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Let Ln be a language containing the single string an on alphabet {a}. For
any ε > 0, there is a PFA with O(log2n) states, recognizing Ln with error bound
ε.

• We will use O(
log n

log log n
) different prime numbers.

• We will use O(
log n

log log n
) states in the machine for every prime number we

use.

• The machine starts by randomly choosing one of the primes, say, p.

• Then the remainder modulo p of the length of the input is counted, and
compared with the desired value.

• We define accept states by marking the nmodulo pi as the accept state.

• Additionally, once every p steps, a transition to a rejecting state is made

with a small probability of the form c
p

n
, where c is a suitable constant.

• The number of used primes is sufficient, to say that, for every input of
length less than n, most of the primes give remainders different than
nmod p, and the ”small” probability is chosen to have the rejection proba-
bility high enough for every input length N such that N 6= n and ε-fraction
of all the primes used have the same remainder as nmod p.

Notes:

• Additional trap state’s main purpose is to limit the acceptance ratio of
longer strings

• Default layout for DFAs, with single letter alphabets, accepting a single
string an is called ”Spoon Style Machine”, and it usually looks like Figure
1.

• Design of the mentioned machine will look like Figure 2.
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Figure 1: Spoon style DFA

Figure 2: PFA used to recognize Lp with lesser number of states than DFA

Let Lp = {ai|i is divisible by p}, where p is a prime number. For classical
case, we will need O(p) states.

Theorem 1: Any PFA recognizing Lp with error bound ε > 0 has at least
p states.

Theorem 2: Lp can be recognized by a QFA with O(log p) states with error
bound ε > 0.

Since language Lp is on a single letter alphabet, any PFA recognizing it may
be described as a Markov Chain.

MARKOV CHAINS

The states of a Markov Chain is divided into ergodic and transient states.

• An ergodic set of states is a set which cannot be left when it is entered.

• A transient set of states is a set in which every state can be reached from
every other state, and which can be left.

States are also divided according to this terminology. Notice this one refers to
single states as opposed to the state sets in above items

• If a Markov Chain has more than one ergodic state set, then there is no
interaction between these sets.

• In that case we have two or more unrelated Markov Chains lumped to-
gether.
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• If a Markov Chain consists of single ergodic set, it is called an ergodic
chain.

• Every ergodic chain is either regular or cyclic.

• If a Markov Chain is regular, then sufficiently high powers of the state
transition matrix P of the Markov Chain contain all positive elements.
Thus no matter where the process starts, after sufficient time, it can be
in any state. More over, there is a limiting vector of probabilities of being
in the states of the chain, not dependent on the initial state.

• If a Markov Chain is cyclic, then it has a period d, and its states are
subdivided into d cyclic sets (d > 1). For a given starting position, it
moves through the cyclic sets in a definitive order, returning to the set of
the starting state after d steps. Hence dth power of the state transition
matrix describes a regular chain.

Theorem 1: Any PFA recognizing Lp with error bound ε > 0 has at least
p states.

Proof: Assume that the machine has fever than p states. So for every cyclic
state of the automaton, the value of d (period) is strictly less than p and since
p is prime, d is relatively prime to p.

Let D denote the Least Common Multiple of all such values of d. So D is
relatively prime to p, and so is any positive power Dn of D.

aD
n

/∈ Lp, but aD
np ∈ Lp, so the sum of the probabilities of accept states

must be greater than or equal to 1 − ε for aD
np, but it must be less than or

equal to ε for aD
n

.
Explanation of Proof: Here we expect the Markov Chain to reach a Sta-

tionary Distribution. (A Stationary Distribution is a state, in which probabilities
remain constant, no matter how many times you apply transition matrix.) But
in this case, the probabilities alternate between ε and 1 − ε depending on the
number of letters. So, this leads to a contradiction.

Theorem 2: Lp can be recognized by a QFA with O(log p) states with error
bound ε > 0.

Proof: We consider the automata Uk, for each k ∈ {1, 2, ..., p− 1} Each Uk

is a ”rotation machine” with two states, where the angle is φ =
2πk

p
.

3



Figure 3: After p rotations, it comes onto 2πk = 0

After reading aj , Uk is in the superposition of

cos

(
2πjk

p

)
|q0〉+ sin

(
2πjk

p

)
|q1〉

Definition: For any aj /∈ L, call Uk ”good” if it rejects aj with probability
at least 1

2 .

Claim: For any aj /∈ L, at least
(p− 1)

2
of all Uk’s are ”good”. The

probability of Uk accepting aj is cos2
(

2πjk

p

)
.

Figure 4: Super positions landing in the ”Desired Area” are considered ”good”.

cos2
(

2πjk

p

)
≤ 1

2
iff

∣∣∣∣cos

(
2πjk

p

)∣∣∣∣ ≤ 1√
2

This happens iff
2πjk

p
is in

[
2π`+

π

4
, 2π`+

3π

4

]
or in

[
2π`+

5π

4
, 2π`+

7π

4

]
for some ` ∈ N

This is so iff
2π(jk mod p)

p
in

[
π

4
,

3π

4

]
or in

[
5π

4
,

7π

4

]
.
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Since j is relatively prime to p, {j mod p, 2j mod p, ..., (p − 1)j mod p}
are just {1, 2, ...(p− 1)} in different order.

Given aj ≡ bj( mod p), you can divide both sides by j, iff j is relatively
prime to p.

Let’s count: For the case where p = 8m+ 1, for some m, then

2π(jk mod p)

p
in

[
π

4
,

3π

4

]
⇒ 2πjk

p
≥ π

4
(1)

and

⇒ 2πjk

p
≤ 3π

4
(2)

Combine (1) and (2), we get

m+ 1 ≤ k ≤ 3m

Do the same for the other interval,

[
5π

4
,

7π

4

]
, we obtain

5m+ 1 ≤ k ≤ 7m

For other possible cases of p (i.e. 8m + 3, 8m + 5 and 8m + 7), this works
out similarly.

* There are 4m values of k satisfying this condition.
Definition: A sequence of Uk’s is good for a particular input aj if at least

1

4
of al its elements are good for that input string, aj .

Claim: There is a sequence of length d8 ln pe which is good for all aj /∈ L
Proof: Consider picking d8 ln pe elements randomly from the set of all Uk’s.
For a fixed aj , the probability that we select a good k at each step is at least

1

2
.

What is the probability that less than
1

4
of the Uk’s that I pick will be good?

This is at most e−2( 1
4 )

2
8 ln p =

1

p
, because of the Chernoff Bound (*).

(*) Chernoff Bound is used to calculate a limit for tail distributions of sums
of independent random variables. Here we assume picking each of the Uk’s are
independent random variables and use Chernoff Bound to find a limit for the
probability.

So the fraction of sequences which are bad for at least one j ∈ {1, 2, ..., p−1}
is at most

p− 1

p
.

Explanation of Proof: This proof does not show the actual method to
pick a sequence, but it shows the possibility of not being able to pick a suitable
sequence is less than 1. That means, there is always a possibility, however small
it is, to pick a sequence satisfying our condition.
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Build a single QFA using the machines in a ”good” sequence. The new QFA
branches from its start state with equal probabilities to the starting states of all
the machines in the sequence. Note that this machine would accept members
of the language with probability 1, and reject nonmembers with probability at

least
1

8
.

To decrease the error probability down to a desired value from
7

8
, we can

change the procedure described in the previous paragraph as follows: Let us
first change each Uk to a much ”better” machine ”SuperUk” by taking suffi-
ciently many tensor products of it (constructing a machine that runs sufficiently
many copies of it parallelly) such that the resulting machine says yes only if all
constituent machines say yes. The probability of an incorrect acceptance is
much lower now. We then merge a good sequence containing O(log p) of these
SuperUk’s in the manner described above. The resulting machine’s error prob-
ability can be tuned by playing with the number of tensor products above. The
total number of states is still O(log p), since the size of the individual SuperUk’s
does not depend on p.
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