CMPE 362 HW2: SPLINE INTERPOLATION APPLICATION

Yekta Said CAN

1.Quadratic Spline Constraints

I. Functional values are equal at the interior knots.

Image: 2. The first and last functions must pass the endpoints.

First derivatives are equal at the interior knots.

■ 4. Second derivative of f0 is zero.

2. Data

• You will use the stress for a microstrain data.

TABLE 2.3 Stress, y_i (psi), versus Microstrain, x_i							
i	y_i	x _i	w_i				
1	1025	265	3.86				
2	1400	400	3.50				
3	1710	500	3.42				
4	2080	700	2.97				
5	2425	950	2.55				
6	2760	1360	2.03				
7	3005	2080	1.44				
8	2850	2450	1.16				
9	2675	2940	0.91				

3. Implementation

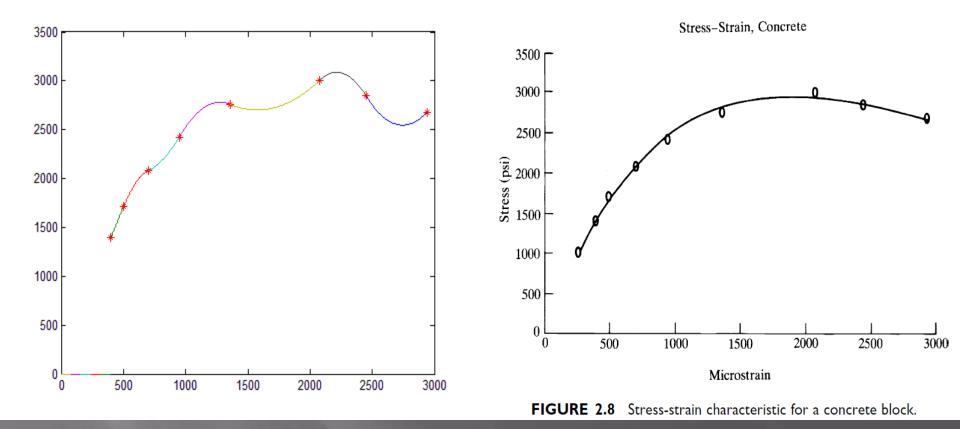
We needed Ax=b type matrix multiplication for MATLAB. We 3N-3 equations and 3N-3 unknowns.

■ So, create A and b by using constaints.

3. Implementation(cont'd)

Use linsolve method of MATLAB to find a solution to this equation. It uses LU factorization.

• Res = linsolve(A,B);


1	2080	4326400	0	0	Ó	0	0	0
0	0	0	1	2080	4326400	0	0	0
0	0	0	1	2450	6002500	0	0	0
0	0	0	0	0	0	1	2450	6002500
0	1	<mark>4</mark> 160	0	-1	-4160	0	0	0
0	0	0	0	1	4900	0	-1	-4900
1	1360	1849600	0	0	0	0	0	0
0	0	0	0	0	0	1	2940	8643600
0	0	1	0	0	0	0	0	0

	3005
l	3005
l	2850
l	2850
	0
l	0
	2760
	2675
	0

3. Implementation(cont'd) The result is: ■ A0=? ■ B0=? ■ C0=? A1=? B1=? • C1=? ■ A2=? B2=?

C2=?

4. Plots

