Translating English sentences
• System specifications
• Boolean search. Search in web.
• Logic puzzles
• Logic and bit operations

4. Propositional Equivalence

We use w↵ for compound propositions.

Definition 4.1. A w↵ is called a
tautology
contradiction

� ! it is always
true
false

independent of the truth

values of its propositions. A w↵ that is neither tautology not contradiction is called a contingency .

Example 4.1. Some simple forms are as follows:
Tautologies: T , ¬F , p _ T , p _ ¬p.
Contradictions: F , ¬T , p ^ F , p ^ ¬p.
Contingencies: p, ¬p, p _ F , p ^ T .

Definition 4.2 (Logically Equivalence).

Two w↵s p and q are called logically equivalent
� ! The w↵ p  ! q is a tautology. Logically

equivalence of p and q is denoted by p ⌘ q or p () q.

Remark 4.1. Note that logically equivalence is an equivalence relation on the set of all w↵ since:
i. Reflexivity: 8p [p () p].
ii. Symmetry: 8p, q [(p () q) �! (q () p)].
iii. Transitivity: 8p, q, r [(p () q) ^ (q () r) �! (p () r)].

Laws of logically equivalence are given in Table 3.

Example 4.2. T () ¬F , ¬F () p _ T , p _ T () p _ ¬p.
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5. Quantifiers

8x [p(x) _ q(x)](= 8x p(x) _ 8x q(x)
8x [p(x) ^ q(x)]() 8x p(x) ^ 8x q(x)
9x [p(x) _ q(x)]() 9x p(x) _ 9x q(x)
9x [p(x) ^ q(x)] =) 9x p(x) ^ 9x q(x)

Acknowledgment. These notes are based on various books but especially [Ros07, TZ82].

Problems with Solutions

P 2.1. a) Express each of these statements using quantifiers and the following predicates
where the domain consists of all people.
S(x) : x is a student in this class. M(x) : x is a mathematician
L(x) : x likes discrete mathematics course. C(x, y) : x and y are colleagues
K(x, y) : x knows y

i) There are exactly two students in this class who like discrete mathematics course.
ii) Every student in this class knows Kurt Gödel or knows a mathematician who is a colleague
of Kurt Gödel.
iii) There is no student in this class who knows everybody else in this class

b) Using rules of inference provide a formal proof for
If 8x [S(x)_Q(x)], and 8x [(¬S(x)^Q(x))! P (x)] are true then 8x [¬P (x)! S(x)] is also
true where the domains of all quantifiers are the same.

Solution.

a)
i) 9x9y [x 6= y ^ S(x) ^ S(y) ^ L(x) ^ L(y) ^ 8z (S(z) ^ L(z)! z = x _ z = y)]
ii) 8x [S(x)! [K(x,Godel) _ 9y (M(y) ^ C(y,Godel) ^K(x, y))]]
iii) ¬9x8y [S(x) ^ ((S(y) ^ x 6= y)! K(x, y))]

b)
1. 8x [S(x) _Q(x)] Premise
2. 8x [(¬S(x) ^Q(x))! P (x)] Premise
3. S(a) _Q(a) (1) universal generalization
4. (¬S(a) ^Q(a))! P (a) (2) universal generalization
5. ¬(¬S(a) ^Q(a)) _ P (a) (4) logical equivalence p! q ⌘ ¬p _ q
6. (S(a) _ ¬Q(a)) _ P (a) (5) De Morgan
7. (P (a) _ S(a)) _ ¬Q(a) (6) Commutativity and associativity of _
8. (P (a) _ S(a)) _ S(a) (7) and (3) resolution
9. P (a) _ S(a) (8) Idempotent law
10. ¬P (a)! S(a) (9) logical equivalence p! q ⌘ ¬p _ q
11. 8x (¬P (x)! S(x)) Universal generalization (a was arbitrary)



CHAPTER 3

Sets, Relations, and Functions

1. Set

1.1. Sets.

Definition 1.1. A set is unordered collection of objects.

Remark 1.1. We do not define set , element , and membership properly. A set is a collection of
elements. Sets are usually represented by capital letters A, B, . . . . Sets are defined either listing of the
elements as in A = { a1, a2, . . . }. or those elements that satisfy predicate P (a) as in A = { a | P (a) }.
Note that the order of the elements is not important. Due to that unordered n-tuple is represented

as { a1, a2, . . . , an }. If a is an element of A, it is denoted as a 2 A, otherwise as a /2 A.

Example 1.1. The set of natural numbers N = { 0, 1, 2, . . . }. 8 2 N but �3 /2 N.

Example 1.2. E = {x | x 2 N ^ x is even } = {x 2 N | x is even } where the second form is a
short form of the first.

Definition 1.2. The empty set , denoted ;, has no elements in it.

Remark 1.2. There is one and only one empty set. ; has interesting properties: Let A = ; and
B = { ; }. Then A 2 B and A ✓ B.

Remark 1.3. Let P (x) be a property. Then the following two propositions are true:
i. 8x 2 ; [P (x)]
ii. ¬9x 2 ; [P (x)]

Definition 1.3 (Equality of Sets).

A is
equal
not equal

to B, denoted by
A = B
A 6= B

,
� ! 8x [x 2 A  ! x 2 B ]

9a (a 2 A ^ a /2 B) _ 9b (b /2 A ^ b 2 B)
.

Example 1.3. { 1, 2, 3 } = { 2, 1, 3 }. Order of elements is not important.

Example 1.4. { 1, 2, 3 } = { 1, 1, 2, 3 }. Repetition of elements is not important.

Example 1.5. x 6= {x }, and {x } 6= { {x } }.
Definition 1.4 (Subset).

A is a
subset
proper subset

of B, denoted by
A ✓ B
A ⇢ B

,
� ! 8a (a 2 A �! a 2 B)

A ✓ B ^ 9b (b /2 A ^ b 2 B)
.

Theorem 1.1.
Let A be a set.

i. 8A [; ✓ A].
ii. 8A [A ✓ A].

Definition 1.5 (Cardinality, Finite Set, Infinite Set). A is finite and n is the cardinality of A
� ! There are exactly n distinct elements in A. The cardinality of A is denoted by |A |. A is infinite
� ! A is not finite.

Remark 1.4. This definition of infinity needs elaboration.

Example 1.6.
0 = | ; |.
1 = | { a } | = | { a, a } | = | { ; } | = | { { ; } } | = | { { { ; } } } | = | { { ;, { ; } } } |.
2 = | { a, b } | = | { ;, { { ; } } } | = | { ;, { ; } } |.

15
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Definition 1.6 (Power Set). The power set of A: 2A , {S | S ✓ A }.

Example 1.7. 2{ 1,2,3 } = { ;, { 1 } , { 2 } , { 3 } , { 1, 2 } , { 1, 3 } , { 2, 3 } , { 1, 2, 3 } }.
2; = { ; }, 2{ ; } = { ;, { ; } }, 22{ ; }

= { ;, { ; } , { { ; } } , { ;, { ; } } }.

Theorem 1.2. A =
S

S22A S.

Theorem 1.3. If A is finite,
�� 2A

�� = 2|A |.

Theorem 1.4. 2A = 2B �! A = B.

Proof. By Theorem 1.2, 2A = 2B =)
S

S22A S =
S

S22B S. Therefore A = B. ⇤
Definition 1.7 (Ordered n�tuple). The ordered n�tuple (a1, a2, . . . , an) is the ordered collection

that has a
i

as its ith element. (a1, a2) is called ordered pairs . (a1, a2, . . . , an) is equal to (b1, b2, . . . , bn),

denoted by (a1, a2, . . . , an) = (b1, b2, . . . , bn),
� ! 8i 2 { 1, . . . , n } a

i

= b
i

.

Remark 1.5. An unordered n�tuple is represented by a set. Sets can be used to represent ordered
tuples, too. Ordered n�tuple can be represented as sets as:

(a1, a2) , { a1, { a2 } }
(a1, a2, a3) , { a1, { a2, { a3 } } }

. . .

Definition 1.8 (Cartesian Product). The cartesian product of A and B is defiend as A⇥B ,
{ (a, b) | a 2 A ^ b 2 B }.

Remark 1.6. Note that A ⇥ B 6= B ⇥ A. As an example A = { 1 } and B = { b }. Then
A⇥B = { (1, b) } and B ⇥A = { (b, 1) }. Hence A⇥B 6= B ⇥A.

Theorem 1.5. A⇥ ; = ; ⇥A = ;.

Theorem 1.6. A⇥B = ; �! (A = ; _ B = ;).

Proof. Suppose ¬(A = ; _ B = ;).
) A 6= ; ^ B 6= ;.
) 9a 2 A ^ 9b 2 B.
) (a, b) 2 A⇥B.
) A⇥B 6= ;.
Hence A = ; _ B = ;. ⇤

Definition 1.9. The Cartesian product of the sets A1, A2, . . . , An

is defined as A1⇥A2⇥ · · ·⇥A
n

, { (a1, a2, . . . , an) | 8i 2 { 1, . . . , n } a
i

2 A
i

}.

Definition 1.10 (Power of a Set An). The nth power of a set , denoted by An, is defined as

A1 = A

An+1 = An ⇥A where n 2 Z+.

1.2. Set Operations.

Definition 1.11 (Union, Intersection).

The
union
intersection

of A and B defined as
A [B , {x | x 2 A _ x 2 B }
A \B , {x | x 2 A ^ x 2 B } .

Remark 1.7. Set operations can be visualized by Venn diagrams as in Fig. 1

Example 1.8. For sets A,B,C in the figure,
A [B = A [ C but B 6= C. &%

'$
AkB kC

Definition 1.12. Let C = {A1, A2, . . . , An

} be a collection of sets.

The
union
intersection

of collection C is defined as

S
n

i=1Ai

, A1 [A2 [ · · · [A
n

= {x | 9i 2 { 1, . . . , n } x 2 A
i

}T
n

i=1Ai

, A1 \A2 \ · · · \A
n

= {x | 8i 2 { 1, . . . , n } x 2 A
i

}. 1
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(a) Union. (b) Intersection.

(c) Set di↵erence. (d) Symmetric set di↵erence.

Figure 1. Set operations.

Definition 1.13. A and B are disjoint
� ! A \B = ;.

Theorem 1.7 (Principle of Inclusion-Exclusion).

|A [B | =
(
|A |+ |B | if A \B = ;,
|A |+ |B |� |A \B | if A \B 6= ;.

Definition 1.14 (Set Di↵erence). The di↵erence ofA andB is defined asArB , {x | x 2 A ^ x /2 B }.

Definition 1.15 (Symmetric Di↵erence). The symmetric di↵erence of A and B is defined as A�B
, (A [B)r(A \B).

Definition 1.16 (Complement). The complement of A with respect to the universal set U : A ,
U rA.

Theorem 1.8 (Set Identities).
Let A,B,C be sets and U be the universal set.
A [ ; = A A \ U = A Identity
A [ U = U A \ ; = ; Domination
A [A = A A \A = A Idempotent

(A) = A Complementation
A [B = B [A A \B = B \A (Commutativity)
A [ (B [ C) = (A [B) [ C A \ (B \ C) = (A \B) \ C (Associativity)
A [ (B \ C) = (A [B) \ (A [ C) A \ (B [ C) = (A \B) [ (A \ C) (Distributivity)
A [B = A \B A \B = A [B (De Morgan)
A [ (A \B) = A A \ (A [B) = A (Absorption)
A [A = U A \A = ; (Complement)
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Proof of A \ (B [ C) = (A \B) [ (A \ C).
A \ (B [ C)
= {x | x 2 A \ (B [ C) } definition of membership
= {x | x 2 A ^ (x 2 B [ C) } definition of \
= {x | x 2 A ^ (x 2 B _ x 2 C) } definition of [
= {x | (x 2 A ^ x 2 B) _ (x 2 A ^ x 2 C) } distributivity of ^ over _
= {x | (x 2 (A \B) _ (x 2 (A \ C) } definition of \
= {x | x 2 (A \B) [ (A \ C) } definition of [
= (A \B) [ (A \ C) definition of membership

⇤

2. Relation

Remark 2.1. A⇥B = { (a, b) | a 2 A ^ b 2 B }.

Definition 2.1 (Matrix). An array of numbers with n rows and m columns is called an n ⇥m
matrix . The entry at the ith row and jth column of matrix M is denoted by [M ]

ij

. A matrix with
entries 0 and 1 only is called a binary matrix . Binary matrices are also called (0, 1)�matrices.

Definition 2.2. ↵ is called a binary relation from A to B
� ! ↵ ✓ A ⇥ B. We use the infix

notation of a↵ b whenever (a, b) 2 ↵.

Remark 2.2. If sets A and B are finite with |A| = n and |B| = m, the elements of A and B
can be listed in an arbitrary order as A = { a1, a2, . . . , an } and B = { b1, b2, . . . , bm }. Then binary
relation ↵ ✓ A⇥B can be represented by an n⇥m (0, 1)�matrix, denoted by M

↵

, as

[M
↵

]
ij

,
(
1, a

i

↵ b
j

0, otherwise.

Note that there are n rows correspond to the ordered elements of A, and m columns correspond
to the ordered elements of B.

Example 2.1.
Let ↵ = { (3, b), (3, c), (7, c) } ✓ A⇥B where A = { 1, 3, 7 } and B = { a, b, c, d }.

Using the orderings of
A = { 1, 3, 7 } and B = { a, b, c, d } we have

M
↵

=

a b c d
1
3
7

2

4
0 0 0 0
0 1 1 0
0 0 1 0

3

5

Using a di↵erent orderings such as
A = { 7, 1, 3 } and B = { c, a, d, b } the matrix
changes to

M
↵

=

c a d b
7
1
3

2

4
1 0 0 0
0 0 0 0
1 0 0 1

3

5.
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Remark 2.3. The cartesian and the matrix representations are related. Rotate the cartesian
representation by 90� clockwise, and compare with the matrix representation.

Question 2.1. How many di↵erent binary relations from A to B can be defined?

2.1. Composition of Relations.

Definition 2.3 (Composition of Relations).
Let ↵ ✓ A ⇥ B,� ✓ B ⇥ C. The composition of ↵ and �, denoted by ↵ � �, is defined as ↵ � � ,
{ (a, c) 2 A⇥ C | 9b 2 B [a↵ b ^ b� c] }.

Remark 2.4. Note that ↵ � � ✓ A ⇥ C. Note that this notation of composition is di↵erent that
the notation of composition of functions which will be discussed at Sec. 3.

Definition 2.4 (Boolean Matrix Multiplication).
Let M

↵

and M
�

be n⇥m and m⇥ p binary matrices. The binary product of M
�

and M
↵

, denoted by
M

↵

�M
�

, is an n⇥ p binary matrix defined as

[M
↵

�M
�

]
ij

,
(
1, 9k [1  k  m ^ [M

↵

]
ik

= 1 ^ [M
�

]
kj

= 1]

0, otherwise.

Remark 2.5. Binary matrix multiplication can be defined by means of logic functions.

[M
↵

�M
�

]
ij

=
m_

k=1

[M
↵

]
ik

^ [M
�

]
kj

where ^ and _ are logical AND and OR functions. The notation
W

m

k=1, is similar to
P

m

k=1, is defined
as
W

n

k=1 , p1 _ p2 _ · · · _ p
n

.

Example 2.2. Using orders A = { 1, 2 }, B = { a, b, c } and C = {A,B,C,D }:


1 1 0
0 1 0

�
�

2

4
1 1 1 0
0 1 1 0
1 0 0 1

3

5 =


1 1 1 0
0 1 1 0

�

M
↵

� M
�

= M
↵��

But regular matrix multiplication gives:

1 1 0
0 1 0

�
⇥

2

4
1 1 1 0
0 1 1 0
1 0 0 1

3

5 =


1 2 2 0
0 1 1 0

�

M
↵

⇥ M
�

= M
↵

⇥M
�

.

Theorem 2.1. M
↵�� = M

↵

�M
�

.

Theorem 2.2 (Associativity).
(↵ � �) � � = ↵ � (� � �) whenever (↵ � �) � � is defined.

Corollary 2.3 (Associativity).
M

↵

� (M
�

�M
�

) = (M
↵

�M
�

)�M
�

whenever M
↵

� (M
�

�M
�

) is defined.
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Definition 2.5 (Inverse of a Binary Relation). The inverse of a binary relation, denoted by ↵�1,

is defined as b↵�1 a
� ! a ↵ b.

Definition 2.6. The transpose of a matrix, denoted by M>, is defined as [M>]
ij

, [M ]
ji

.

Theorem 2.4. M
↵

�1 = (M
↵

)>.

Theorem 2.5. [↵ � �]�1 = ��1 � ↵�1.

Definition 2.7. The complement of ↵, denoted as ↵, is defined as a↵ b
� ! ¬ a↵ b.

Theorem 2.6. M
↵̄

= 1�M
↵

where 1 is matrix of all 1s.

Example 2.3. Show that (↵)�1 = (↵�1)
(a, b) 2 (↵)�1 , (b, a) 2 ↵, (b, a) /2 ↵, (a, b) /2 ↵�1 , (a, b) 2 (↵�1).

3. Functions

Remark 3.1. Let f be a relation from A to B. Pick an a 2 A and consider the corresponding set
B

a

✓ B defined as B
a

, { b | (a, b) 2 f }. Note that |B
a

| could be 0, 1, 2, . . . .

If |B
a

| =
0
1
n � 2

, then a is
not mapped to any b 2 B
mapped to exactly one b 2 B
mapped to n elements of B

.

Definition 3.1. A relation f ✓ A⇥B is called partial function
� ! 8a 2 A |B

a

|  1.

Remark 3.2. Any computer program is actually a partial function from its input space to its
output space. For some inputs in its domain it terminates and produces outputs. For some other
inputs it does not terminate. Hence for those inputs there is no corresponding outputs. That is the
reason that it is a partial function.

Definition 3.2. A relation f ✓ A⇥B is called function
� ! 8a 2 A |B

a

| = 1.

Example 3.1. Remember function y = f(x) = 1
x�1 from Calculus. It is considered to be a func-

tion from R to R. Properly speaking this statement is not true since it is not defined at x = 1 2 R.

-5 -4 -3 -2 -1 0 1 2 3 4 5

-3

-2

-1

1

2

3

Actually, it is a function from Rr { 1 } to R. On the other hand, it is a partial function from R to R.

Definition 3.3.
A
B
f(A)

is called the
domain
codomain
range

of f and written as
dom f
cod f
ran f

.

Question 3.1. Consider the ceiling function f(x) = dx e. dom f = ?, cod f = ?, ran f = ?

Notation.

• b = f(a)
� ! a f b

• A function f from A to B is represented by f : A! B.
• The set all functions from A to B is represented by BA.
• f(C) = { f(c) | c 2 C } for C ✓ A.

Remark 3.3.

Let
BA

P
R

be the set of all
functions
partial functions
relations

from A to B. Then BA ✓ P ✓ R.
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Question 3.2.

•
��BA

�� =?
• | P | =?
• |R | =?

Theorem 3.1. If A and B are finite sets, not both empty, then
��BA

�� = |B ||A |.

Question 3.3. Let A be a nonempty set.

•
�� ;A

�� = ?

•
��A; �� = ?

•
�� ;;

�� = ?

Definition 3.4. Let f : A! B and A
S

✓ A ✓ A
L

.
Function f

S

✓ A
S

⇥B is the restriction of f to A
S

� ! [8a 2 A, 8b 2 B ((a, b) 2 f
S

 ! (a, b) 2 f)].
Then partial function f

L

✓ A
L

⇥B is an extension of f to A
L

� ! [8a 2 A1, 8b 2 B ((a, b) 2 f
L

 ! (a, b) 2 f)].

Remark 3.4 (The inverse of a function). Note that for any relation ↵ from A to B, there is a
unique inverse relation from B to A. This inverse relation usually denoted by ↵�1. Since a function f
from A to B is also a relation, there is an inverse relation from B to A which is also denoted as f�1.
Note that f�1 is a relation but not necessarily a function. f�1 becomes a function if and only if f is
a bijection.

Definition 3.5. Let f : A! B.

f is called

the identity
a surjection
an injection
a bijection
a permutation

� !

A = B ^ 8a 2 A f(a) = a
f(A) = B
8a1, a2 2 A [a1 6= a2 ! f(a1) 6= f(a2)]
surjection ^ injection
f : A! A and f is a bijection

.

Theorem 3.2. Let f : A ! B and g : B ! C be functions If f and g are
surjections
injections
bijections

, then

g � f is also
a surjection
an injection
a bijection

.

Remark 3.5 (Composition of functions). The notations of composition of relations and composi-
tion of functions are unfortunately inconsistent. Let f : A! B and g : B ! C. Then the composition
of function f with function g is represented by g � f . On the other hand, the composition of relation
f with relation g is f � g. Although we end up with two di↵erent expressions, they actually represent
the same set

{(a, c) 2 A⇥ C | a 2 A, c 2 C, 9b 2 B ((a, b) 2 A⇥B ^ (b, c) 2 B ⇥ C)}.
When f and g are functions, we always use functional interpretation and notation.

Functional interpretations. In traditional notation for functions, we have b = f(a) and c =
g(b). Hence c = g(b) = g(f(a)) = (g � f)(a).

Relational interpretations. Since functions are special relations, we can apply composition of
relations to these special relations. Then functions f and g are also two relations. So in relation
notation, we have afb and bgc. Then f � g is the composition of relation f with relation g. Note that
f � g is relation from A to C. Hence we have a(f � g)c.

This inconsistency in notation is probably due to the convenience of matrix representations in
the composition of relations. Remember that M

↵�� = M
↵

�M
�

where M
↵�� is the matrix of the

composition of ↵ with �. A formula such as M
��↵ = M

↵

�M
�

would not be that convenient.

Theorem 3.3. Let f : A ! B and g : B ! C be functions. Then the composition of functions
g � f is a function: g � f : A! C where (g � f)(a) = g(f(a)).
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Remark 3.6.

• If functions f : A! B and g : B ! C are invertible, then the function g �f is also invertible
and (g � f)�1 = f�1 � g�1.

• f�1(B) = { a 2 A | f(a) 2 B }
• Let f : R! R. Then f and f�1 are symmetric with respect to y = x line.

Example 3.2.
Show that any function f : A ! B can be represented as the composition of functions g and h,
f = h � g, where g is a surjection, h is an injection.

DefineD = {D
i

✓ A | d1, d2 2 D
i

, f(d1) = f(d2) }.
Define g : A! D 3 g(a) = D

i

= f�1(f(a)).
Then, clearly g is a surjection since 8D

i

2
D
⇥
9a 2 A

⇥
D

i

= f�1(f(a))
⇤⇤
, hence g(a) = D

i

.
Define h : D ! B 3 h(D

i

) = h(f�1(f(a))) =
f(a).
Let D

i

6= D
j

. Then, for d
i

2 D
i

and d
j

2 D
j

,
f(d

i

) 6= f(d
j

). So h(D
i

) 6= h(D
j

). Therefore, h is
an injection.

(h � g)(a) = h(g(a)) = h(f�1(f(a))) = f(a)
So, h � g = f .

Question 3.4.
• Are D

i

’s disjoint?
• What is f�1(B)?
• What is f(f�1(B))?
• What kind of function is f if B\f(A) = ;?
• What kind of function is f if 8b 2 B

⇥�� f�1(b)
�� = 1

⇤
?

• If |A | = n, |B | = n, what is the number di↵erent functions f ?

Remark 3.7. Let f : A ! B be a function and A and B be finite sets. If f is
an injection
a surjection
a bijection

.

then
|A |  |B |
|A | � |B |
|A | = |B |

.

For functions from a set to itself has an interesting property that it can be applied repeatedly. Let
f : A! A be a function and a 2 A. Then f(a), f(f(a)), . . . , f(f(f(a))), . . . are all defined.

Definition 3.6 (Power of a function). Let f : A ! A be a function. Power of a function is
defined as

i. f1 , f .
ii. fn+1 , f � fn for n 2 Z+.

Definition 3.7 (fixed point). Let f : A ! A be a function. a 2 A is called a fixed point of f
� ! f(a) = a,
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Remark 3.8. Fixed points are important in Computer Science. If a is a fixed point of f then
fn(a) = a for all n 2 N.

Question 3.5. Consider functions from R to R. Let a, b, c 2 R.
• What are the fixed points of f(x) = ax+ b where a and b are real parameters? Consider the cases
where a = 1 and b = 1, a = 2 and b = 1, and a = 1 and b = 0.

• What are the fixed points of f(x) = ax2 + bx + c where a, b and c are real parameters? Consider
the cases for di↵erent values of a, b and c.

• What are the fixed points of f(x) = sinx?
• The function f(x) = rx(1 � x) from Z to Z is called the logistics map where r 2 R is a parame-
ter [Str94]. Although it seems simple logistic map has unexpectedly rich properties if it is applied
iteratively, i.e. x

n+1 = rx
n

(1�x
n

). Try to plot logistic map for r = 2.8, r = 3.3, r = 3.5, r = 3.857.

Acknowledgment. These notes are based on various books but especially [PY73, Ros07,
TZ82, Gal89, Hol60, Nes09].

Problems with Solutions

P 3.1. a) Prove or disprove that set di↵erence distributes over union, that is,

A� (B [ C) = (A�B) [ (A� C).

b) Given a nonempty set A, let f : A! A and g : A! A where

8a 2 A f(a) = g(f(f(a))) and g(a) = f(g(f(a)))

Prove that f = g.

Solution.

a) A� (B [ C) = (A�B) [ (A� C)
Consider the following counter example which disproves the statement.
Let A = {1, 2, 4, 5}, B = {2, 3, 5, 6} and C = {4, 5, 6, 7}.
Then A� (B [ C) = {1, 2, 4, 5}� {2, 3, 4, 5, 6, 7} = {1} and
(A�B) [ (A� C) = ({1, 2, 4, 5}� {2, 3, 5, 6}) [ ({1, 2, 4, 5}� {4, 5, 6, 7}) = {1, 2, 4}.
Hence, A� (B [ C) 6= (A�B) [ (A� C).

b) Proof by contradiction: Let f : A! A and g : A! A and
8a 2 A f(a) = g(f(f(a))) (I), and g(a) = f(g(f(a))) (II), but f 6= g.
Then 9s 2 A f(s) 6= g(s).

f(s) 6= g(s)
, g(f(f(s))) 6= g(s) since f = g(f(f))
, f(g(f(f(f(s))))) 6= g(s) since g = f(g(f))
, f(g(f(f| {z }

f

(f(s))))) 6= g(s)

, f(f(f(s))) 6= g(s) since f = g(f(f))
, f(f( f|{z}

g(f(f(s)))

))) 6= g(s)

, f(f(g(f(f(s))))) 6= g(s) since f = g(f(f))
, f(f(g(f| {z }

g

(f(s))))) 6= g(s)

, f(g(f(s))) 6= g(s) since g = f(g(f))
, g(s) 6= g(s) since g = f(g(f)). Contradiction!
Hence, f = g.





CHAPTER 4

Relations on a Set

1. Relations on a Set

Definition 1.1. Let ⇢ be a relation on A, that is ⇢ ✓ A⇥A.

⇢ is called

reflexive
symmetric
antisymmetric
transitive

� !

8a 2 A [a ⇢ a]
8a, b 2 A [a ⇢ b �! b ⇢ a]
8a, b 2 A [a ⇢ b ^ b ⇢ a �! a = b]
8a, b, c 2 A [a ⇢ b ^ b ⇢ c �! a ⇢ c]

Theorem 1.1. If ⇢ is

reflexive
symmetric
antisymmetric
transitive

then ⇢�1 is

reflexive
symmetric
antisymmetric
transitive

.

Example 1.1.

a

�� ��
b

�� ��

c

d e

2

66664

0 1 1 0 0
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

3

77775
A tree
RST

1 4oo

�� ✏✏
2

OO

3oo

^^

2

664

0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0

3

775 greater then relation
RST

•1
↵1
)) •2

↵7
))

↵3

ii •3
↵9

ii

2

4
0 1 0
1 0 1
0 1 0

3

5 a↵b
� ! | a� b | = 1

RST

2. Observations on the Matrix of a Relation

Let ↵ ✓ A⇥A.

• ↵ is ordinary �! No pattern in the matrix.2

664

1 1 0 0
0 0 1 0
1 0 0 1
1 0 1 0

3

775

• '' •
��

Use directed graph.
• ↵ is reflexive  ! The main diagonal is all 1’s.2

664

1 1 0 0
0 1 1 0
1 0 1 1
1 0 1 1

3

775

•
a��
⌘ •

Omit loops.

25
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• ↵ is symmetric  ! The matrix is symmetric.2

664

1 1 0 0
1 0 1 0
0 1 1 0
0 0 0 1

3

775

2

664

1 . . .
1 0 . .
0 1 1 .
0 0 0 1

3

775

• '' •gg ⌘ • •

Use undirected graph.
• ↵ is both reflexive and symmetric.2

664

1 0 1 0
0 1 1 0
1 1 1 1
0 0 1 1

3

775

2

664

. . . .
0 . . .
1 1 . .
0 0 1 .

3

775

• ''⌘⌘
•gg
��
⌘ • •

• ↵ is transitive.

•

((

((
•

•

VV

3. Closure of Relations

Example 3.1. Given a relation ↵0 which is not reflexive, a new relation ↵1 can be defined which
is reflexive and ↵0 ✓ ↵1. More than that, there are many reflexive relations ↵

j

with ↵0 ✓ ↵
j

. Note
that ↵1 is the smallest one satisfying this.

↵0 =

2

664

1 1 0 0
0 1 1 0
1 0 1 1
1 0 1 0

3

775 ↵1 =

2

664

1 1 0 0
0 1 1 0
1 0 1 1
1 0 1 1

3

775 ↵2 =

2

664

1 1 1 0
0 1 1 0
1 0 1 1
1 0 1 1

3

775

Definition 3.1. Let ↵ be a relation on a set A. Let P be a property such as reflexivity, symmetry,

transitivity. � is called closure of ↵ with respect to P
� ! � is a relation with property P and ↵ ✓ �

with 8� [↵ ✓ �] where � is a relation with property P and � ✓ �

Remark 3.1. Note that � is the smallest relation satisfying this.

4. Compatibility Relation

Let � ✓ A⇥A.

Definition 4.1 (Compatibility Relation).

A relation � is a compatibility relation
� !

i. � is reflexive
ii. � is symmetric

Remark 4.1. Note that equivalence relation has one more property, namely transitivity.
� is an equivalence relation �! � is a compatibility relation.

Definition 4.2. C ✓ A is called a compatibility class (compatible)
� !

8c1, c2 2 C [c1 � c2] where � is a compatibility relation.

Definition 4.3. A compatibility class which is not properly contained in any other compatibility
class is called a maximal compatibility class (maximal compatible).

Definition 4.4. A complete cover , C
�

(A), of A with respect to � is a collection of all and only
the maximal compatibles induced by �.
� ! A collection, C

�

(A), of all and only the maximal compatibles induced by � on A is called a
complete cover of A.
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Theorem 4.1. If � is compatibility relation on a finite set A and C is a compatibility class, then
there is a maximal compatibility class C

0
such that C ✓ C

0
.

Theorem 4.2. There is a one-to-one correspondence between � and C
�

(A).

Theorem 4.3. � is a compatibility relation on A
� ! 9 relation ⇢ from A to some B 3 � = ⇢⇢�1

with 8a 2 A [9b 2 B [a ⇢ b]]

Example 4.1.

Complete cover
C
�

(A) = {A1, A2, A3, A4, A5, A6} is a complete cover.
C

0
�

(A) = {A1, A2, A3, A4, A5, A7} is not since A4 ✓ A7.

4.1. Application of Compatibility Relation.

Example 4.2 (Minimization of Incompletely Specified Finite State Machines). S = { a, b, c, d, e }
I1 I2 I3

a c,0 e,1 -
b c,0 e,- -
c b,- c,0 a,-
d b,0 c,- e,-
e - e,0 a,-

Definition 4.5. States a and b are compatible, a�b, where � ✓ S⇥S
� ! If no applicable input

sequence to both a and b produce conflicting outputs.

� is a compatibility relation since 8a, b 2 S
i. a�a.
ii. a�b �! b�a.

a
p

b c,c e,e
p

c ⇥ b,c c,e
p

d b,c c,e b,c c,e ⇥
p

e ⇥ e,e c,e a,a ⇥
p

a b c d e

{ a, b } is a compatible.
{ a, b, d } is a maximal compatible.
{ { a, b, d } , { b, c, e } } is a complete cover.

Let A = { a, b, d } , B = { b, c, e }
I1 I2 I3

A B,0 B,1 B,-
B B,0 B,0 A,-

5. Equivalence Relation

Definition 5.1 (Equivalence Relation).

A relation � is a equivalence relation
� !

i. � is reflexive
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ii. � is symmetric
iii. � is transitive

Theorem 5.1. If � is an equivalence relation �! � is also a compatibility relation.

Definition 5.2 (Equivalence Class).
A maximal compatible of � is called an equivalence class where � is an equivalence relation.

Theorem 5.2. Let {E
i

} be complete cover. 8E1, E2 2 C
�

(A) [E
i

\ E
j

= ;]

Theorem 5.3. 8a 2 A [a belongs to one and only one equivalence class].

Definition 5.3 (Partition).

A set P = {A
i

6= ; | A
i

✓ A } is called a partition of A
� !

i.
S

i

A
i

= A
ii. A

i

\A
j

= ; if i 6= j.

Each A
i

is called a block of P .

P is called the partition of singletons
� ! 8A

i

2 P [|A
i

| = 1].
The partition of singletons and the partition {A } are called the trivial partitions.

Example 5.1. Let A = { 1, 2, 3, 4, 5 }. Then sets P1 = { { 1 } , { 2 } , { 3 } , { 4 } , { 5 } }, P2 =
{ { 1 } , { 2, 3, 4, 5 } }, P3 = { { 1 } , { 2, 4, 5 } , { 3 } }, P4 = { { 1, 2 } , { 3, 5 } , { 4 } }, P5 = { { 1, 2, 3, 4, 5 } }
are partitions of A.
Note that P1 and P5 are the trivial partitions.

Theorem 5.4. There is a one-to-one corresponding between equivalence relations on A and parti-
tions on A.

Definition 5.4. Dichotomy is a partition with two blocks.

Theorem 5.5. � is an equivalence relation on A  ! 9B
⇥
9f : A! B

⇥
� = ff�1

⇤⇤
.

P = {A1, A2, A3, A4 }.

Theorem 5.6. Let ↵ and � be equivalence relations on A.
↵ � is an equivalence relation  ! ↵� = �↵

Proof.

() part:) ↵� is an equivalence relation �! ↵� is symmetric �! ↵� = (↵�)�1 = ��1↵�1 = �↵.
Since ↵ and � are symmetric.
(( part:)

i. 8a 2 A [a↵a ^ a�a] �! a↵�a. reflexivity.
ii. 8a, b 2 A a(↵�)b �! a(�↵)b �! 9d 2 A [a�d ^ d↵b] �! d�a ^ b↵d �! b(↵�)a.

symmetry.
iii. Left as an exercise. ⇤

5.1. Applications of Equivalence Relations. An application of equivalence relations is state
reduction of a completely specified FSM.

Definition 5.5. A finite state machine (FSM ) is a system M = [Q,S,R,↵,� ] where
Q is a finite set of states
S is a finite set of input symbols (input of alphabet, stimulus)
R is a finite set of output symbols (output alphabet, response)
↵ : Q⇥ S ! Q is the state function
� : Q⇥ S ! R is the output function
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Example 5.2 (State Reduction of a Completely Specified Finite State Machine).
Let FSM be defined as: Q = { a, b, c, d, e, f, g, h } S = { I1, I2 } R = { 0, 1 } and ↵ and � are defined in
the following table:

↵,� I1 I2
a b, 1 h, 1
b f, 1 d, 1
c d, 0 e, 1
d c, 0 f, 1
e d, 1 c, 1
f c, 1 c, 1
g c, 1 d, 1
h c, 0 a, 1

Define ⌘✓ Q⇥Q as follows:
a is equivalent to b  ! a ⌘ b
� ! no input sequence can distinguish a from b.

⌘ is an equivalence relation
since 8a, b, c 2 S

i. a ⌘ a
ii. a ⌘ b �! b ⌘ a
iii. a ⌘ b, b ⌘ c �! a ⌘ c

a

b

b,f
d,h

c

d

c,d
e,f

e

b,d
c,h

d,f
c,d

f

b,c
c,h

c,f
c,d

c,d
c,c

g

b,c
d,h

c,f
d,d

c,d
c,d

c,c
c,d

h

c,d
a,e

c,c
a,f

a b c d e f g h

f e

d

c

ba

h

g

complete cover:
{ { a } , { b } , { c, d } , { e, f, g } , {h } }

Let A = { a } , B = { b } , C = { c, d } , E = { e, f, g } , H = {h }
I1 I2

A B,1 H,1
B E,1 C,1
C C,0 E,1
E C,0 C,1
H C,1 A,1

Acknowledgment. These notes are based on various books but especially [PY73, Ros07,
TZ82, Gal89]. Class of CMPE220 of Fall 2008 did the initial LATEX draft of hand written notes.

Problems with Solutions

P 4.1. Let ⇢ ✓ A⇥A, ⇢�1 be the inverse relation of ⇢, and i
A

be the identity relation of A. What
kind of relation is ⇢ if
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i) i
A

✓ ⇢.
ii) i

A

\ ⇢ = ; .
iii) ⇢�1 = ⇢.
iv) ⇢ \ ⇢�1 ✓ i

A

.
v) ⇢ \ ⇢�1 = ;.
vi) ⇢ = [

i2N ⇢i.
Justify your answers.
Solution.

If

i
A

✓ ⇢
i
A

\ ⇢ = ;
⇢�1 = ⇢.
⇢ \ ⇢�1 ✓ i

A

.
⇢ \ ⇢�1 = ;.
⇢ = [

i2N ⇢i.

, then ⇢ is

reflexive
irreflexive
symmetric
antisymetric
asymmetric
transitive

.

Justification is left as exercise.



CHAPTER 5

Partial Ordering, Lattice

1. Partial Ordering

Definition 1.1. Let  be a relation on A,  ✓ A⇥A.

 is a Partial Ordering
� !

i. reflexive
ii. antisymmetric
iii. transitive.

a < b
� ! a  b ^ a 6= b.

Theorem 1.1. The inverse relation �1 of a partial ordering  is also a partial ordering, denoted
by �.

Theorem 1.2. The directed graph of a partial ordering relation contains no circuits of length
greater than 1.

Definition 1.2 (Poset).
A partly ordered set (poset), denoted [A, ], consists of a set A and a partial ordering relation  on
A.

Definition 1.3. Let [A, ] be a poset. a, b 2 A are said to be comparable
� ! a  b _ b  a.

a, b 2 A are incomparable
� ! a, b 2 A are not comparable.

Definition 1.4 (Linearly ordered set). [A, ] is called a linearly ordered set
� ! 8a, b 2

A [a  b _ b  a].

Remark 1.1. Note that some elements of a poset are incomparable but every two elements in a
totally ordered set should be comparable.

Example 1.1.

a b

c

@@ 77

d

^^

e

__ ??

f

OO

g

^^

Let A = { a, b, c, d, e, f, g } and b  a repre-
sented by b! a.

Note that c  a, f  a. There should be an
arc from f to a, too. In order to simplify the
figure this kind of arcs are omitted.

a and b are not comparable. So there is no
element that is larger than all the other elements.
Similarly there is no element that is smaller than
all the other elements.

Definition 1.5 (Consistent Enumeration).
A consistent enumeration of a finite poset A is a function i : A! N such that
8a

p

, a
q

2 A [a
p

 a
q

�! i(a
p

)  i(a
q

)].

Theorem 1.3. Every finite poset admits of a consistent enumeration.

Example 1.2.

A = { a, b }
2A = { ;, { a } , { b } , { a, b } }

[P (A),✓ ] is a poset.

31
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{a, b}

{b}

__

{a}

??

;

OO

__ ??
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2. Hasse Diagram

Definition 2.1. Let [A, ] be a poset and a, b 2 A with a 6= b. a is an immediate predecessor of

b, denoted by a � b,
� ! a < b and @c 2 A [a < c < b].

b is an immediate successor of a, denoted by b � a,
� ! a < b and @c 2 A [a < c < b].

Remark 2.1.

i. As convention an upper element is larger than a lower element.
ii. Immediate predecessor relation is

• not reflexive
• not symmetric
• not transitive

iii. Given an immediate predecessor relation one can obtain the corresponding partial ordering.
iv.  covers �.
v. Immediate relation simplifies the graph of partial ordering relation.

Definition 2.2. The graph of � is called Hasse Diagram.

Example 2.1. Reflexive+Symmetric+Transitive

a
��

b

__

↵↵
c

??

11

d

OO

__ ??

11

RST

a

b

__

c

??

d

OO

__ ??

RST

a

b

__

c

??

d

__ ??

RST

Example 2.2.
a | b � ! 9c 2 Z [b = ca]

Let A = { a 2 N | a | 100 } and define a relation  on A as a  b
� ! a | b.

100
��

20
��

==

50
��

aa

4
��

??

44

10
��

aa ==

OO

25
��

aa

jj

2
��

__ ==

OO

MM

MM

5
��

aa >>

OO

QQ

QQ

1
��

aa ==

QQ MM

PP NN

EE

]]

Graph of 

100

20 50

4 10 25

2 5

1

Graph of �
• not reflexive
• not symmetric
• not transitive

Hasse diagram.
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3. Lattice

Definition 3.1. Let [A, ] be a poset.

m 2 A is
maximal
minimal

� ! @a 2 A [m < a]
@a 2 A [a < m]

.

Definition 3.2. Let [A, ] be a poset and B ✓ A.

s 2 A is called a supremum of set B
� !

i. 8b 2 B b  s.
ii. @a 2 A 8b 2 B b  a �! a < s.

Question 3.1. Define infimum of B.

Remark 3.1. Consider intervals X = [0, 1] and Y = (0, 1) of the real numbers R. Then 0 and 1
are minimal and maximal of X, respectively. Since 0 /2 Y , 0 cannot be a minimal of Y . 0 is a infimum
of Y . 1 is a supremum of Y . Since R is totally ordered, there is no other infimum than 0. So we can
say that 0 is the infimum of Y . Similarly 1 is the supremum of Y .

Definition 3.3. Let [A, ] be a poset and I,O 2 A.
I
O

is the
greatest
least

� ! 8a 2 A [a  I]
8a 2 A [O  a]

. I and O are called universal upper bound and universal

lower bound , respectively.

Remark 3.2.
• From now on all posets are finite.
• If poset is finite, there are minimal and maximal elements but there may not be universal upper
and lower bounds.

Example 3.1.

a b

c

d e f

g h

i

j k

maximals: a, b, h.
minimals: d,g,j,k.
greatest: none.
least: none.
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Definition 3.4. Let [A, ] be a poset and a, b 2 A.
A least upper bound (lub) of a and b is c 2 A

i. a  c and b  c
ii. @x 2 A [a  x ^ b  x ^ x < c]

Remark 3.3. Let a, b 2 A.
i. Least upper bound of a and b may not exist.
ii. There may be more than one lub.
iii. It may be unique. If lub of a and b is unique, then it is denoted as a+ b.

Theorem 3.1. 8a, b 2 A [ lub exists] �! [A, ] has the universal upper bound I.

Example 3.2.

a b

c d

e

f

• There is no universal upper bound.
• a and b are maximal elements.
• a and b are lub of c and d.
• e and f are lower bounds of c and d.
• e is unique glb of c and d.
• f is the universal lower bound O.
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Definition 3.5. A greatest lower bound (glb) of a and b is l 2 A where
i. l  a and l  b
ii. @x 2 A [x  a ^ x  b ^ l < x]

Remark 3.4. If glb of a and b is unique, then it is denoted as a · b

Remark 3.5 (Duality Principle).
Let U be the Hasse diagram of poset [A, ]. Upside down version of U ,call it D is the Hasse diagram
of [A,� ].

Any property for U holds in D if the following substitutions are made:
• +$ ·
• lub $ glb
• $�
• I $ O

Definition 3.6 (Lattice). A lattice is a poset [A, ] such that any two elements have a unique
lub and glb. It is denoted as [A,+, · ].

Example 3.3.
Divisibility relation and divisors of 12 makes a lattice.

12

4 6

2 3

1

A = { a 2 N | a | 12 }
= { 1, 2, 3, 6, 4, 12 }
and 8a, b 2 A

h
a ⇠ b

� ! a | b
i
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Theorem 3.2. Let [A,+, · ] be a lattice and a, b, c 2 A.
i. a+ a = a idempotency
ii. a+ b = b+ a commutativity
iii. (a+ b) + c = a+ (b+ c) associativity
iv. a+ (a · b) = a absorption
v. a+ b = b  ! a · b = a  ! a  b consistency

4. Applications

• PageRank of Google.
• Measure the similarity of two orderings (ranking) on a set, i.e. Pearson correlation.

Acknowledgment. These notes are based on various books but especially [PY73, Ros07,
Gal89].

Problems with Solutions

P 5.1.

Definition 4.1. Let f, g : Z+ ! R. g dominates f
� ! 9m 2 R+ and 9k 2 Z+ such that

|f(n)|  m |g(n)| for all n 2 Z+ where n � k

Definition 4.2. For f : Z+ ! R, f is big Theta of g, denoted by f 2 ⇥(g),
� ! there exist

constants m1,m2 2 R+ and k 2 Z+ such that m1|g(n)|  |f(n)|  m2|g(n)|, for all n 2 Z+, where
n � k.
a) Let RZ+

be the set of all functions from Z+ to R.
Define the relation � on RZ+

as

f�g
� ! f 2 ⇥(g) for f, g 2 RZ+

.

Prove that � is an equivalence relation on RZ+
.

b) Let [f ]
�

represent the equivalence class of f 2 RZ+
for the relation �. Let E be the set of

equivalence classes induced by �. Define the relation ↵ on E by

[f ]
�

↵ [g]
�

, for f, g 2 RZ+
,

� ! f is dominated by g.

Show that ↵ is a partial order.
Use shorthand notations F for RZ+

and [f ] for [f ]
�

.

Solution.

a) We need to show that � is reflexive, symmetric and transitive.
i. For each f 2 F , |f(n)|  1 |f(n)| for all n � 1. So f�f , and � is reflexive.
ii. For f, g 2 F ,

f�g ) f 2 ⇥(g)

) m
f

|g(n)|  |f(n)| M
f

|g(n)| for n � k where m
f

,M
f

2 R+ and k 2 Z+

) |g(n)|  1/m
f

|f(n)| and 1/M
f

|f(n)|  |g(n)|
) m

g

|f(n)|  |g(n)| M
g

|f(n)| for n � k with m
g

= 1/M
f

,M
g

= 1/m
f

2 R+

) g 2 ⇥(f)

) g�f.

So � is symmetric.
iii. Let f, g, h 2 F with f�g, g�h. Then, f 2 ⇥(g) and g 2 ⇥(h) ) for all n 2 Z+, there exist

constants m
f

,M
f

,m
g

,M
g

2 R+ and k
f

, k
g

2 Z+ such that
m

f

|g(n)|  |f(n)| M
f

|g(n)| for n � k
f

, and
m

g

|h(n)|  |g(n)| M
g

|h(n)| for n � k
g

. Then for n � max{k
f

, k
g

},
m

f

m
g

|h(n)|  m
f

|g(n)|  |f(n)| and
|f(n)| M

f

|g(n)| M
f

M
g

|h(n)|. Hence for n � k,
m |h(n)|  |f(n)| M |h(n)|
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where m = m
f

m
g

,M = M
f

M
g

2 R+ and k = max{k
f

, k
g

} 2 Z+. So f�h, that is, �
transitive.

b) We need to show that ↵ is reflexive, antisymmetric and transitive. Let f, g, h 2 RZ+
.

i. f is dominated by f since |f(n)|  |f(n)| for n � 1. So [f ]↵[f ], hence ↵ is reflexive.
ii. Suppose [f ]↵[g] and [g]↵[f ]. Then

|f(n)|  m
f

|g(n)| for n � k
f

for some m
f

and k
f

. Similarly,
|g(n)|  m

g

|f(n)| for n � k
g

for some m
g

and k
g

. Then for n � max{k
f

, k
g

}
1/m

f

|f(n)|  |g(n)|  m
g

|f(n)|. That is, g(n) 2 ⇥(f(n)). That means f and g are in the
same equivalence class of �, i.e. [f ] = [g]. So ↵ is antisymmetric.

iii. Suppose [f ]↵[g] and [g]↵[h]. Then
|f(n)|  m

f

|g(n)| for n � k
f

for some m
f

and k
f

, and
|g(n)|  m

g

|h(n)| for n � k
g

for some m
g

and k
g

. Then for n � max{k
f

, k
g

}
|f(n)|  m

f

m
g

|h(n)|. Therefore [f ]↵[h]. Hence ↵ is transitive.

P 5.2. Let F denote the set of all partial orderings on a set A. Define a relation  on F such that

for ↵,� 2 F , ↵  � � ! 8a, b 2 A [a↵b! a�b]. Show that  is a partial ordering on F .

Solution.

i.  is reflexive. Since 8↵ 2 F 8a, b 2 A [a↵b! a↵b]) ↵  ↵.
ii.  is antisymmetric. Suppose for ↵,� 2 F , ↵  � and �  ↵. Then
↵  � ) 8a, b 2 A [a↵b! a�b] and
�  ↵) 8c, d 2 A [c�d! c↵d]. That is, 8a, b 2 A [a↵b$ a�b]. Hence ↵ = �.

iii.  is transitive. Suppose for ↵,�, � 2 F , ↵  � and �  �.
↵  � ) 8a, b 2 A [a↵b! a�b]. Similarly,
�  � ) 8a, b 2 A [a�b! a�b]. Hence
8a, b 2 A [a↵b! a�b]. That is, ↵  �.

Hence  on F is a partial ordering.
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CHAPTER 6

Algebraic Structures

1. Motivation

Suppose there are two research labs A and B. Lab A investigates gravitation. They do test on
two masses m1 and m2. They discover that the attraction force F

g

is given as

F
g

= c
g

m1m2

r2

where r is the distance between them and c
g

is a constant.
Lab B investigates electrical charges. The force observed is attractive if the charges are opposite

sign, repulsive otherwise. Yet, they measure that the force F
e

between two spheres charged as q1 and
q2 is given as

F
e

= c
e

q1q2
r2

where r is the distance between them and c
e

is a constant.
Yet somewhere else, a theoretical physicist works on hypothetical forces. She assumes that the

force between two bodies is proportional to some property of the body denoted by b. She also assumes
that the force is inversely proportional to the square of the distance of the bodies. So she summarize
her assumptions as

F
x

= c
x

b1b2
r2

.

She did continue in her investigations. She figure out many properties of this hypothetical system.
Then in a conference somebody from Lab A happens to listen her presentation with amazement.

This lady did all the work for them. All they have to do is to apply her findings with changing c
x

with their constant c
g

.
Mathematics is an abstraction. Yet, algebraic structures is just this kind of abstraction. It could

be hard to find similarities between polynomials, integers and N ⇥ N square matrices. But actually
they have very similar properties which will be call ring in this chapter.

Example 1.1. Part a.
Let’s solve a+ x = b for x where a, b, x 2 Z.

a+ x = b

(�a) + (a+ x) = (�a) + b

((�a) + a) + x = (�a) + b

0 + x = (�a) + b

x = (�a) + b.

Part b.
Let’s solve A + X = B for X where A,B,X are
N ⇥N real matrices.

A+X = B

(�A) + (A+X) = (�A) +B

((�A) +A) +X = (�A) +B

0 +X = (�A) +B

X = (�A) +B.

Question 1.1. Compare Part a and Part b of Example 1.1. What are the di↵erences and simi-
larities?

Question 1.2. Solve A+X = B for X if
i. A,B,X are N ⇥N rational matrices.
ii. A,B,X are N ⇥N integer matrices.
iii. A,B,X are N ⇥N natural number matrices.
iv. A,B,X are polynomials with complex coe�cients in y.
v. A,B,X are polynomials with real coe�cients in y.
vi. A,B,X are polynomials with rational coe�cients in y.
vii. A,B,X are polynomials with integer coe�cients in y.
viii. A,B,X 2 C.

41



42 6. ALGEBRAIC STRUCTURES

ix. A,B,X 2 R.
x. A,B,X 2 Q.
xi. A,B,X 2 Z.
xii. A,B,X 2 N.
xiii. A,B,X 2 RrQ.
xiv. A,B,X are 2D vectors.
xv. A,B,X are 3D vectors.

Question 1.3.

i. Some of the systems given in Question 1.2 have no solution. Can you find a pattern when there
is a solution. What properties of what do you need in order to solve equation A+X = B?

ii. Reconsider Question 1.2 when addition is replaced by multiplication, that is, A⇥X = B. Note
that multiplication may not be defined in some concepts.

2. Algebraic Structures

Consider the equation A+X = B. In order to interpret the equation correctly we need to know
couple of things: What is “+” represents? What are A, B and X? If A, B and X are of the same
“type”, what set do they member of? The only concept that does not need further explanation is the
equality “=”.

Question 2.1. It should be an equivalence relation but do we really know what actually “=”
means? We know that there are more than one equivalence relations can be defined on a set. So
which one is this? Recall that equivalence relations 5.1 is covered in Chapter 4.

2.1. Binary Operations.

Remark 2.1. At this point, you may want to refresh the definition of function 3.2.

Definition 2.1. A binary operation ? on set A is a function ? : A⇥ A! A. A binary operation
is represented by a ? b instead of the traditional functional notation ?((a, b)) where a, b 2 A.

Question 2.2. What is the di↵erence between ?((a, b)) and ?(a, b)?

Definition 2.2. Let A = {a1, · · · , an}. An operation table represents the binary operation ? in a
table form where a

i

? a
j

= a
k

.

? a1 · · · a
i

· · · a
j

· · · a
n

a1 . · · · . · · · . · · · .
...

...
...

...
...

a
i

. · · · . · · · a
k

· · · .
...

...
...

...
...

a
j

. · · · a
m

· · · . · · · .
...

...
...

...
...

a
n

. · · · . · · · . · · · .

Remark 2.2. This representation is valid if the elements of A can be made into a list. Some sets
have, some cannot have such a list. Making a list of elements is an importing concept which we will be
looking at in Chapter 10 when we discuss finiteness and type of infinities in more detail. The elements
of a finite set can always be made a list. If the set is not finite, there are two di↵erent cases. If the set
is countable infinite such as N, there is a natural list that can be used for operational table. Note that
in this case the operational table would be an infinite table. If the set is uncountable infinite such as
R, then the elements cannot be put in a list. Concepts such as finiteness, infinity, countable infinity,
uncountable infinity will be covered in Chapter 10.

Remark 2.3. The order of operation is important. a
i

? a
j

= a
k

6= a
m

= a
j

? a
i

.

Definition 2.3. A binary operation ? onA is called associative
� ! 8a, b, c 2 A [(a ? b) ? c = a ? (b ? c)]

Definition 2.4. A binary operation ? on A is called commutative
� ! 8a, b 2 A [a ? b = b ? a].
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2.2. Algebraic Structure.

Definition 2.5. A nonempty set A and binary operations f1, f2, · · · , fn defined on A together is
called an algebraic structure, denoted by [A, f1, f2, · · · , fn ], where n 2 Z+.

Example 2.1. Let V be a vector space. Addition of two vectors is represented as v1 + v2 for
v1, v2 2 V . Then [V,+] is an algebraic structure. Note that + is both associative and commutative.

Question 2.3. In general, multiplication of two vectors is not defined. Only in 3D, cross multi-
plication of two vectors is defined, denoted as v1 ⇥ v2. Let V be 3D vector space and v1, v2, v3 2 V .

i. Is ⇥ associative?
ii. Is ⇥ commutative?
iii. Is it the case that v1 ⇥ (v2 + v3) = (v1 ⇥ v2) + (v1 ⇥ v3)?

Question 2.4. In vector spaces, scalar multiplication is defined. How do you put that into
algebraic structure notation?

2.3. Sub-Algebraic Structures. Two similar but not exactly the same systems can be investi-
gated. A special case of similar structures is the case when one set is a subset of another.

Suppose B ✓ A and a binary operation ? on A is defined. Since a binary operation is a function
from A⇥A, and since B ⇥B ✓ A⇥A, we can try to restrict it to B.

One needs to be very careful at this point. The danger can be better seen in simpler case: What
we have is a function f : A! A. We have B ✓ A and we want to restrict function to B. It is perfectly
possible that for some elements of B the image under the function may not be in B at all, that is,
f(b) 2 ArB for some b 2 B. Whenever that happens, the function can not be a binary operation.
This concern is called closedness.

Example 2.2 (Subspace). Think about vectors in X � Y plane. This makes a 2D vector space.
Vectors in X � Y � Z is a vector space in 3D. Let’s denote 2D and 3D vector spaces by R2 and R3,
respectively. Define addition of two vectors in the usual way in both R2 and R3. Then we obtained
two independent algebraic structures

⇥
R2,+

⇤
and

⇥
R3,+

⇤
.

Are they really independent? Actually
⇥
R2,+

⇤
is a special case of

⇥
R3,+

⇤
. Any vector v =

[x y]> 2 R2 can be mapped to a unique vector, denoted by ṽ = [x y 0]> 2 R3. We say that R2 is a
subspace of R3.

Note that for all v1, v2 2 R2 we have v = v1 + v2 2 R2. If we map v1, v2 into R3, we obtain
ṽ1, ṽ2 2 R3. This time use addition in R3 to obtain u = ṽ1 + ṽ2 2 R3. Is it the case that ṽ = u? This
can be visualized as: ã

v -- ṽ = u

v1

66

,, ṽ1

77

v2

KK

,, ṽ2

KK

Example 2.3 (Addition on Reals and Rationals). Consider the set of real numbers, R. With
ordinary addition, + : R ⇥ R ! R , it makes the algebraic system, [R,+ ]. Now, consider the set of
rational numbers. Depending how you look at it, a rational number is a real number or not. Here we
assume that a rational number is also a real number. Hence Q ✓ R. The addition + in reals can be
restricted to Q. Let +

Q

: Q⇥Q! Q be the restriction of addition in reals to rationals.
Fortunately addition of any two rational numbers is again a rational number. So we can safely

restrict + in R to Q and obtain binary operation +
Q

in Q.

Example 2.4 (Multiplication on Reals and Negative Integers). Multiplication on real numbers is
a binary operation.

⇥R : R⇥ R! R.
On the other hand restriction of it to negative integers

⇥ : Z� ⇥ Z� ! Z+

is not a binary operation since the codomain not Z� any more.
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Example 2.5 (Multiplication in Irrational Numbers). An irrational number is a real number that
is not rational. Using this definition the set of irrational numbers can be represented as A = RrQ.
Note that we use A since there is no agreed symbol for the set of irrational numbers as we have R for
reals.

Clearly A ✓ R. Then try to restrict multiplication ⇥ in reals to irrationals. The restricted function
⇥

A

would be
⇥

A

: A⇥A! R.
Note that it is not the case that

⇥
A

: A⇥A! A

since
p
2 2 A but

p
2 ⇥

A

p
2 = 2 62 A. That is, the restriction of multiplication in the set of reals

to the set of irrationals is not a binary operation in irrationals. In other words, the restriction is not
closed.

3. Algebraic Structures with One Binary Operation

3.1. Semigroup.

Definition 3.1. An algebraic structure G = [A, ? ] is called semigroup
� !

i. ? is associative.

3.2. Monoid.

Definition 3.2. Let [A, ? ] be an algebraic structure.
`
r
e
2 A is called

left-identity
right-identity
(two-sided) identity

� !
8a 2 A [` ? a = a]
8a 2 A [a ? r = a]
8a 2 A [e ? a = a ? e = a]

.

Remark 3.1.

i. There may exist none, one or both of ` or r.
ii. There is no need to be semigroup in order to have left, right or two-sided identities.

Theorem 3.1. If ` and r are left and right identities of a semigroup G, then ` = r.

Theorem 3.2. If two-sided identity exists, then it is unique.

Question 3.1. The theorem says that there could not be two di↵erent identities. Is it possible
that there are two di↵erent left-identities `1 and `2? The same question for right-identities?

Definition 3.3. An algebraic structure M = [A, ? ] is called monoid
� !

i. M is a semigroup.
ii. M has the identity, denoted by e.

Question 3.2. Consider a row of the operation table of a monoid. What can be said about the
number of identities?

Definition 3.4 (Subsemigroup, Submonoid).

Let A = [A, ? ] and B = [B, � ] be semigroups
monoids

.

B is said to be
subsemigroup
submonoid

of A � !
i. B ✓ A
ii. � is the restriction of ? to B.

Remark 3.2. This is a typical definition of sub-structures. An equivalent but more compact
definition would be as follows:

A
semigroup
monoid

B = [B, � ] is said to be a
subsemigroup
submonoid

of

another
semigroup
monoid

A = [A, ? ]
� !

i. B ✓ A
ii. � is the restriction of ? to B.
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Example 3.1. Let A = { 1, 2, 3, 4 } and B = { 3, 4 }. Define binary operators as follows.
⇤ 1 2 3 4
1 . 1 . .
2 1 2 3 4
3 . 3 3 4
4 . 4 4 4

� 3 4
3 3 4
4 4 4

Then 2 and 3 are identities of ⇤ and � in sets A and B, respectively. Note that � is the restriction
of ⇤ to B. Note also that 3 is not an identity in A.

Question 3.3. Let B = [B, �] be a submonoid of A = [A, ⇤] with identities e
B

and e
A

, respectively.
Is it possible that e

A

6= e
B

?

Table 1. default

* 1 2 3 4
1 . 1 . .
2 1 2 3 4
3 . 3 3 4
4 . 3 4 4

3.3. Groups.

Definition 3.5 (Inverse).
Let G = [A, ? ] be a monoid with the identity e. Let a 2 A.
`
a

r
a

b
a

2 A is called
left inverse
right inverse
(two-sided) inverse

of a
� !

`
a

? a = e
a ? r

a

= e
b
a

? a = a ? b
a

= e
.

Theorem 3.3. If ` and r are left and right inverses of a, respectively, then ` = r in a monoid.

Question 3.4. Is it possible that a has two di↵erent left-inverses, `1 and `2?

Notation 3.1. The inverse of a is represented by a�1.

Definition 3.6 (Group).

An algebraic structure G = [A, ? ] is called group
� !

i. G is a monoid.
ii. 8a 2 A, there is a unique inverse of a, denoted by a�1.

If A is finite, G is said to be a finite group and |A | is called the order of G.

Theorem 3.4. Let G = [A, ? ] be a group and a, b 2 A. a ? x = b and y ? a = b have unique
solutions, namely, x = a�1 ? b and y = b ? a�1.

Theorem 3.5 (Cancellation). In a group,
i. a ? b = a ? c) b = c.
ii. b ? a = c ? a) b = c.

Remark 3.3. We know these two theorems in numbers since primary school. What the theorems
say is that they are valid if the system satisfy the group axioms.

Notation 3.2. a ? b is represented by ab when the binary operation ? is clear in the context.

Theorem 3.6 (Cayley). Every finite group can be represented by a group of permutations.

Definition 3.7 (Permutation). Let A be a finite set. A bijection � : A! A is called a permuta-
tion.

Example 3.2 (Group of Permutations).
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Let A = {x1, x2, x3 } be a set with 3 elements.
A permutation on A can be represented as:✓

x1x2x3
x2x1x3

◆
= (213).

There are 3! = 6 permutations:

a = (123)

b = (132)

c = (213)

d = (231)

e = (312)

f = (321)

Let S3 , { a, b, c, d, e, f } be the set of per-
mutations on A.
Define a binary operation } on S3 as the compo-
sition, that is, ↵ } � , � � ↵ where ↵,� 2 S3.
Hence x 2 A is mapped to �(↵(x)).

b} c = (132)} (213)

= (213) � (132)
= (213)((132))

= (231) = d

1 // 1

��

1

2

��

2

@@

2

3

@@

3 // 3
} a b c d e f
a a b c d e f
b b ? d ? ? ?
c c ? ? ? ? ?
d d ? ? ? ? ?
e e ? ? ? ? ?
f f ? ? ? ? ?

Definition 3.8. S3 = [S3,} ] is called the symmetric group of order 3, S3. Symmetric groups S
n

can be extended for any n 2 N.

Remark 3.4. |S
n

| = n!

Definition 3.9. Let G = [A, ? ] and H = [B, � ] be two groups. Group G is said to be a subgroup

of group H
� !

i. A ✓ B.
ii. ? is the restriction of � to A.

Remark 3.5.

i. [G, ? ] is a subgroup of itself.
ii. [ { e } , ? ] is a subgroup of G.

Definition 3.10. Subgroups G and { e } are called the trivial subgroups. Any subgroup that is
not trivial is called proper subgroup.

Theorem 3.7. T 6= ; is a subgroup of G
 ! 8a, b 2 T

⇥
ab�1 2 T

⇤
.

Theorem 3.8. Let H be a subgroup of G. Then the order of H divides the order of G.

Definition 3.11. A group with commutative binary operation is called abelian group.

4. Algebraic Structures with two Binary Operations

4.1. Ring.

Definition 4.1 (Ring). An algebraic structure R = [A, ?, � ] is called ring
� !

i. [A, ? ] is an abelian group.
ii. [A, � ] is a semigroup.
iii. 8a, b, c 2 A

a � (b ? c) = (a � b) ? (a � c)
(b ? c) � a = (b � a) ? (c � a)
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Notation 4.1. Usual notation for a ring is R = [A,+, ·]
Use ab for a · b.
0 is the additive identity .
�a is the additive inverse of a.
1 is the multiplicative identity .
a�1 is the multiplicative inverse of a.

Remark 4.1. Note that since [A,+ ] is a group, the additive identity 0 and additive inverse �a
for all a should be there. On the other hand, [A, · ] is simple a semigroup. Therefore the multiplicative
identity may not exist. Even if the multiplicative identity exists, multiplicative inverse may not.

Definition 4.2 (Commutative Ring). A ring with commutative multiplication is called commu-
tative ring .

Theorem 4.1. Let R = [A, ?, �] be a ring. 8a, b 2 A
i. 0 � a = a � 0 = 0
ii. (�a) � b = a � (�b) = �(a � b)
iii. (�a) � (�b) = a � b.

Proof.

Part (i)

(a � 0) ? 0 = a � 0 //definition of additive identity

= a � (0 ? 0) //definition of additive identity

= (a � 0) ? (a � 0) //multiplication distributes over addition.

Using cancellation by a � 0 in group [A, ?], we have 0 = a � 0. The remaining part 0 = 0 � a can be
proven similarly.

Part (ii)

(a � b) ? (�(a � b)) = 0 //additive inverse

= 0 � b //from part (i)

= (a ? (�a)) � b //definition of additive identity

= (a � b) ? ((�a) � b) //distributivity of � over ?.

Using cancellation by a � 0 in group [A, ?], we have �(a � b) = (�a) � b. The remaining part �(a � b) =
a � (�b) can be proven similarly.

Part (iii)

(�a) � (�b) = �(a � (�b)) //from part (ii)

= �(�(a � b)) //from part (ii)

= a � b //definition of additive inverse.

⇤
Remark 4.2. We knew these properties of numbers since primary school. Now we learn that they

are valid not only in numbers but any algebraic structure that satisfy conditions of ring such as the
ring of polynomials or the ring of matrices as seen shortly.

Example 4.1.
i. [N,+, · ] is not a ring, since there is no additive inverse.
ii. [Z,+, · ] is a ring. So do [Q,+, · ], [R,+, · ] and [C,+, · ].
iii. Consider the set of polynomials with real coe�cients in x, denoted by R[x]. With regular addition

and multiplication of polynomials, [R[x],+, · ] is a ring, called the ring of polynomials .

Question 4.1.
i. What is the additive identity of group [R[x],+ ]?
ii. What is the additive inverse of 5x2 + 3x+ 7 in [R[x],+ ]?
iii. Is there a multiplicative identity in semigroup [R[x], · ]?
iv. What is the multiplicative inverse of 5x2 + 3x+ 7 in [R[x],+, · ]?
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Question 4.2. Consider the set of N ⇥M matrices with real entries, denoted by R
N⇥M

. With
regular addition and multiplication of matrices, [R

N⇥M

,+, · ] is not a ring. Why? Can you make it a
ring by additional constraints?

Definition 4.3 (Subring). A ring A = [A,�,⌦ ] is said to be a subring of another ring B =

[B,+,⇥ ]
� !

i. A ✓ B.
ii. � is the restriction of + to A.
iii. ⌦ is the restriction of ⇥ to A.

Theorem 4.2. Let T and R be rings. T is a subring of R
 ! 8a, b 2 T [(a� b), ab 2 T ].

Definition 4.4. Let T be a subring of ring R. If 8r 2 T [8a 2 R [ar, ra 2 T ]], then T is called
an ideal of R.

4.2. Field.

Definition 4.5. A field , F = [A,+, · ], is a ring such that [Ar { 0 } , · ] is an abelian group. If A
is finite, F is called finite field (Galois field).

Remark 4.3. Note that in 0 in Ar { 0 } is the additive identity of group [A,+ ].

Definition 4.6. Let Z
n

, { 0, · · · , n� 1 } where n 2 N, n � 2,
a � b , remainder of a+b

n

,

a � b , remainder of ab

n

.

Theorem 4.3. [Z
p

,�,� ] is a field if p is a prime number.

Remark 4.4. Take n = 2. Since 2 is prime, [Z2,�,� ] is a field.
Actually, this is the field that Computer Engineering/Science is based on: Z2 = { 0, 1 } where 0

and 1 are integers. Another interpretation of 0 and 1 would be “false” and “true”, respectively. Then,
one can interpret the binary operations � and � as logical functions f : B⇥B! B and g : B⇥B! B
where B = { 0, 1 } but this time in the logical meaning.

Question 4.3. What logical functions do � and � correspond? Can you express them in terms
of ^ , _ and ¬?

Example 4.2.
i. [Z,+, · ] is not a field, since there is no multiplicative inverse.
ii. [Q,+, · ] is a field. So do [R,+, · ] and [C,+, · ].

Question 4.4. [R[x],+, · ] is not a field, since no multiplicative inverse of x + 1 2 R[x]r { 0 }
exists. What is 0 in this context? Can you extend it into a field?

4.3. Lattice. Lattice has two definitions: poset-wise and algebraic.

Definition 4.7. A (algebraic) lattice, L = [A,t,u ] is a nonempty set A with binary operations
t,u, called join and meet , i↵
i) x u y = y u x x t y = y t x
ii) x u (y u z) = (x u y) u z x t (y t z) = (x t y) t z
iii) x u (x t y) = x x t (x u y) = x

Remark 4.5. Let [A,t,u] and [A,+, ·] be lattices algebraic and poset sense, respectively. Then
a t b = a+ b and a u b = a · b.

4.4. Vector Spaces.

Definition 4.8. Let V = [V,+] be an additive abelian group. Let F be a field. Let · : F ⇥V ! V
be a function. The group V is then called a vector space over the field F
� ! For a, b 2 F , �!v ,�!u 2 V , the following conditions are satisfied:
i. a · (�!v +�!u ) = a ·�!v + a ·�!u
ii. (a+ b) ·�!v = a ·�!v + b ·�!v
iii. a · (b ·�!v ) = (ab) ·�!v
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iv. 1 ·�!v = �!v

where 1 is the multiplicative identity of F . Elements of V and F are called vectors and scalars,
respectively. The function · is called scalar multiplication.

Remark 4.6. Note that vector spaces are not algebraic structures.

Example 4.3. In Physics we use vectors spaces over real numbers. For example 3D vectors are
represented as R3. In our formal notation it should be V = R3 and F = R. Then we have

�!v ,

2

4
x1
x2
x3

3

5 2 R3 and r ·�!v = r ·

2

4
x1
x2
x3

3

5 ,

2

4
r · x1
r · x2
r · x3

3

5 .

Example 4.4. Let Q2⇥2 be the set of 2⇥ 2 matrices over rational numbers. Define the product of
a rational number by a 2⇥ 2 matrix as a 2⇥ 2 matrix obtained by multiplying each of the entries by
the rational number, i.e. for a 2 Q and M 2 Q2⇥2, [a ·M ]

ij

= a[M
ij

] where [M ]
ij

is the i,j-th entry
of the matrix. Then Q2⇥2 is a vector space over Q.

Example 4.5. Let F [x] be the set of all polynomials in x with coe�cients in F . Multiplication
of a polynomial by a scalar is defined by multiplying each coe�cient with that scalar. Then F [x] is a
vector space over F .

Question 4.5. Prove that 0 ·�!v =
�!
0 .

Question 4.6. What is wrong in the following?

0 = 0

0 · 1 = 0 · 2
1 = 2.
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5. Summary

Single Binary Operation, [A,� ]

• Binary operation
• Semigroup

i. associativity
• Monoid

i. semigroup
ii. identity

• Group
i. monoid
ii. inverse

• Abelian Group
i. group
ii. commutativity

Two Binary Operations , [A,�,⌦ ]

• Ring R = [A,�,⌦ ]
i. [A,� ] is an abelian group
ii. [A,⌦] is a semigroup
iii. ⌦ right and left distributes over �

• Field F = [A,�,⌦ ]
i. [A,�,⌦ ] is a ring
ii. [A \ { 0 } ,⌦ ] is an abelian group

• Lattice L = [A,�,⌦ ]

Figure 1. Note that an operation can be of any combinations of associativity, com-
mutativity and identity.

Acknowledgment. These notes are based on various books but especially [PY73, LP98, Ros07,
Gal89].

Problems with Solutions

P 6.1. Prove the following theorem.

Theorem 5.1. Let G be a group and a1, a2, . . . , an 2 G. Then (a1a2 · · · an)�1 = a�1
n

a�1
n�1 · · · a

�1
1 .

Solution.

Use induction on n.
Induction Base. For n = 1, (a)�1 = a�1.
Induction Hypotesis. Assume that (a1a2 · · · an)�1 = a�1

n

a�1
n�1 · · · a

�1
1 for n.

[a1a2 · · · anan+1][a
�1
n+1a

�1
n

a�1
n�1 · · · a

�1
1 ] = [a1a2 · · · an][an+1a

�1
n+1][a

�1
n

a�1
n�1 · · · a

�1
1 ]

= [a1a2 · · · an][e][a�1
n

a�1
n�1 · · · a

�1
1 ] since a

n+1a
�1
n+1 = e

= [a1a2 · · · an][a�1
n

a�1
n�1 · · · a

�1
1 ]

= e by the induction hypotesis.
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So a�1
n+1a

�1
n

a�1
n�1 · · · a

�1
1 is a right inverse of a1a2 · · · anan+1.

[a�1
n+1a

�1
n

a�1
n�1 · · · a

�1
1 ][a1a2 · · · anan+1] = [a�1

n+1a
�1
n

a�1
n�1 · · · a

�1
2 ][a�1

1 a1][a2 · · · anan+1]

= [a�1
n+1a

�1
n

a�1
n�1 · · · a

�1
2 ][e][a2 · · · anan+1] since a�1

1 a1 = e

= . . .

= a�1
n+1an+1 = e.

So a�1
n+1a

�1
n

a�1
n�1 · · · a

�1
1 is a left inverse of a1a2 · · · anan+1.

Hence a�1
n+1a

�1
n

· · · a�1
1 is the inverse of a1a2 · · · an+1.





CHAPTER 7

Boolean Algebras

1. Reminders

i. Partial ordering = reflexive + antisysmmetic + transitive
ii. Poset [S, ]
iii. Immediate predecessor �
iv. Immediate successor �
v. Hasse diagram
vi. Maximal and minimal elements
vii. Universal upper bound (greatest element), 1
viii. Universal lower bound (least element), 0
ix. Least upper bound (lub, join), a� b
x. Greatest lower bound (glb, meet), a� b
xi. Lattice, L = [L,�,� ]

2. Lattices

Definition 2.1. a 2 L is called an atom
� ! 0 � a.

Definition 2.2. Let [L,�,� ] be a lattice.

a 2 L is said to be join-irreducible
� ! 8x, y 2 L [x� y = a �! x = a _ y = a].

Remark 2.1.
i. The universal lower bound 0 is join-irreducible.
ii. All the atoms are join-irreducible.

Definition 2.3. A lattice is called finite length
� ! All chains in L are finite.

Theorem 2.1. If L is a finite length lattice then every element a 2 L can be represented as a joint
of a finite number of join-irreducible elements of L.

Definition 2.4. Expression x � y = a is called an irredundant join of a
� ! Any subset of

{x, y } no longer represents a.

Theorem 2.2. If L is a distributive, finite length lattice, then 8a 2 L there is a unique represen-
tation as the join of irredundant set of join-irreducible elements.

Example 2.1. [Z+, | ] is a lattice where | is divisibility. In this lattice prime numbers are atoms.
The powers of primes are the join-irreducible elements.

3. Boolean Algebras

Definition 3.1. A lattice is a poset [L, ], any two elements of which have unique join and meet,
denoted by [L,�,� ].

3.1. Distributive Lattice.

Definition 3.2. A lattice [L,�,� ] is said to be distributive
� ! 8a, b, c 2 L

i. a� (b� c) = (a� b)� (a� c)
ii. a� (b� c) = (a� b)� (a� c).

Theorem 3.1. Let A be a set.
i.
⇥
2A,[,\

⇤
is a lattice.

ii. ; 2 2A is the universal lower bound.
iii. A 2 2A is the universal upper bound.

53
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iv.
⇥
2A,[,\

⇤
is a distributive lattice.

Example 3.1. Let A be a finite set. Then A = { a1, a2, . . . , an } be a listing of elements of A. Let

A
j

2 2A. Define bAj = (b
Aj

1 , b
Aj

2 , . . . , b
Aj
n

) 2 Bn such that

b
Aj

i

=

(
1, a

i

2 A
j

,

0, a
i

/2 A
j

.

Notice that

f : 2A ! Bn

A
j

7! (b
Aj

1 , b
Aj

2 , . . . , b
Aj
n

)

is a bijection.

Example 3.2. Let A = { a, b, c }

b; ! (0, 0, 0)

b{ a } ! (1, 0, 0)

b{ a,c } ! (1, 0, 1)

b{ a,b,c } ! (1, 1, 1)

Question 3.1. Let A1, A2 2 2A. Then A1 [ A2, A1 \ A2, A1 2 2A. What can you say about

bA1[A2
j

, bA1\A2
j

, bA1
j

?

3.2. n-cube.

Definition 3.3. Bn is called n-cube where n 2 N.

Example 3.3.

•

• • • •

• • • • • •

• • • •

B0 B1 B2 B3

Note that
i. The diagram of Bn can be generated by two of diagrams of Bn�1.
ii. The diagram of Bn is a undirected graph where vertices are b 2 Bn, and b1, b2 2 Bn are adjacent

� ! they di↵er in exactly one coordinate.

Theorem 3.2. Let A be a finite set with |A | = n. The Hasse diagram of
⇥
2A,[,\

⇤
is the n-cube.

Example 3.4. Let A = { a, b, c }.

{ a, b, c }

{ a, b } { a, c } { b, c }

{ a } { b } { c }

;



3. BOOLEAN ALGEBRAS 55

(1, 1, 1)

(1, 1, 0) (1, 0, 1) (0, 1, 1)

(1, 0, 0) (0, 1, 0) (0, 0, 1)

(0, 0, 0)
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3.3. Bounded Lattice.

Definition 3.4. A lattice L is called bounded
� ! L has universal upper and lower bounds, 1

and 0, respectively.

3.4. Complemented Lattice.

Definition 3.5. Let L = [L,�,� ] be a bounded lattice. b 2 L is called a complement of a 2 L
� ! a� b = 0 ^ a� b = 1.

Remark 3.1.
i. In general, complement may not exist.
ii. If it exists, it may not be unique. So complement is a relation rather then a function.

iii.
0
1

is a complement of
1
0

.

Example 3.5.

1

a b c

0

b
c

is a complement of a
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Example 3.6.

{ 4 }

{ 1, 3 } { 2, 2 }

{ 1, 1, 2 }

{ 1, 1, 1, 1 }

The lattice of partitions of 4 is not complemented.
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Theorem 3.3 (Uniqueness of complement). Let L = [L,�,� ] be a bounded, distributive lattice.
If b and c are complements of a, then b = c.

Remark 3.2. Note that complement of a may not exist. If it exists, then it is unique.

Theorem 3.4 (Involution). Let L = [L,�,� ] be a bounded, distributive lattice. If a 2 L has the
complement a 2 L, then a has its complement which is a. That is a = a.

Theorem 3.5 (De Morgan). Let L = [L,�,� ] be a bounded, distributive lattice. If complements
of a and b exist, then

a� b = a� b and a� b = a� b

Definition 3.6. A bounded lattice L = [L,�,� ] is said to be complemented
� ! 8a 2 L 9b 2

L b is a complement of a.

4. Boolean Algebra

Definition 4.1. A bounded, distributive, complemented lattice is called a boolean algebra. B =
[B,�,�, , 0, 1 ] denotes a boolean algebra with a is the complement of a, 0 and 1 are the universal
lower and upper bounds, respectively.

Example 4.1. Let A be a finite set.
⇥
2A,[,\

⇤
is a booean algebra

⇥
2A,[,\, , 0, 1

⇤
.

5. Canonical Expressions in Boolean Algebras

Theorem 5.1. Let B be a boolean algebra and x 2 B. x is join-irreducible  ! x is an atom.

Remark 5.1. Let B = { b1, b2, . . . , bn } be the set of all atoms of boolean algebra B.
i. No two elements of B is comparable.
ii. The join of any subset of B is irredundant.
iii. Any such join represents a unique element of B.
iv. Therefore there is a bijection between 2B and B.

' : B ! 2B

a 7! the subset whose join represents a.

v. ' preserves � and �
'(a� b) = '(a) [ '(b)
'(a� b) = '(a) \ '(b)

'(a) = '(a).

Theorem 5.2 (Stone representation). A boolean algebra B = [B,�,�, , 0, 1 ] of finite length is
isomorphic to 2B.

Theorem 5.3. The Hasse diagram of a boolean algebra with n atoms is the n-cube.

Theorem 5.4. A boolean algebra with n atoms has 2n elements.

Remark 5.2. A boolean algebra B is entirely represented by n where n is the number of atoms.
B
n

denotes one such algebra.
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CHAPTER 8

Number Systems

1. Natural Numbers

Definition 1.1 (Natural Numbers, (Peano Axioms)). The set of natural numbers is a set N that
satisfies the following five axioms:
P1. 90 2 N.
P2. 8n 2 N 9s(n) 2 N. (s(n) is called the successor of n).
P3. 8n 2 N, s(n) 6= 0.
P4. 8m,n 2 N [s(m) = s(n) �! m = n].
P5. 8A ✓ N [0 2 A ^ 8n (n 2 A �! s(n) 2 A) �! A = N].

Remark 1.1. These axioms are called Peano axioms [Gal89]. Note that s is a function given as
s : N! N.

Remark 1.2.

0
s(0)
s(s(0))
· · ·

is called

zero
one
two
· · ·

and represented by

0
1
2
· · ·

Question 1.1. Does there exist such a set?

Question 1.2. Is it unique? That is, if N1 and N2 are sets satisfying the Peano axioms, then are
N1 and N2 isomorphic?

Definition 1.2. The predecessor of n, p(n), is p(n) = m
� ! s(m) = n.

Definition 1.3 (Addition).
+ : N⇥ N! N defined as:

n+m =

(
n, m = 0,

s(n) + p(m), otherwise.

Remark 1.3. n+m is called the sum of n and m.

Definition 1.4 (Multiplication).
⇥ : N⇥ N! N defined as:

n⇥m =

(
0, m = 0,

n+ n⇥ p(m), otherwise.

Remark 1.4. n⇥m is called the product of n and m.

Definition 1.5 (Ordering).
 : N⇥ N! {T, F} defined as:

m  n means

8
><

>:

F, if m 6= 0 and n = 0,

T, if m = 0,

p(m)  p(n), otherwise.

Question 1.3. Define exponentiation nm.

Question 1.4. What kind of algebraic structure is
[N,+]
[N,⇥]
[N,+,⇥]

?
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2. Integers

Definition 2.1. Consider the relations on N⇥N defined as 8(a, b), (c, d) 2 N⇥N [(a, b) s (c, d)  ! a+ d = b+ c]

Example 2.1. Some elements of the relation s are the followings:
· · · (0, 2) s (1, 3) (0, 1) s (1, 2) (0, 0) s (1, 1) (1, 0) s (2, 1) (2, 0) s (3, 1) · · ·
· · · (0, 2) s (2, 4) (0, 1) s (2, 3) (0, 0) s (2, 2) (1, 0) s (3, 2) (2, 0) s (4, 2) · · ·
· · · · · · · · · · · · · · · · · · · · ·

Theorem 2.1. The relation s is an equivalence relation on N⇥N. Moreover, the set of equivalence
classes, N⇥ N/ s, is the set

N⇥ N/ s= { [ (n, 0 ) ] | n 2 N } [ { [ ( 0, n ) ] | n 2 N ^ n 6= 0 }

Proof. Let [ ( a, b ) ] , [ ( c, d ) ] , [ ( e, f ) ] 2 N⇥ N/ s.

(1) [ ( a, b ) ] s [ ( a, b ) ], since a+ b = b+ a. So s is reflexive.
(2) [ ( a, b ) ] s [ ( c, d ) ] �! [ ( c, d ) ] s [ ( a, b ) ], since a+ d = b+ c. So s is symmetric.
(3) If [ ( a, b ) ] s [ ( c, d ) ]^ [ ( c, d ) ] s [ ( e, f ) ], then a+ d = b+ c and c+ f = d+ e. Adding the

two a + d + c + f = b + c + d + e, then a + f = b + e. Hence [ ( a, b ) ] s [ ( e, f ) ]. So s is
transitive.

Therefore s is an equivalence relation on N⇥ N. ⇤
Example 2.2. Some equivalence classes of N⇥ N/ s are:

· · ·
[ ( 2, 0 ) ] = { (n+ 2, n ) | n 2 N }
[ ( 1, 0 ) ] = { (n+ 1, n ) | n 2 N }
[ ( 0, 0 ) ] = { (n, n ) | n 2 N }
[ ( 0, 1 ) ] = { (n, n+ 1 ) | n 2 N }
[ ( 0, 2 ) ] = { (n, n+ 2 ) | n 2 N }
· · ·

Definition 2.2 (Integers). The set N⇥ N/ s is the set of integers and is denoted by Z.

Definition 2.3 (Addition and Multiplication in Z). Let [ ( a, b ) ] , [ ( c, d ) ] 2 Z. Define + : Z⇥Z!
Z and ⇥ : Z⇥ Z! Z

[ ( a, b ) ] + [ ( c, d ) ] = [ ( a+ c, b+ d ) ]

[ ( a, b ) ]⇥ [ ( c, d ) ] = [ ( ac+ bd, ad+ bc ) ]

Theorem 2.2. 8x 2 Z 9x0 2 Z [x+ x0 = x0 + x = 0]. Denote x0 by �x.

Remark 2.1. x = [ ( a, b ) ] �! �x = [ ( b, a ) ]

Question 2.1. What kind of algebraic structure is
[Z,+]
[Z,⇥]
[Z,+,⇥]

?

Definition 2.4. Z+ = { [ (n, 0 ) ] | n 2 N \ { 0 } } is called the set of positive integers. Z� =
{ [ ( 0, n ) ] | n 2 N \ { 0 } } is called the set of negative integers.

Definition 2.5 (Ordering in Z).
Let x, y 2 Z

• x is less than y, denoted by x < y,
� ! y � x = y + (�x) 2 Z+.

• x is less than or equal to y, denoted by x  y
� ! (x < y _ x = y).

Acknowledgment. These notes are based on various books but especially [PY73, Ros07,
Men08, TZ82, Gal89].



CHAPTER 9

Division

1. Division

Definition 1.1 (Division).

Let d, n 2 Z. d divides n
� ! 9c 2 Z n = cd.

d
n

is a
factor or divisor
multiple

of
n
d

.

Notation. If d divides n, we write d | n. If d does not divide n, we write d - n.

Theorem 1.1. Let d, n,m, a, b 2 Z.
i. n | n (reflexivity)
ii. d | n ^ n | m �! d | m (transitivity)
iii. d | n ^ d | m �! d | (an+ bm) (linearity)
iv. d | n �! ad | an (multiplication)
v. ad | an ^ a 6= 0 �! d | n (cancellation)
vi. 1 | n (1 divides every integer)
vii. n | 0 (every integer divides 0)
viii. 0 | n �! n = 0 (0 divides only 0)
ix. d | n ^ n 6= 0 �! | d |  |n |
x. d | n ^ n | d �! | d | = |n |
xi. d | n ^ d 6= 0 �! (n/d) | n

Remark 1.1.
i. The expression an+ bm is called a linear combination of n and m.
ii. Every common multiple of n and m can be written as a linear combination of n and m.

Due to linearity d | n ^ d | m �! d | (n+m) ^ d | (nm).

Question 1.1. Prove that d | n ^ d | m �! d | (nm) using linearity.

Theorem 1.2 (The Division Algorithm).
Let n 2 Z, d 2 Z+. Then there are unique q, r 2 Z with 0  r < d such that n = qd+ r.

Definition 1.2.
Let n = qd+ r as in the division algorithm.
d
n
q
r

is called

divisor
dividend
quotient q = n div d
remainder r = n mod d

The division algorithm is given as Algorithm 1. A trace of the algorithm for n = 13, d = 3 is given
in Example 1.1.

Example 1.1. 3 divides 13. That is, n = 13, d = 3.
n d q r
13 3 0
10 1
7 2
4 3
1 4

1
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Algorithm 1: The Division Algorithm

Input: Dividend n > 0 and divisor d > 0
Output: Quotient q and remainder r where 0  r < d

1 begin
2 q  0
3 while n � d do
4 q  q + 1
5 n n� d
6 end
7 r  n
8 end

2. Prime Numbers

Definition 2.1. Let n 2 Z+. n > 1 is called prime
� ! The only positive divisors of n are 1

and n. If n is not prime, then n is called composite.

Notation. Prime numbers are usually denoted by p, p0, p
i

, q, q0, q
i

.

Example 2.1. There are 4 primes less than 10. There are 25 prime numbers less than 100 which
are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, and 97. So for
40 % of the numbers between 1 and 10 are prime where as only 25 % of the numbers between 1 and
100 are prime. The primes becomes sparse as the numbers grow. There are 168, that is 17 %, prime
numbers less than 1000.

Theorem 2.1. Every integer n > 1 is either a prime number or a product of prime numbers.

Proof. Use induction on n. As an induction base n = 2 is a prime. Assume that it is true for
all the numbers m where 1 < m < n, that is 8m 2 Z [1 < m < n] m is either a prime or a product of
primes.
We want to prove that it is true for n, too. Consider n.

i. Case: n is prime. Then we are done.
ii. Case: n is not prime. Then there must be a positive divisor d that divides n, that is, 9d 2 Z(d >

0 ^ d 6= 1 ^ d 6= n)9c 2 Zn = cd. Since both 1 < c < n and 1 < d < n, by the induction
hypothesis they are either prime or a product of primes. Therefore their product n should be a
product of primes. ⇤
Theorem 2.2 (Euclid).

There are infinitely many prime numbers.

Remark 2.1. The proof of the theorem is given in Elements by Euclid (300 BC).

Notation. Let P be the set of prime numbers.

Theorem 2.3. a 2 Z ^ b 2 Z ^ p 2 P ^ p | ab �! p | a _ p | b. More generally,
a1, a2, . . . , ai 2 Z ^ p 2 P ^ p | a1a2 · · · an �! 9i 2 { 1, . . . , n } p | a

i

.

Theorem 2.4 (The Fundamental Theorem of Arithmetic).
Every integer n > 1 can be written uniquely as a product of nondecreasing primes.

Example 2.2.
2 = 2 6 = 2 · 3 30 = 2 · 3 · 5
4 = 2 · 2 = 22 12 = 2 · 2 · 3 = 22 · 3 720 = 2 · 2 · 2 · 2 · 3 · 3 · 5 = 24 · 32 · 51

Remark 2.2.
i. Given an integer n > 1, it is not easy to decide whether n is prime.
ii. There is no known formula that generates primes only.
iii. Prime numbers of the form 2p � 1, where p 2 P, are called Mersenne primes. As of 2009, there

are 47 Mersenne primes known. The largest is 243,112,609 � 1 [Wik09].
iv. Numbers in the form of F

n

= 22
n
+1 where n 2 N are called Fermat numbers . F0 = 3, F1 = 5, F2 =

17, F3 = 257, F4 = 65, 537 are all prime but Euler (1732) found that F5 = 232+1 = 641⇥6, 700, 417
is not prime. Beyond F5 no Fermat primes have been found [Apo].



3. COMMON DIVISORS AND MULTIPLES 65

Theorem 2.5. Let n 2 Z+ be composite. Then there is a prime divisor p of n and p 
p
n.

Definition 2.2. Let ⇡(x) be the number of primes p satisfying 2  p  x.

Remark 2.3. The density of primes drops as the numbers grow.
n 101 102 103

Number of primes in {2, 3, · · · , n} 4 25 168
Percentage of primes in {2, 3, · · · , n} 40% 25% 17%

Theorem 2.6 (The Prime Number Theorem (Hadamard + Vallee Poussin, 1896)).

lim
x!1

⇡(x) lnx

x
= 1

Corollary 2.7 (Goldbach’s Conjecture (1742)).
Every even integer n > 2 is the sum of two primes.

Definition 2.3 (Twin Primes).
If p and p+ 2 are primes, they are called twin primes.

Theorem 2.8 (The Twin Prime Conjecture).
There are infinitely many twin primes.

3. Common Divisors and Multiples

Definition 3.1 (Common Divisor).

Let a, b 2 Z. d 2 Z+ is called a common divisor of a and b.
� ! d | a ^ d | b. Let cd(a, b) be the

set of all common divisors of a and b.

Remark 3.1. 8a, b 2 Z [1 2 cd(a, b)]. So, cd(a, b) 6= ;.

Theorem 3.1. 8a, b 2 Z 9d 2 Z+ such that d 2 cd(a, b) ^ 9x, y 2 Z (d = ax + by). Moreover,
8k 2 cd(a, b) [k | d].

Theorem 3.2. 8a, b 2 Z 9!d 2 Z with the following properties:
i. d � 0
ii. d 2 cd(a, b)
iii. 8e 2 cd(a, b) �! e | d.

Proof. By Theorem 3.1 there is at least one d satisfying (ii) and (iii). Note that �d also satisfies
the condition (iii). Suppose d0 also satisfies (ii) and (iii), then d | d0 and d0 | d, so | d | = | d0 |. Hence
there is exactly one d � 0 satisfying both (ii) and (iii). ⇤

Definition 3.2 (Greatest Common Divisor). The number d in Theorem 3.2 is called the greatest
common divisor (gcd) of a and b and denoted by a D b or gcd(a, b).

Remark 3.2. a D b is the operator notation, gcd(a, b) is the function notation of the greatest
common divisor.

Theorem 3.3. The gcd has the following properties:
i. a D b = b D a (commutativity)
ii. a D (b D c) = (a D b) D c (associativity)
iii. | a | (b D c) = (ab) D (ac) (distributivity)
iv. a D 1 = 1 D a = 1
v. a D 0 = 0 D a = | a |

Definition 3.3. If a D b = 1, then a and b are said to be relatively prime, denoted by a ? b.

Remark 3.3. a ? b  ! 9x, y 2 Z xa+ yb = 1.

Theorem 3.4 (Euclid’s lemma).
a | bc ^ a ? b �! a | c.

Proof. Since a ? b we can write 1 = ax+ by. Therefore c = cax+ cby. Since a | cax and a | bc,
a | (cax+ cby). Hence a | c. ⇤

Theorem 3.5. p 2 P ^ p - a �! p D a = 1
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Theorem 3.6. a and b are relatively prime.  ! @p 2 P [p | a ^ p | b].

Example 3.1. Due to unique prime factorization, a positive integer can be represented as a vector
where ith entry of the vector is the power of the ith prime number in the prime factorization of the
number.

n prime factors vector
10 21 ⇥ 30 ⇥ 51 ⇥ 70 ⇥ 110 ⇥ · · · [ 10100 · · · ]
12 22 ⇥ 31 ⇥ 50 ⇥ 70 ⇥ 110 ⇥ · · · [ 21000 · · · ]
63 20 ⇥ 32 ⇥ 50 ⇥ 71 ⇥ 110 ⇥ · · · [ 02010 · · · ]

Consider the dot product of the corresponding vectors. The corresponding vectors are perpendicular
if and only if the numbers are relatively prime:
[ 10100 · · · ] · [ 02010 · · · ] = 0 �! 10 ? 63.
[ 10100 · · · ] · [ 21000 · · · ] = 2 6= 0 �! 10 6? 12.

Question 3.1. What is the dimension of this vector space?

Definition 3.4. Let a, b 2 Z+. The smallest m 2 Z+ with a | m and b | m is called the least
common multiple of a and b, denoted by lcm(a, b).

Remark 3.4. A more proper approach would be the approach of the greatest common divisor:
First define the set of common multiples, denoted by cm(a, b). Then show that cm(a, b) 6= ; since
ab 2 cm(a, b). Finally, show that there is the least element in cm(a, b).

Theorem 3.7. Let [ a
i

] and [ b
i

] be the vector representations of a and b. Then

gcd(a, b) =
Y

i

pmin{ai,bi}
i

and lcm(a, b) =
Y

i

pmax{ai,bi}
i

where p
i

is the ith prime number in the vector representation.

4. Modular Arithmetic

Reminder 4.1. The division algorithm of Theorem 1.2 states that for n 2 Z, d 2 Z+ there exist
unique q, r 2 Z with n = qd+ r and 0  r < d. Note that r = n mod d and q = n div d.

Definition 4.1. Let a, b 2 Z and m 2 Z+. a is said to be congruent to b modulo m, denoted by

a ⌘ b (mod m).
� ! m | (a� b). If a and b are not congruent modulo m, then a 6⌘ b (mod m).

Theorem 4.1. a ⌘ b (mod m)  ! a mod m = b mod m.

Theorem 4.2. a ⌘ b (mod m)  ! 9k 2 Z [a = b+ km].

Theorem 4.3. Let m 2 Z+ and a, b, c, d 2 Z.
a ⌘ b (mod m) ^ c ⌘ d (mod m)
�! a+ c ⌘ b+ d (mod m) ^ ac ⌘ bd (mod m).

Definition 4.2. The congruence class of amodulom is defined as [a]
m

, {n 2 Z | 9k 2 Z n = a+ km }

Theorem 4.4. 8x, y 2 [a]
m

x ⌘ y (mod m)

Theorem 4.5. Let a, b, c, d 2 Z and m 2 Z+ (m > 1). If a ⌘ b (mod m) and c ⌘ d (mod m) then
a) a+ c ⌘ b+ d (mod m)
b) ac ⌘ bd (mod m)
c) 8x 2 Z, ax ⌘ bx (mod m)
d) 8n 2 Z+, an ⌘ bn (mod m).

————– @HB ————–

Application 4.1.
i. Hashing Functions.
ii. Pseudorandom Numbers.
iii. Cryptology.

Acknowledgment. These notes are based on various books such as [PY73, Ros07, Gal89] but
especially [Apo].
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CHAPTER 10

Counting

1. Motivation

Counting the number of di↵erent ways of satisfying a condition is important in science including
Probability, Statistical Physics and, of course, Computer Science. Theory of Algorithms in Computer
Science deals with finding an algorithm which has the minimum number of steps. Then one needs to
know what is the possible number of steps.

Example 1.1.
i. How many vertices in a complete binary tree?
ii. How many steps are needed in order to traverse a binary tree?
iii. If you have n items, how many comparisons do you need to make in order to sort them?

Question 1.1.
i. Suppose there are 3 balls looks like the same but one of them is di↵erent in weight only. How

many comparisons in weight does it needed to figure out the di↵erent one?
ii. The same question for 12 balls?

Example 1.2. Consider a room filled with air. The room divided into two halves. You are sitting
in one of the halves. What is the possibility that all the molecules would be in the other half. Our
every day observations says that that does not happen frequently. If that happens frequently enough,
you would be su↵ocated. What is the probability that it happens, if the number of molecules in the
room is n where

i. n = 2?
ii. n = 8?
iii. n is in the order of Avogadro number, that is n ⇡ 1024?
iv. What is you estimate of n if the room is 4⇥ 5⇥ 3 in meters?

Assume that air is an ideal gas where molecules are free to move without any interaction from each
other.

This chapter deals with finite sets. Let A and B be finite sets. Let |A | = ↵ and |B | = �. Since
A is finite, the elements of A can be listed as an ↵-tuple (a1, a2, . . . , a↵). This ordering is used for the
following proofs.

Definition 1.1 (Factorial).
Let n 2 N.

i. 0! = 1
ii. n! = n · (n� 1)! for n > 0.

Remark 1.1. Use of factorial is quite old. One of the earliest use of factorials is in the proof of
prime numbers are infinite given by Euclid around 300BC. The proof is based on the idea that there
must be a prime between n and n! + 1.

Definition 1.2 (Factorial Power).
Let n, r 2 Z+.
nr , (n+ 0) (n+ 1)(n+ 2) · · · (n+ (r � 1)),
nr , (n� (r � 1)) · · · (n� 2)(n� 1) (n� 0).
nr and nr are called rising factorial power and falling factorial power and are read as n to the r rising
and n to the r falling , respectively.

Remark 1.2. Notice that

nr =
n!

(n� r)!
.

The notation of the rising and falling factorial power is due to [GKP98]
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Definition 1.3 (The set of bits).
B , { 0, 1 }.

2. Cardinality: Finite and Infinite Sets

Numbers such as integers or reals are infinitely many. Then how do you represent them in comput-
ers? The number of bits in a register of a typical computer is usually 32 bits. Therefore the number of
di↵erent bit patterns that can be obtained using 32-bit is 232. This is a quite big number but clearly
not big enough to represent integers.

The real numbers are represented in computer by means of floating point arithmetic but we have
the same representation problem since the set of real numbers is also infinite.

Do we really have the same problem?

Definition 2.1. Let A and B be sets. A and B are said to be of the same cardinality , denoted

by |A | = |B | , � ! There is a bijection from A to B.

Definition 2.2. In
m

, {m,m+ 1, . . . , n } where m,n 2 Z and m  n.

Definition 2.3. A set A is called finite
� ! A has the same cardinality of In1 for some n 2 N,

or A = ;.

Notation 2.1. The cardinality of Z+ is denoted by @0, read as aleph null. That is, @0 , |Z+ |.

Definition 2.4. A set A is called countable
� ! A is finite or A has the same cardinality of Z+.

Definition 2.5. A set A is called uncountable
� ! A is not countable.

Example 2.1 (Hilbert’s Hotel). Infinite sets have unintuitive properties. Hilbert provide a very
nice story about a hotel with countably infinite rooms. Suppose the hotel is completely full and the
o�cer at the reception is good in mathematics.
One person arrives. The receptionist asks every person in room number k to move the the room
number k + 1. By doing that the room number 1 becomes empty and the new comer gets it.
This time countably infinite group of people arrives. The receptionist asks every one in room number
k to move the the room number 2k. By doing so all the rooms with odd numbers become empty. So
the kth person of the new group gets the room with number 2k + 1.

Theorem 2.1. |N | = @0.

Proof. Define f : N ! Z+ such that f(n) = n+ 1. Since f is a bijection (left as exercise), |N |
=|Z+ | . ⇤

Theorem 2.2. |E | = @0 and |O | = @0 where E,O are even and odd natural numbers, respectively.

Proof. Define f : N! E such that f(n) = 2n and g : N! O such that g(n) = 2n+ 1. Since f
and g are bijections (left as exercise), |E | =|N | and |O | =|N | . ⇤

Theorem 2.3. |Z� | = @0.

Proof. Define f : Z+ ! Z� such that f(n) = �n. Since f is a bijection (left as exercise), |Z� |
=|Z+ | . ⇤

Theorem 2.4. |Z | = @0.

Proof. Define f : N! Z such that

f(n) =

8
><

>:

�k, n = 2k, k 6= 0, k 2 N
0, n = 0

k, n = 2k + 1, k 2 N.

Since f is a bijection, |Z | =|N | . ⇤

Theorem 2.5. |Q+ | = @0.
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Proof.

# q ! p 1 2 3 4 5 6 · · ·
1 1

1
1
2

1
3

1
4

1
5

1
6 · · ·

2 2
1

2
2

2
3

2
4

2
5

2
6 · · ·

3 3
1

3
2

3
3

3
4

3
5

3
6 · · ·

4 4
1

4
2

4
3

4
4

4
5

4
6 · · ·

5 5
1

5
2

5
3

5
4

5
5

5
6 · · ·

6 6
1

6
2

6
3

6
4

6
5

6
6 · · ·

· · · · · · · · · · · · · · · · · · · · · · · ·
Define f : N! Q+ such that f(n) =?1. Since f is a bijection, |Q+ | = |N |. ⇤
Theorem 2.6. |Q | = @0.

Proof. Let f : Z+ ! Q+ be a bijection. There is such a bijection since |Z+ | = |Q+ |. Define
q : Z! Q using f : Z+ ! Q+ as

q(z) =

8
><

>:

�f(z), �z 2 Z+

0, z = 0

f(z), z 2 Z+.

Since q is a bijection, |Q | = |Z |. ⇤
Summary 2.1. @0 = |Z+ | = |N | = |E | = |O | = |Z | = |Z� | = |Q |.
Remark 2.1. So far it seems that there is only one kind of infinity, that is @0. Note that these

sets are countable, that is, there is a bijection from N to them.

Theorem 2.7 (Cantor’s diagonalization).
| [0, 1) | 6= @0 where [0, 1) = {x 2 R | 0  x < 1 }.

Proof. Assume that | [0, 1) | = @0. Then we can make a list of elements of [0, 1). All the real
numbers in [0, 1) have the decimal expansion of the form 0.d1d2d3 . . . . Let x

k

2 [0, 1) be the kth real
number in the list. Construct a new real number y in such a way that the kth digit of y would be
di↵erent that the kth digit of the x

k

. y is in [0, 1) since its decimal expansion is in the proper form.
Yet, y is not in the list because for every k, y is di↵erent than x

k

in the kth digit since its kth digit is
di↵erent than d

k

. This contradicts the assumption that such a list can be made. If such a list cannot
be made that the set [0, 1) is not countable. ⇤

Remark 2.2. The set [0, 1) is uncountable. Note that the interval [0, 1) contains rational numbers
such as 1/2 as well as irrational numbers such as ⇡/4 or

p
2/2. The rational numbers have repeating

patterns in the decimal expansion where as irrational numbers do not.

2.1. Hierarchy of Infinities. It seems that there is one type of infinity which is @0. Cantor
showed that there are actually infinitely many infinities.

Theorem 2.8 (Cantor’s Theorem). Let A be a set. Then |A| 6= |2A|.
In other words “No set is the same size as its power set”.
We show that mapping f from A to 2A is not a surjection, therefore f is not a bijection.

Suppose f : A �! 2A. Define B = {x 2 A | x /2 f(x)}. Clearly B ✓ A. This means B 2 2A.
We claim that 8x 2 A f(x) 6= B, that is B /2 f(A). If the claim is correct, that means f cannot

map into B. Hence f is not a surjection. Therefore f cannot be a bijection.
There is no bijection from A to 2A. Therefore |A| 6= |2A|.

Theorem 2.9. 8x 2 A f(x) 6= B, that is B /2 f(A).

Proof. Suppose 9b 2 A f(b) = B. Ask if b 2 B?

i) b 2 B case: By definition of B, b /2 f(b). Since f(b) = B, we have b /2 B. Contradiction.
ii) b /2 B case: Since f(b) = B, this means b /2 f(b). This means b 2 B since B is defined so.

Contradiction.

So we obtain b 2 B , b /2 B. This contradiction means ¬9b 2 A f(b) = B. That is 8b 2 A f(b) 6= B.
The theorem is proved. ⇤

1How to define this function?
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Remark 2.3. Using the Theorem 2.8 we can obtain infinitely many infinities based on N. Let
N0 = N. Then |2N| 6= |N|. We can extend this as follows:

Define
N1 = 2N0

N2 = 2N1

. . .
. Then

|N1| 6= |N0|
|N2| 6= |N1|
. . .

.

Remark 2.4. The set of real numbers also produces an other chain of infinities as follows: Let
R0 = R. Then |2R| 6= |R|. We can extend this as follows:

Define
R1 = 2R0

R2 = 2R1

. . .
. Then

|R1| 6= |R0|
|R2| 6= |R1|
. . .

.

Question 2.1. Are the hierarchies of N0, N1, . . . and R0, R1, . . . related or di↵erent?

3. The Number of Ways

Suppose there are n1 ways to go from A to B and n2 ways to go from C to D.

� ))
A n1

))
5555
B

(( � � ))
C n2

))
5555
D

(( � .

3.1. The Product Rule.

Remark 3.1. Let A and B be finite sets where |A | = ↵ and |B | = �.

Theorem 3.1 (The Product Rule).
Suppose A� B and C �D are connected in serial. The number of di↵erent ways to go from ⇤ to 4
is n1 ⇥ n2.

⇤ ))
A n1

))
5555
B

(( � ))
C n2

))
5555
D

)) 4 .

Theorem 3.2 (The number of elements of cartesian product).
Let A be finite set. Then |An | = |A |n.

Proof. By induction on n using the product rule. ⇤
Corollary 3.3 (The number of bit strings of length n).

Let Bn be the the set of bit strings of length n where B = { 0, 1 }. Then |Bn | = 2n.

Theorem 3.4 (The number of truth tables).
There are 22

n
di↵erent truth tables for propositions in n variables.

Proof. There are 2n rows in a truth table of n variables. For each row, one can assign two
choices, namely F or T. Hence there are 22

n
di↵erent assignments. ⇤

The following theorem will be proved in steps.

Theorem 3.5 (The number of various type of functions).

The number of

functions
injections
surjections
bijections
partial functions

from A to B is

�↵

�↵

?
�!
(� + 1)↵

.
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Proof. The number of functions from A to B, that is
��BA

�� = |B ||A |.
Since A is finite, the elements of A can be listed as (a1, a2, . . . , a↵). Use this ordering of elements:

For

a1 2 A
a2 2 A
. . .
a
↵

2 A

, there are

�
�
. . .
�

di↵erent choices for

f(a1) 2 B
f(a2) 2 B
. . .
f(a

↵

) 2 B

.

By product rule, there are �� . . .� = �↵ di↵erent ways. ⇤

Proof. The number of injections from A to B is �↵.
If |A | > |B |, then there is no injection from A to B. So consider the case of |A |  |B |. Since A is
finite, the elements of A can be listed. Use this ordering of elements:

For

a1 2 A
a2 2 A
. . .
a
↵

2 A

, there are

� � 0
� � 1
. . .
� � (↵� 1)

di↵erent choices for

f(a1) 2 B
f(a2) 2 B
. . .
f(a

↵

) 2 B

.

By product rule, there are (� � 0)(� � 1) . . . (� � (↵� 1)) = �↵ di↵erent ways. ⇤

Example 3.1. A common approach to counting is to define a bijection to a set whose cardinality
is already known.

We prove that the number of bit strings of length n is |Bn | = 2n by defining a bijection to
B{ 1,2,...,n } whose cardinality is 2n. Consider the set B{ 1,2,...,n } of functions from { 1, 2, . . . , n } to B.
Define a function

f : B{ 1,2,...,n } ! { 0, 1 }n

g 7! (b1, b2, . . . , bn)

where g 2 B{ 1,2,...,n } and b
i

= g(i), i 2 { 1, 2, . . . , n }.
f is a bijection (proof?). Therefore

|Bn | =
���B{ 1,2,...,n }

��� = |B || { 1,2,...,n } | = 2n.

Remark 3.2. IPv4 is the currently used protocol for the Internet in which every device on the
Internet should have a unique ID. IPv4 uses 32-bit IDs which is usually written as four numbers
separated by dots as in the case of 127.0.0.1. Therefore 232 devices can be connected to the Internet
at a given time. Although it is a very big number, it is not big enough for the demand of the future.
IPv6 is planned to use 128-bit ID’s.

Theorem 3.6 (The number of subsets).
Let A be a finite set. Then

�� 2A
�� = 2|A | = 2↵.

Proof. Use ↵-tuple (a1, a2, . . . , a↵) of A. Define a function

f : 2A ! B↵

A 7! (b1, b2, . . . , b↵)

where A 2 2A and b
i

=

(
1, a

i

2 A,

0, a
i

/2 A.
.

f is a bijection (proof?). Therefore
�� 2A

�� = |B↵ | = 2↵ = 2|A |. ⇤

Theorem 3.7. Let A1, A2, . . . , An

be finite sets. Then |A1 ⇥A2 ⇥ . . .⇥A
n

| = |A1 | |A2 | · · · |An

|

3.2. The Sum Rule.

Theorem 3.8 (The Sum Rule).
Suppose A�B and C �D is connected in parallel. The number of di↵erent ways to go from ⇤ to 4
is n1 + n2.
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� ))
A n1

))
5555
B

(( �

��⇤ (( �

88

&&

� ** 4

� ))
C n2

))
5555
D

(( �

HH

Theorem 3.9. Let A1, A2, . . . , An

be finite disjoint sets. Then

|A1 [A2 [ . . . [A
n

| = |A1 |+ |A2 |+ . . .+ |A
n

| .

Example 3.2. Suppose a computer system requires a password which is 6 to 8 characters long,
where each character is an uppercase letter or a digit. Each password must contain at least one digit.

How many di↵erent passwords are there?
Ans. Let P denotes the total number of passwords. Let P6, P7, P8 denote the number of passwords

of length 6, 7, 8, respectively. By sum rule P = P6 + P7 + P8.

P6 = | { all strings of letters and digits of length 6 } |� | { all strings of letters of length 6 } |

=
��� {A,B, . . . , Z, 0, 1, . . . , 9 }6

����
��� {A,B, . . . , Z }6

���

= (26 + 10)6 � 266

= 366 � 266.

Similarly P7 = 367 � 267 and P8 = 368 � 268. Then

P = P6 + P7 + P8 = 366 � 266 + 367 � 267 + 368 � 268 = 366(1 + 36 + 362)� 266(1 + 26 + 262).

3.3. The Inclusion-Exclusion Rule. Suppose A � B and C � D is connected in parellel but
n3 of ways from A to B are common ways from C to D. The number of di↵erent ways to go from ⇤
to 4 is n1 + n2 � n3.

� ))
A n1

))
5555
B

(( �

��⇤ (( �

88

&&

(( � (( � n3
((
6666 �

(( � (( � ** 4

� ))
C n2

))
5555
D

(( �

HH

Theorem 3.10. Let A1 and A2 be finite sets. Then

|A1 [A2 | = |A1 |+ |A2 |� |A1 \A2 | .

Example 3.3. What is the number of 8-bit strings starting with 1 or ending with 00. Let A =�
(b1, b2, . . . , bn) 2 B8 | b1 = 1 _ (b

n�1 = 0 ^ b
n

= 0)
 
. A is the set of 8-bit strings starting with 1

or ending with 00.
| A | =?

Ans. Let
A1...

A
...00

A1...00

be the 8-bit strings
starting with 1
ending with 00
starting with 1 and ending with 00

.

Then | A | = |A1... [A
...00 | = |A1... |+ |A

...00 |� |A1... \A
...00 | where A1... \A

...00 = A1...00.
|A1... | =

��B8�1
�� = 27, |A

...00 | =
��B8�2

�� = 26 and |A1...00 | =
��B8�3

�� = 25.
Therefore | A | = |A1... |+ |A

...00 |� |A1...00 | = 27 + 26 � 25 = 25(22 + 21 � 1).
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Table 1. Summary of Counting Methods

ordered unordered

with repetition nr

�
n+r�1

r

�

without repetition P(n, r) = n!
(n�r)! = nr

�
n

r

�
= P(n,r)

r! = n!
(n�r)!r! =

n

r

r!

Theorem 3.11. Let P be the set of partial functions from A to B. Then | P | = (� + 1)↵.

Proof. Let B = B[{ b0 } where b0 /2 B. Let p 2 P. Define setA
p

= { a 2 A | p(a) is not defined }.
Then define function p⇤ : A! B such that

p⇤(a) =

(
p(a), a 2 A\A

p

,

b0, a 2 A
p

.

Note that p⇤ is a function. Then define function f as

f : P ! BA

p 7! p⇤

f is a bijection (proof ?). Hence | P | =
��BA

�� = | B ||A | = (� + 1)↵ ⇤

4. The Pigeonhole Principle

Theorem 4.1 (The Pigeonhole Principle).
If k + 1 or more objects are placed into k boxes, then there is at least one box containing 2 or more
objects.

Theorem 4.2. Among any n+ 1 positive integers not exceeding 2n, there must be an integer that
divides one of the other integers.

Theorem 4.3 (The Generalized Pigeonhole Principle).
If n objects are placed into k boxes, then there is at least one box containing at least dn/k e objects.

Theorem 4.4. Let A and B be finite sets and f : A ! B be a function. If |A | > |B |, then f
cannot be an injection.

Proof. Assume that f is an injection. Then f maps each a 2 A into di↵erent b 2 B. Since
|A | > |B | by pigeonhole principle, 9a1, a2 2 A [f(a1) = f(a2) = b] for some b 2 B. Hence f cannot
be injective. ⇤

Example 4.1. Let A
i

= (x
i

, y
i

) i = 1, 2, . . . , 5 be a set of five distinct points with integer coordi-
nates in the xy-plane.

Show that the midpoints of the line joining at least one pair of these points have integer coordinates.

Ans.
⇣
xi+xj

2 , yi+yj

2

⌘
is the coordinate of the mid point of A

i

and A
j

. Notice that in order to have

its coordinates integer, x
i

+ x
j

and y
i

+ y
j

should be both even. For (x
i

, y
i

) pair there are four boxes,
these are (O,O), (O,E), (E,O), (E,E) where E and O represent even and odd numbers, respectively.
Since there are five points, by the pigeonhole principle, two of them should be in the same box. Take
these two points. Their mid point has integer coordinates since x

i

+ x
j

and y
i

+ y
j

are even numbers.

5. Counting Methods: Permutation, Combination and Others

Many counting problems can be put into the following form:
There are n objects. Select r of them (r  n). Then the result depends on the following questions

as given in Table 1:
i. Can an item be reselected? That is, is repetition allowed?
ii. Is order of items important?

Definition 5.1. Let A be any finite set. A permutation � of A is a bijection from A to itself.

Remark 5.1. If |A | = n, then it is represented as

� =

✓
a1 a2 · · · a

n

a
i1 a

i2 · · · a
in

◆
=
�
a
i1 a

i2 · · · a
in

�

where f(a
j

) = a
ij with i, j, i

j

2 { 1, . . . , n }.
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Definition 5.2. The number of distinct subsets with r elements that can be chosen from a set
with n elements is called binomial coe�cient , denoted by

�
n

r

�
, and is pronounced “n choose r”.

Theorem 5.1. For n, r 2 N, the binomial coe�cients satisfy the following recurrence relation:

i. ✓
n

0

◆
=

✓
n

n

◆
= 1

ii. ✓
n

r

◆
=

✓
n� 1

r

◆
+

✓
n� 1

r � 1

◆
for 0 < r < n.

Remark 5.2. Note that Theorem 5.1 leads to the famous Pascal’s triangle.
1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 1 1
2 1 2 3 4 5 6 7 8 9
3 1 3 6 10 15 21 28 36
4 1 4 10 20 35 56 84
5 1 5 15 35 70 126
6 1 6 21 56 126
7 1 7 28 84
8 1 8 36
9 1 9

10 1
The numbers in the first column are the natural numbers. The numbers in the second and the third

columns are called the triangular and tetrahedral numbers, respectively. The nth triangular number
is simply the sum of the first n integers. The tetrahedral numbers are the sums of the triangular
numbers.

History of binomial coe�cients and Pascal’s triangle goes way back than Pascal. The Pythagoreans
considered the triangular numbers around 540 BC. The Greek mathematicians investigated tetrahedral
numbers at the beginning of 200 BC. The binomial numbers as coe�cients of (a + b)n appeared in
the works of mathematicians in China around 1100. Hindu mathematicians began to encounter the
binomial coe�cients in combinatorial problems in 1150s. Pascal puts his triangle in 1665.

Theorem 5.2. For n, r 2 N and r  n,
✓
n

r

◆
=

n!

(n� r)!r!
=

nr

r!
.

Theorem 5.3. ✓
n

r

◆
=

✓
n

n� r

◆
.

Example 5.1. Let A be a set with n elements. We want to count the number of distinct subsets
of the set A that have exactly r elements.

Example 5.2. Consider A = { a, b, c, d, e }.
i. How many di↵erent words of length 3?

Ans. 5⇥ 5⇥ 5 = 53 = 125. Note that each f 2 A{ 1,2,3 } give a di↵erent word.
ii. How many di↵erent words of length 3 if no letter is allowed to repeat?

Ans. 5 ⇥ 4 ⇥ 3 = 53 = 60. Note that each f 2 A{ 1,2,3 } where f is an injection gives a di↵erent
word.

iii. How many di↵erent words of length 3 if the order of letters is not important?
Ans. There are 53 words with order. Each letter combination is counted 3! = 6 times. So
53

3! =
�5
3

�
= 10

iv. How many di↵erent words of length 3 if letters are allowed to repeat but the order of the letters
is not important?
Ans.
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aaa bbb ccc ddd eee 1234567
3 - - - - 0001111
2 - 1 - - 0011011
- 1 - 1 1 1011010
2 1 - - - 0010111

Notice that problem is equivalent to selecting 3 balls out of 5 di↵erent boxes. Hence
�5+3�1

3

�
.

Example 5.3. How many bit strings of length n contains exactly r 1’s?
Ans. r positions out of n positions are selected and set to 1. The remaining n � r positions are

set to 0. The order of r positions is not important. So
�
n

r

�
.

Example 5.4. How many ways are there for 8 men and 5 women to stand in a line so that no two
women stand next to each other, given that all the women are identical, as well as the men?

Ans. There are 9 positions separated by men so that no two women stand next to each other. So�9
5

�
= 126.

men 1 2 3 4 5 6 7 8
women 1 2 3 4 5 6 7 8 9

Example 5.5.
i. How many solutions does the equation x1 + x2 + x3 = 11 have, where x1, x2, x3 2 N?

Ans. Note that since 1+ 1+1+1+1+1+1+1+1+1+1 = 11 the pattern 11/1111/11111
which corresponds to 2+4+5 is a solution. So the number of solutions is

�11+3�1
2

�
.

ii. The same question with constraint x1 � 1, x2 � 2, x3 � 3?
Ans. Pick 1 of type 1, 2 of type 2, and 3 of type 3. Then there are additional 5 selections out

of 3 item types. So
�5+3�1

5

�
.

Example 5.6. How many ways are there to place 10 indistinguishable balls into 8 distinguishable
bins? (Consider atoms. Electrons are indistinguishable. The energy levels of an atom are distinguish-
able.)

Ans. Rephrase the problem as 10 balls and 7 separators. So
�10+8�1

7

�
.

Example 5.7. Suppose that S is a set with n elements. How many ordered pairs (A,B) are there
such that A and B are subsets with A ✓ B?

Ans. {A,BrA,SrB } is a partition of S. So any a 2 S should belong to one of them. Since S
is finite, one can list its elements as (s1, s2, . . . , sn). Let

b
i

=

8
><

>:

0, s
i

2 A,

1, s
i

2 BrA,

2, s
i

2 SrB.

Then for any (b1, b2, . . . , bn) 2 { 0, 1, 2 }n, define A = { s
i

| b
i

= 0 } and B = { s
i

| b
i

= 0 _ b
i

= 1 },
hence A ✓ B. Notice that we define a bijection between the set of ternary n-tuples { 0, 1, 2 }n) and
our set of (A,B) pairs. So the number is equal to the number of ternary n-tuples, that is 3n.

6. Supplementary Materials

6.1. Some Useful Sequences. A great source of sequences is so called The On-Line Encyclo-
pedia of Integer Sequences (OEIS) [Slo09]) available at https://oeis.org/. It is a catalog of more than
150000 sequences. It is a great source for combinatorics.

Definition 6.1. The Stirling number , S(n, k) is the number of ways to partition a set of cardinality
n into exactly k nonempty subsets.

Definition 6.2. The nth Bell number , B
n

is the number of partitions of a set with n members,
or equivalently, the number of equivalence relations on it. (Sequence A000110 in [Slo09]). It is named
in honor of Eric Temple Bell.

6.2. Approximations for n! and
�
n

r

�
. There is no closed form of n!. Therefore calculating n!

for large n is not easy. It takes too much computation. Some approximations are usually used instead.

https://oeis.org/
https://oeis.org/A000110
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6.2.1. Approximations for n!. Stirling provided an approximation for n! in 1730. Stirling’s ap-
proximation is quite good for n � 1 [Rei67, Mac03]. Even as small values as n = 10, the error is
less than 1%.

n! = 1⇥ 2⇥ · · ·⇥ n

lnn! = ln 1 + ln 2 + · · ·+ lnn

⇡
Z

n

1
lnx dx = [x lnx� x|n1 = n lnn� n+ 1

⇡ n lnn� n

n! ⇡ en lnn�n = elnn

n
e�n = nne�n.

With the next order of correction, it is:

n! ⇡ nne�n

p
2⇡n

lnn! ⇡ n lnn� n+
1

2
ln(2⇡n).

A better approximation is:

p
2⇡n

⇣n
e

⌘
n

e1/(12n+1) < n! <
p
2⇡n

⇣n
e

⌘
n

e1/12n.

6.2.2. Approximations for
�
n

r

�
. Using approximations for n!,

�
n

r

�
is obtained:

✓
n

r

◆
=

n!

(n� r)!r!

ln

✓
n

r

◆
= lnn!� ln(n� r)!� ln r!

⇡ n lnn� n

� ((n� r) ln(n� r)� (n� r))

� (r ln r � r)

= n lnn� (n� r) ln(n� r)� r ln r

= lnnn � ln(n� r)(n�r) ln rr

= ln
nn

(n� r)(n�r)rr
.

log2

✓
n

r

◆
= log2

nn

(n� r)(n�r)rr

= log2
n(n�r)

(n� r)(n�r)

nr

rr

= log2

✓
n

n� r

◆
n�r

+ log2
⇣n
r

⌘
r

= (n� r) log2
n

n� r
+ r log2

n

r

= n

✓
(n� r)

n
log2

n

n� r
+

r

n
log2

n

r

◆

= n

 
(n� r)

n
log2

1
(n�r)

n

+
r

n
log2

1
r

n

!

= n

 ⇣
1� r

n

⌘
log2

1�
1� r

n

� + r

n
log2

1
r

n

!

= nH2

⇣ r
n

⌘
.
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where the binary entropy function, H2 (x), is given as

H2 (x) = �x log2 x� (1� x) log2(1� x)

= x log2
1

x
+ (1� x) log2

1

(1� x)
.

Acknowledgment. These notes are based on various books but especially [Ros07].

Problems with Solutions

P 10.1. Suppose that S is a set with n elements. How many ordered pairs (A,B) are there such
that A and B are subsets of S with A ✓ B? [Hint: Show that each element of S belongs to A,BrA,
or SrB.]

Solution.
Let A and B subsets of S with A ✓ B.

8s 2 S [s 2 S] tautology

,8s 2 S [(s 2 B) � (s 2 S �B)] since B ✓ S

) S = B [ (S �B)

and B \ (S �B) = ;
,8s 2 S [((s 2 A) � (s 2 B �A)) � (s 2 S �B)] since A ✓ B

) B = A [ (B �A)

and A \ (B �A) = ;
Hence, for every s 2 S there are three mutually disjoint alternatives: s belongs to either A or BrA,
or SrB. Since the choice for di↵erent elements are independent from each other, the result can be
found by the rule of product. The number of ordered pairs is

3 · 3 · · · · · 3| {z }
n times

= 3n.

P 10.2. Show that a subset of a countable set is also countable.

Solution.

Let A ✓ B. If A is finite by definition it is countable.
Suppose A is infinite. We define a bijection from N to A as follows: Since B is countable there

is a bijection from N to B. Using this bijection we can make a list of elements of B. Use this list,
drop all elements that are not in A. This will be a new list which contains only the elements of A.
Define a function f : N! A as f(n) 7! a

n

where a
n

is the nth elements of A in the new list. This is
a bijection since for any n 2 N there is a unique a

n

2 A. and vice versa.

P 10.3.

Definition 6.3. A function f : A! A is said to have a fixed point if there exists x 2 A such that
f(x) = x.

Let A = {1, 2, . . . , n} for some n 2 N. How many one-to-one functions f : A ! A have at least
one fixed point?

Solution.

The number of one-to-one functions, which have at least one fixed point, can be computed by
subtracting the number of one-to-one functions, which does not have any fixed points, from the
number of all one-to-one functions.

The number of all one-to-one functions f : A! A is n!
A function which does not have any fixed point is a derangement. The number of derangements

of a set with n element is D
n

where:

D
n

= n!


1� 1

1!
+

1

2!
� 1

3!
+ ....+ (�1)n 1

n!

�
.
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Hence the answer is n!�D
n

P 10.4. Show that a subset of a countable set is also countable.

Solution.
Let A be a countable set and B be a subset of A.
i) If A is finite, then B should be finite too since |B|  |A|. Hence B is countable.
ii) If A is not finite, then there exists a bijection f : A �! N. If B is finite, it is countable. For infinite
B we can list its elements as follows:

b1 = f�1 (min{ f(b) | b 2 B })
b2 = f�1 (min{ f(b) | b 2 B � {b1} })
b3 = f�1 (min{ f(b) | b 2 B � {b1, b2} })
... = .......

b
n

= f�1 (min{ f(b) | b 2 B � {b1, b2, ....., bn�1} })
This is equivalent to saying that we are listing B’s elements in the same order as they are listed by f .
Hence, B is countable.



CHAPTER 11

Recurrence

1. Motivation

2. Recurrence Equations

Problems with Solutions

P 11.1. Markov chains are powerful models that are often used in Computer Science. In one
application of Markov models is the population dynamics where there are two types A and B in
competition with populations n

A

and n
B

where the total population n
A

+ n
B

is constant. So if type
A increases by one, type B should decrease by one. Then, the state i of the system can be represented
by the population of A, that is, i = n

A

. Hence there are N + 1 states represented by 0, 1, · · · , N .
If the system is in state i, then it moves to state i � 1 and i + 1 with probabilities p

i,i�1 and p
i,i+1,

respectively. Then with probability 1� (p
i,i�1+ p

i,i+1) it stays in i. The states 0 and N are absorbing
states. When the system gets in one of these, there is no way to leave them, i.e. p0,1 = p

N,N�1 = 0
and p0,0 = p

N,N

= 1.
Assuming p

i,i�1 = p
i,i+1 = a, one obtains the following recurrence equation:

x0 = 0,
x
i

= ax
i+1 + (1� 2a)x

i

+ ax
i�1, 8i 0 < i < N,

x
N

= 1.

Solve this recurrence relation.

Solution.
The characteristic equation of x

i

= ax
i+1 + (1� 2a)x

i

+ ax
i�1 is ar2 � 2ar + a = 0. ar2 � 2ar + a =

a(r2 � 2r + 1) = a(r � 1)2. Since r = 1 is the root with multiplicity 2, the solution would be
x
i

= (�0 + �1i)ri = �0 + �1i.
Use boundry conditions to find the values of �0 and �1.
x0 = 0 = �0 + �10 = �0. So �0 = 0.
x
N

= 1 = �0 + �1N = �1N . So �1 = 1/N .
Finally, the solution is x

i

= i/N for i = 0, 1, . . . , N .

P 11.2. Let { a
n

} and { b
n

} be two sequences whose terms are coupled as

a
n+1 = ↵1an + �1bn

b
n+1 = ↵2an + �2bn

where ↵1,↵2,�1,�2 2 R and � = ↵1�2 � ↵2�1 6= 0.
Solve a

n

and b
n

when a0 = C and b0 = D.

Solution.
The degenerated case is when ↵2 = 0 and �1 = 0. In this case the sequences are not coupled and they
are solved separately. That is, a

n

= C↵n

1 and b
n

= D�n2 .
Consider the non-degenarated case. Assume �1 6= 0. Then

b
n

=
1

�1
(a

n+1 � ↵1an)(1)

b
n+1 =

1

�1
(a

n+2 � ↵1an+1).(2)

81
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Substituting b
n

and b
n+1 into the second relation, we obtain

0 = b
n+1 � ↵2an � �2bn

) 0 =
1

�1
(a

n+2 � ↵1an+1)� ↵2an �
�2
�1

(a
n+1 � ↵1an)

) 0 = (a
n+2 � ↵1an+1)� �1↵2an � �2(an+1 � ↵1an)

) 0 = a
n+2 + (�↵1 � �2)an+1 + (�↵2�1 + ↵1�2)an

Let A1 = �↵1 � �2 and A0 = �↵2�1 + ↵1�2. Then a
n+2 + A1an+1 + A0an = 0. By change of index

a
n

+ A1an�1 + A0an�2 = 0. Use characteristic root technique to solve a
n

. Once a
n

is obtained as
a
n

= f(a
n�1, an�2), use Eq 1.
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CHAPTER 12

Graphs

1. Introduction

Graph is a very powerful representation used in many disciplines including Computer Science,
Management, Physics and of course Mathematics. Interactions, relations of objects are usually repre-
sented by a graph.

On the other hand, graphs are used for social entertainment. Remember questions such as “can
you draw this without removing your pencil from the paper” as in Fig. 1.

Example 1.1. Consider www, web pages and links. A web page has links to other web pages.
A web page a can have many links to page b but there may be no link from b to a. Your web page
probably have a link to google.com but you would be very lucky if home page of google.com has a link
to your web page.

A web page can have a link to an item in itself. Long web pages have internal links to headings
in it.

2. Graphs

Definition 2.1 (Multigraph).
A Multigraph G = (V,A,' ) consists of a nonempty set V of vertices, a set A of arcs and a function
' : A! V ⇥ V

Remark 2.1.
• V is nonempty but A could be empty. So, a single vertex with no arcs is the most simple graph.
• arcs will be denoted by Greek letters.

• arc �!↵ =
���!
(u, v) if '(�!↵ ) = (u, v).

• Function ' is in general not an injection. So it is possible that '(�!↵
i

) = '(�!↵
j

) = (u, v) for �!↵
i

6= �!↵
j

.

Hence, two vertices can be connected more than once, and therefore
���!
(u, v) representation of arcs

becomes ambiguous.

Definition 2.2 (Multiplicity).
Multiplicity of (u, v) ,

��'�1((u, v))
��.

Definition 2.3 (Simple Graph).
A simple graph is a multigraph G = (V,A,' ) such that ' is an injection.

Figure 1. Envelope

85



86 12. GRAPHS

Remark 2.2. Multiplicity of any ordered pair (u, v) is at most 1. Therefore (u, v) is su�cient to
denote the arc. Hence a simple graph can be represented as G = (V,') where ' is a relation on V .

Remark 2.3. A multigraph G can be represented as G = (V,') where V is the vertex set,
' : V ⇥ V ! N is the function expressing the multiplicity of (v1, v2).

Example 2.1.

v1

�!
↵1

ss

�!
↵3 ''�!

↵5ww

�!
↵6

⌥⌥
v2

�!
↵4

33 v3

�!
↵2

gg

v4 �!
↵7

++ v5

2

66664

1 2 1 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 0 0

3

77775

path: ����!↵1↵3↵2

simple path: ������!↵4↵2↵1↵5

elementary path: ���!↵6↵4

circuit: ���!↵3↵2

loop: �!↵1
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Definition 2.4 (Path).

Let G = (V,A,' ) be a multigraph. Given an arc
���!
(u, v) 2 A, u is called the origin, v is called terminus.

A path P of G is a sequence of arcs �!↵0
�!↵1 . . . such that for every pair, �!↵

i

,��!↵
i+1, the origin of ��!↵

i+1 is
the terminus of �!↵

i

.

Definition 2.5.

A path which does not traverse the same
arc
vertex

twice is called
a simple path.
an elementary path.

Definition 2.6. Circuit is a finite path such that the origin of the first one coincides with the
terminus of the last.

Definition 2.7. Simple circuit is a circuit which is a simple path.

Question 2.1. Define elementary circuit.

Definition 2.8. The number of arcs in a finite path is called the order of the path.

Definition 2.9. A circuit of order 1 is called loop.

2.1. Reachability and Strong-Connectedness.

Definition 2.10. v is said to be reachable from u 2 G = (V,A,' )
� ! u = v or there is a path

from u to v.

Definition 2.11. Simple graph G⇤ associated with G is the simple graph obtained by eliminating
all but one of the arcs if the multiplicity is more than 1.

Remark 2.4.
i. Connection array M

G

⇤ of G⇤ has only 0s and 1s.
ii. [M

G

⇤ ]
ij

= 1 means there is an arc from v
i

to v
j

.

Definition 2.12. Power of a relation on A.

⇢k =

(
⇢⇢k�1 k > 1,

⇢ k = 1.

Remark 2.5.
• M

⇢

k+1 = M
⇢

M
⇢

k = (M
⇢

)k+1

• ⇢⇢k = ⇢k⇢

Theorem 2.1. Let G = (V, ⇢ ) be a simple graph describing ⇢.
There is a path of order n from u to v  ! (u, v) 2 ⇢n.

Remark 2.6. Given a simple graph G = (V, ⇢ ), the array (M
⇢

)k describes the relation on V :
“there is at least one path of order exactly k”. In other words, [(M

⇢

)k]
ij

= 1  ! there is at least
one path of order k from v

i

to v
j

.

Reachability for G⇤ = (V, ⇢ ) can be obtained by Algorithm 2 where |V | = n.

Algorithm 2: Reachability

/* reachability for G⇤ = (V, ⇢) */

/* where |V | = n */

1 begin
2 M(G) M

⇢

+ I
3 for k = 2 to n� 1 do
4 M(G) M(G) +M

⇢

k

5 end
6 end



88 12. GRAPHS

Definition 2.13. G is a multigraph and G⇤ is the associated simple graph.
The reachability array M(G) of G is defined as

[M(G)]
ij

=

(
1, 9k for which [M

⇢

k ]
ij

= 1 where 1  k  n� 1,

0, otherwise.

Remark 2.7. [M(G)]
ij

= 1  ! there is a path from v
i

to v
j

in G.

Definition 2.14. A multigraph is said to be strongly connected
� ! there is a path from v

i

to
v
j

for all v
i

, v
j

2 V .

Definition 2.15. G = [V,A,'] is a multigraph, {V1, V2 } dichotomy of V . The set of arcs from
vertices of V1 to vertices of V2 is called the cut-set of G relative to the dichotomy {V1, V2 }.

Example 2.2.

a)Is it strongly connected? No, there is no way to v1.

v1
1

~~ 2 ''

3

⇠⇠
v2 4

//

5

33

6   

v4
8

ss

9

~~ 10ww
v3

7

YY

M
G

⇤ =

2

664

0 1 0 1
0 0 0 1
0 1 0 0
0 1 1 0

3

775

M(G) = M
G

⇤

M
G

2 =

2

664

0 1 0 1
0 0 0 1
0 1 0 0
0 1 1 0

3

775 _

2

664

0 1 0 1
0 0 0 1
0 1 0 0
0 1 1 0

3

775

2

664

0 1 0 1
0 0 0 1
0 1 0 0
0 1 1 0

3

775

=

2

664

0 1 0 1
0 0 0 1
0 1 0 0
0 1 1 0

3

775 _

2

664

0 1 1 1
0 1 1 0
0 0 0 1
0 1 0 1

3

775 =

2

664

0 1 1 1
0 1 1 1
0 1 0 1
0 1 1 1

3

775

M
G

3 =

2

664

0 1 1 1
0 1 1 1
0 1 0 1
0 1 1 1

3

775 _

2

664

0 1 0 1
0 0 0 1
0 1 0 0
0 1 1 0

3

775

2

664

0 1 1 1
0 1 1 0
0 0 0 1
0 1 0 1

3

775

=

2

664

0 1 1 1
0 1 1 1
0 1 0 1
0 1 1 1

3

775 _

2

664

0 1 1 1
0 1 0 1
0 1 1 0
0 1 1 1

3

775 =

2

664

0 1 1 1
0 1 1 1
0 1 1 1
0 1 1 1

3

775

M
G

⇤ = . . . =

2

664

0 1 1 1
0 1 1 1
0 1 1 1
0 1 1 1

3

775 not strongly connected.

b) use V0 = { { v1, v4 } , { v2, v3 } } as an example.
Then the cut-set relative to V0 is {↵1,↵8,↵9,↵10 }.
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q0
0/1

,,1/0
,,

q1

0/0tt

1/0

ll

q2

0/0

TT

1/1

YY

Figure 2. State transition diagram

Example 2.3.

Theorem 2.2. G = [V,A,'] is strongly connected  ! for every dichotomy {V1, V2 }, the cut-set
is non empty.

1

2.2. Application of Multigraphs.
• Graphs are used to represent state transition of finite state machines Fig. 2.
• Many data structures are represented as graphs Fig. 3, Fig. 4, Fig. 5.
• Some other systems are also represented by graphs Fig. 6.
• Computer networks
• Interconnecting networks
• Parallel architectures
• Graph algorithms

3. Undirected Graphs

If the relation is symmetric: • (( •hh ⌘ • •
Definition 3.1 (Multiple undirected graph).

A multiple undirected graph G = (V,E,' ) consists of a set V of vertices, a set E of edges and a
function ' from E to the set of unordered pairs in V .

Notation. If '(↵) =< u, v > we write (u, v).

Definition 3.2. For (u, v) 2 E, u and v are called terminals.

Definition 3.3. A chain is a sequence of edges (v0, v1)(v1, v2)(v2, v3) · · · (vn�1, vn).
A simple chain if no edge is repeated.
An elementary chain if no vertices is repeated.
A cycle if v0 = v

n

A simple cycle ⌘ simple chain + cycle.

Definition 3.4. G = (V,E,' ) is connected
� ! 8v1, v2 2 V [there is a chain between v1 and

v2].

1 @HB check
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Figure 3. Linked list

Figure 4. B-tree

Figure 5. Circular queue
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Figure 6. Flow chart

Definition 3.5. Let G be an undirected graph. The corresponding adjoint multigraph, GA, is
obtained by replacing each edge by a pair of opposite arcs.

Definition 3.6 (Subgraph).
G0 = (V 0, E0,'0 ) is called a subgraph of G = (V,E,' ) if V 0 ✓ V , E0 ✓ E and E0 consists of all the
edges in E joining vertices in V 0. If E0 is a subset of all the edges in E joining vertices in V 0, then G0

is called partial subgraph.

Definition 3.7. A component G0 of G is a connected subgraph such that no vertex in V 0 is
connected to a vertex in V \ V 0 in G.

Theorem 3.1. Let G be an undirected multigraph.
G is connected
 ! GA is strongly connected.
 ! “something similar to cut-set theorem”.
 ! G has only one component.

Theorem 3.2. A connected undirected simple graph with |V | = n � 1, must have at least n � 1
edges.

Definition 3.8. Let G = (V,E,' ) be connected. A vertex v is called a cut-point if the subgraph
obtained by deleting it is not connected.

Theorem 3.3. v is a cut-point  ! there exist vertices u and w such that every chain connecting
u and w passes through v.

Example 3.1.

a 1

2

3 4

b

5 6

c 7

12

d 8

9 10

e

13

f 11 g

h

i. A simple chain which is not an elementary
chain: 4, 9, 11, 10, 5.

ii. A simple cycle: 9, 10, 11 or 1, 6, 13, 12, 3.
iii. Is G connected? Yes.
iv. How many components does G have? 1.
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Example 3.2. Show that a finite graph with n vertices is connected  ! every pair of vertices is
connected by a chain of order  n� 1.

) part: G = [V,E,�] is connected, then there is a chain between u and v. We need to show that
the order of the chain  n� 1. Suppose the order � n. Then a vertex is repeated in the chain, hence
the chain contains a cycle. Remove the cycle. This process can be repeated until the order  n� 1.

( part: If every vertex pair is connected, then by definition G is connected.

Definition 3.9. A simple undirected graph is said to be bipartite
� ! its vertices can be

partitioned into two disjoint sets V1 and V2 so that every edge has one terminal vertex in each.

Theorem 3.4. G is bipartite  ! there is a cut-set which contains all the edges.

Proof. ) part: G is a bipartite, then use V1 and V2, each edge has one terminal in V1 and other
in V2. ) the cut-set of V1, V2 contains all the edges.
( part: All the edges in the cut-set of V1, V2 ) each edge has one terminal vertex in V1, the other in
V2. ) G is bipartite.

⇤
Remark 3.1.

a 1

b 2

c 3

d

Applications of bipartite graphs
• classical 3 house, 3 utility problem
• optimum matching problems
• heterosexual relations
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4. Path Problems

Definition 4.1. For a multigraph G:
indegree
outdegree

of a vertex v is the number of axes
terminate
originated

on v.

Definition 4.2. For an undirected multigraph G, degree of a vertex v is the number of edges
incident on v.

Definition 4.3. isolated vertex is a vertex of degree 0.

Definition 4.4. An
Eulerian chain
Eulerian cycle

in an undirected multigraph is a
chain
cycle

that uses every

edge once and only once.

Theorem 4.1. An undirected multigraph without isolated vertices has an Eulerian cycle  ! it
is connected and contains no vertices of odd degree.

Theorem 4.2. G = [V,E,'] without isolated vertices has an Eulerian chain  ! it is connected
and contains exactly two vertices of odd degrees.

Definition 4.5. An
Hamilton path
Hamilton circuit

in a multigraph is a
path
circuit

which passes through each

of the vertices exactly once.

Definition 4.6. A multigraph is complete if every point of vertices is joined by at least one arc.

Theorem 4.3. Every complete multigraph contains a Hamiltonian path.

shortest path algorithm pp77. Read 2.4.1, 2.4.2, 2.4.3

Question 4.1. G = [V,A,↵]. d+(v) = indegree(v), d�(v) = outdegree(v).
Show

P
v2V d+(v) =

P
v2V d�(v) = |A |.

Theorem 4.4. There is even number of vertices which have odd degrees in an undirected multi-
graph.

5. Planarity and Coloration

Application. Consider printed circuit boards (PCB) used in electronic devices. Legs of integrated
circuits (IC) are electrically connected by means of channels of the PCB. While channel run on PCB,
they should not cross each other. If they do, short circuits occur. So drawing channels without
crossing each other becomes an importing issue. Very same problem occurs in the integrated circuit
production. In this case electronic components such as resistors, transistors are structures on a silicon
wafer. There is channels on silicon to connect them electrically. This is problem can be converted to
the problem of drawing a graph on a plane or planarity of graphs.

Definition 5.1. A finite undirected multigraph is planar if it can be drawn on a plane in such a
way that no two of its edges intersect except, possibly, at vertices.

Definition 5.2. An undirected multigraphG = (V,E,') is said to be n-colorable
� ! 9f, f : V !

{ 1, 2, . . . , n } such that if (u, v) 2 E then f(u) 6= f(v).

Theorem 5.1 (The Four-color Theorem).
Every planar graph is 4-colorable.

Definition 5.3. Minimum number n for which an undirected multigraph is n-colorable is called
the chromatic number of the graph.

Theorem 5.2. If the maximum degree of vertices is n, then the chromatic number is less than or
equal to n+ 1.

Theorem 5.3. An undirected multigraph is 2-colorable  ! it contains no cycles of odd length.

Theorem 5.4. A tree is 2-colorable.

Haluk BINGOL
pair
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Definition 5.4. Let G be a connected planar graph. A region of G is a domain of the plane
surrounded by edges of the graph such that any two points in it can be joined by a line not crossing
any edge. The edges touching a region contain a simple cycle called the contour of the region. Two
regions are said to be adjacent if the contours of the two regions have at least one edge in common.

Theorem 5.5 (Euler Formula).
If a connected planar graph has ⌫ vertices, e edges and r regions then ⌫ � e+ r = 2.

Theorem 5.6. If G is a connected simple graph without loops, and has ⌫ vertices, e edges and r
regions,
then 3

2r  e  3⌫ � 6.

K3,3 K5

Theorem 5.7 (Kuratowski).
An undirected multigraph is planar
 ! it contains no partial subgraphs of either K3,3 or K5.

6. Tree

Definition 6.1. A tree is a connected undirected graph with no cycles. A tree of an isolated
vertex is called degenerated tree.

Theorem 6.1. Let G = [V,E,↵] and G is a nondegenerated tree.
 ! every pair of vertices is connected by one and only one chain
 ! G is connected but deletion of an edge makes it disconnected
 ! G has no cycles and if an edge is added, one and only one cycle is formed.

Theorem 6.2. A nondegenerated tree contains at least two vertices of degree 1.

Theorem 6.3. G = [V,E,↵] with |V | = n � 1
G is a tree
 ! G contains no cycle and has n-1 edges
 ! G is connected and has n-1 edges

Definition 6.2 (Spanning Tree).
A spanning tree of a connected undirected graph G = [V,E,↵] is a tree T = [V,E

0
,↵] where E

0 ✓ E
and ↵

0
is the restriction of ↵ to E

0
.

Remark 6.1. There may be many spanning trees for G.

Definition 6.3. Aminimal spanning tree is a spanning tree which has minimum number of edges.2

Algorithm 3: The Minimal Spanning Tree Algorithm

1 begin
/* minimal spanning tree algorithm here */

2 end

6.1. Minimal Spanning Tree Algorithm.

2@HB correct this



6. TREE 95

6.2. Rooted Tree.

Definition 6.4. A rooted tree R is a directed graph obtained by specifying as the root a special
vertex v and each chain between v and some u is replaced by a path from v to u. The order of the
path from v to u is called the level of u. For every arc (��!u,w), u and w are a predecessor-successor
pair. Any vertex whose outdegree is 0 is called a leaf .

Remark 6.2. Rooted trees are classical representations for hierarchical structures.
• organization charts

• procedures in programming languages

• algebra of commutative operations

• scope of variables in procedural programming languages

Definition 6.5. An oriented rooted tree is a rooted tree such that the set of arcs issuing from any
vertex is an ordered set.
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Representation

Example 6.1. Hu↵mann coding is a cod-
ing technique which is optimum in mean coding
length.

Acknowledgment. These notes are based on various books but especially [PY73, Ros07,
TZ82, Gal89].

Problems with Solutions

P 12.1. Let G = [V,E] be a simple, undirected and connected graph which does not contain any
self-loops. Prove that G is a bipartite graph if and only if G does not contain any cycle of odd length.

Solution.
Let G = [V,E] be a loop-free simple, undirected, connected and bipartite graph with V = V1 [ V2.

Let C = {(v1, v2), (v2, v3), (v3, v4), . . . , (vn, v1), } be a cycle in G. Let v1 2 V1. (The proof for
v1 2 V2 is similar.) Since G is a bipartite graph v

i

and v
i+1 must belong to di↵erent sets V1 and V2.

Hence, the sequence v1 � v2, . . . , vn � v1 is an alternating sequence between the edges of V1 and V2.
For this sequence to start and end with the same vertex there must be odd number of vertices in this
sequence. Hence, the number of edges on C must be even.

(( Part) Let G = [V,E] be a loop-free simple, undirected and connected graph with no cycles of
odd length. Let x 2 V , and
V1 = {v 2 V | the length of a shortest path between x and v is odd} and
V2 = {w 2 V | the length of a shortest path between x and w is even}.

Note that
i) x 2 V2

ii) V1 \ V2 = ;
iii) V1 [ V2 = V .

Claim: each edge {a, b} 2 E has one vertex in V1 and the other vertex in V2.
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To prove this claim suppose that there exists an edge e = {a, b} 2 E with a 6= b and a, b 2 V1.
(The proof for a, b 2 V2 is similar) Let E

a

= {{a, v1}, {v1, v2}, . . . , {vm�1, x}} be the m edges in a
shortest path from a to x and let E

b

= {{b, v10}, {v10, v20}, . . . , {vn�1
0, x}} be the n edges in a shortest

path from b to x. m and n are both odd since a, b 2 V1.
If {v1, v2, . . . , vm�1}\ {v10, v20, . . . , vm�1

0} = ;, then the set of edges C1 = {{a, b}}[E
a

[E
b

is a cycle
of odd length in G. Otherwise, let w( 6= x) be the first vertex where the paths come together and let

C2 = {{a, b}} [ {{a, v1}, {v1, v2}, . . . , {vi, w}} [ {{b, v10}, {v10, v20}, . . . , {vj 0, w}}
for some 1  i  m� 1 and 1  j  n� 1. Then either C2 or C1 � C2 is a cycle of odd-length in G.

P 12.2. Suppose d1, d2, . . . , dn 2 Z+ with
P

n

i=1 di = 2n� 2. Show that there is a tree that has n
vertices with degree sequence d1, d2, . . . , dn.

Solution.
Note that 8i [d

i

> 0]. Use induction on the number of vertices n.
Case n = 1. Since 2n � 2 = 0, the degree sequence is d1 = 0 only. A degenerated tree with one

vertex satisfies the proposition. Note that d1 = 0 does not actually satisfy the rule that d
i

> 0. So
the question should have one more condition such as n > 1. Hence induction should start from n = 2.

Induction Base. n = 2. Since 2n� 2 = 2, the degree sequence can only be d1 = 1, d2 = 1. A tree
with 2 vertices connected by an edge satisfies it.

Induction. Assume that it is true for n � 2. Then show that is must be true for n+ 1.
Consider a degree sequence d1, d2, . . . , , dn, dn+1. If we can show that there exist vertices v

k

of degree d
k

= 1 and v
`

of degree d
`

> 1, then we can construct such tree as follows: Reindex
d1, d2, . . . , dn�1, dn, dn+1 so that we have dn > 1 and d

n+1 = 1. Hence, d
n

�1 > 0. By induction hypote-
sis, there exists a corresponding tree T with n vertices for the degree sequence d1, d2, . . . , dn�1, dn� 1.
Obtain a new tree T 0 by add vertex v

n+1 to T by connecting v
n+1 to v

n

. The degree sequence of T 0

becomes d1, d2, . . . , , dn � 1 + 1, d
n+1 = 1.

Existence of d
k

= 1. Suppose 8i 2 { 1, 2, . . . , n } [d
i

> 1]. Then d
i

� 2, so
P

n

i=1 di �
P

n

i=1 2 =
2n > 2n� 2. Since

P
n

i=1 di = 2n� 2, there must be at lease one vertex with d
k

< 2, that is d
k

= 1.
Existence of d

`

> 1. Suppose 8i 2 { 1, 2, . . . , n } [d
i

= 1]. Then
P

n

i=1 di =
P

n

i=1 1 = n < 2n � 2.
Since

P
n

i=1 di = 2n� 2, There must be at lease one vertex with d
k

> 1.
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The Notation Index

(a1, a2), 16
(a1, a2, . . . , an), 16
=

(a1, a2, . . . , an) = (b1, b2, . . . , bn), 16
sets, 15

A ⇢ B, 15
A ✓ B, 15
A⇥B, 16
G = (V,A,' ), 85
;, 15
C 6=0, 5
C, 5
N, 5
Q+, 5
Q�, 5
Q�0, 5
Q0, 5
Q 6=0, 5
Q, 5
R+, 5
R�, 5
R�0, 5
R0, 5
R 6=0, 5
R, 5
Z+, 5
Z�, 5
Z�0, 5
Z0, 5
Z 6=0, 5
Z, 5
|A |, 15
2A, 16
a < b, 31
a↵ b, 18
a 2 A, 15
a /2 A, 15
{ a1, a2, . . . }, 15
{ a | P (a) }, 15
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The Concepts Index

binary relation, 18

cardinality, 15
cartesian product, 16

dyadic, 11

empty, 16
empty set, 15
equal

ordered pairs, 16
set, 15

finite set, 15
function

partial, 20

infinite set, 15

monadic, 11
Multigraph, 85

operator
dyadic, 11
monadic, 11

ordered n�tuple, 16
ordered pairs, 16

power set, 16
proper subset, 15

relation
boolean matrix multiplication, 19
complement, 20
composition, 19
inverse, 20
transpose, 20

set
a 2 A, 15
a /2 A, 15
binary relation, 18
cardinality, 15
cartesian product, 16
disjoint, 17
element, 15
empty set, 15
equal, 15
finite set, 15
infinite set, 15
membership, 15
ordered n�tuple, 16
ordered pairs, 16
power set, 16
proper subset, 15
representation, 15
set, 15
set operations

complement, 17

di↵erence, 17
intersection, 16
symmetric di↵erence, 17
union, 16

subset, 15
subset, 15

truth table, 11
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