Signal Processing First

Lecture 8 Sampling & Aliasing

READING ASSIGNMENTS

- This Lecture:
 - Chap 4, Sections 4-1 and 4-2
 - Replaces Ch 4 in DSP First, pp. 83-94

- Other Reading:
 - Recitation: Strobe Demo (Sect 4-3)
 - Next Lecture: Chap. 4 Sects. 4-4 and 4-5

LECTURE OBJECTIVES

- SAMPLING can cause ALIASING
 - Nyquist/Shannon Sampling Theorem
 - Sampling Rate (f_s) > 2f_{max}(Signal bandwidth)
- Spectrum for digital signals, x[n]
 - Normalized Frequency

$$\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s} + 2\pi \ell$$
ALIASING

SYSTEMS Process Signals

PROCESSING GOALS:

- We need to change x(t) into y(t) for many engineering applications:
 - For example, more BASS, image deblurring, denoising, etc

System IMPLEMENTATION

ANALOG/ELECTRONIC:

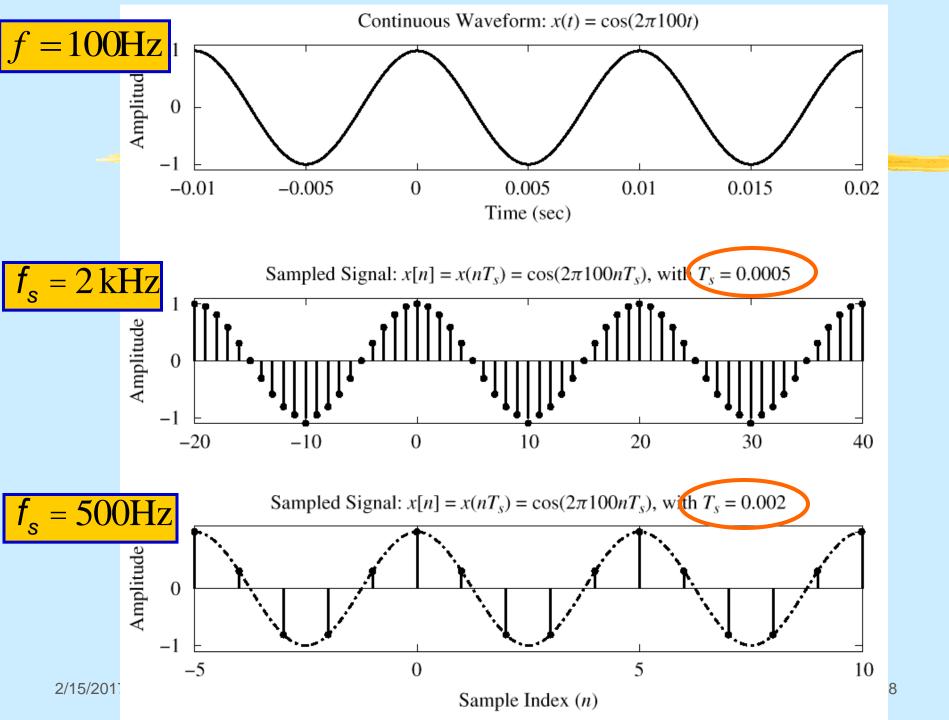
Circuits: resistors, capacitors, op-amps

DIGITAL/MICROPROCESSOR

Convert x(t) to numbers stored in memory

SAMPLING x(t)

SAMPLING PROCESS

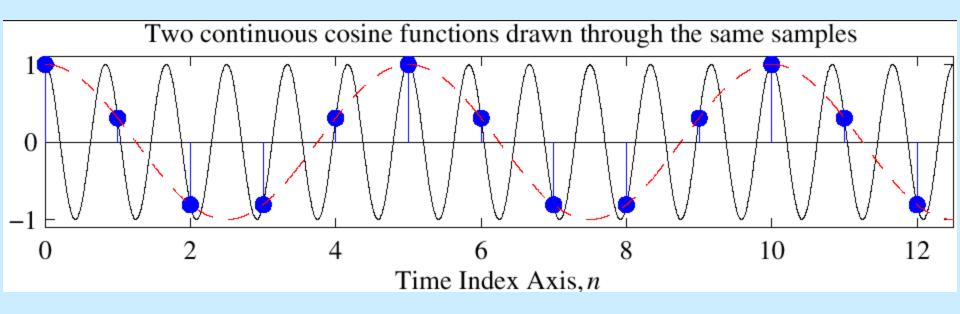

- Convert x(t) to numbers x[n]
- "n" is an integer; x[n] is a sequence of values
- Think of "n" as the storage address in memory
- UNIFORM SAMPLING at t = nT_s
 - IDEAL: $x[n] = x(nT_s)$

SAMPLING RATE, f_s

- SAMPLING RATE (f_s)
 - $f_s = 1/T_s$
 - NUMBER of SAMPLES PER SECOND
 - T_s = 125 microsec → f_s = 8000 samples/sec
 - UNITS ARE HERTZ: 8000 Hz
- UNIFORM SAMPLING at $t = nT_s = n/f_s$
 - IDEAL: $x[n] = x(nT_s) = x(n/f_s)$

$$x(t) \longrightarrow A-to-D \xrightarrow{x[n]=x(nT_s)}$$

SAMPLING THEOREM


- HOW OFTEN ?
 - DEPENDS on FREQUENCY of SINUSOID
 - ANSWERED by NYQUIST/SHANNON Theorem
 - ALSO DEPENDS on "RECONSTRUCTION"

Shannon Sampling Theorem

A continuous-time signal x(t) with frequencies no higher than f_{max} can be reconstructed exactly from its samples $x[n] = x(nT_s)$, if the samples are taken at a rate $f_s = 1/T_s$ that is greater than $2f_{\text{max}}$.

Reconstruction? Which One?

Given the samples, draw a sinusoid through the values

$$x[n] = \cos(0.4\pi n)$$

When *n* is an integer $cos(0.4\pi n) = cos(2.4\pi n)$

STORING DIGITAL SOUND

- -x[n] is a SAMPLED SINUSOID
 - A list of numbers stored in memory
- EXAMPLE: audio CD
- CD rate is 44,100 samples per second
 - 16-bit samples
 - Stereo uses 2 channels
- Number of bytes for 1 minute is
 - 2 X (16/8) X 60 X 44100 = 10.584 Mbytes

DISCRETE-TIME SINUSOID

Change x(t) into x[n]DERIVATION

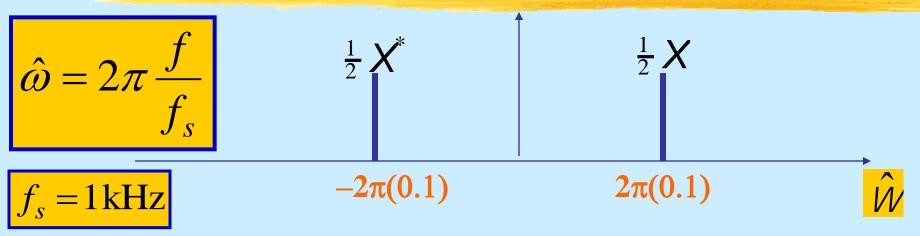
$$x(t) = A\cos(\omega t + \varphi)$$

$$x[n] = x(nT_s) = A\cos(\omega nT_s + \varphi)$$

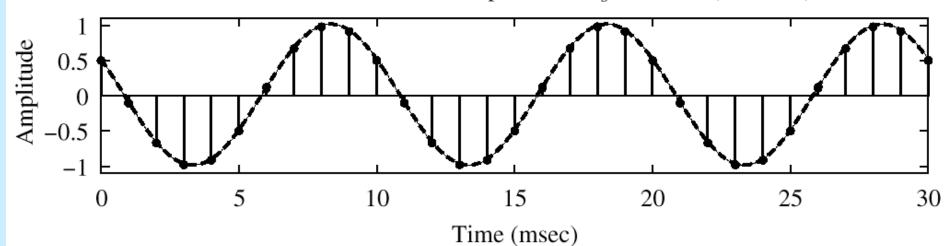
$$x[n] = A\cos((\omega T_s)n + \varphi)$$

$$x[n] = A\cos(\hat{\omega}n + \varphi)$$

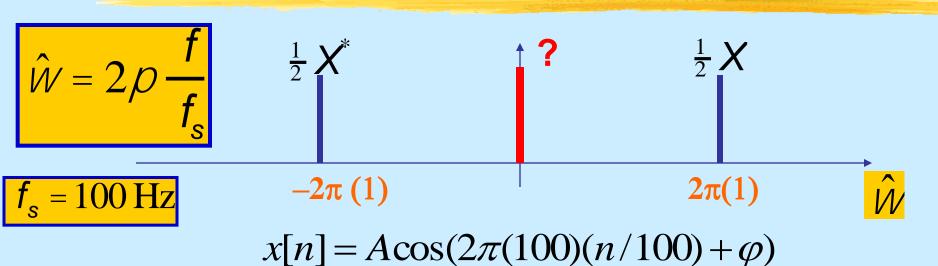
$$\hat{\omega} = \omega T_s = \frac{\omega}{f_s}$$
DEFINE DIGITAL FREQUENCY


DIGITAL FREQUENCY

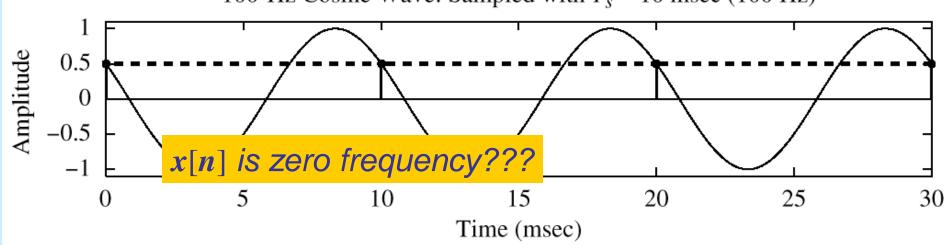
- $\hat{\omega}$ VARIES from 0 to 2π , as f varies from 0 to the sampling frequency
- UNITS are radians, <u>not</u> rad/sec
 - DIGITAL FREQUENCY is NORMALIZED


$$\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s}$$

SPECTRUM (DIGITAL)



$$x[n] = A\cos(2\pi(100)(n/1000) + \varphi)$$


100-Hz Cosine Wave: Sampled with $T_s = 1 \text{ msec } (1000 \text{ Hz})$

SPECTRUM (DIGITAL) ???

100-Hz Cosine Wave: Sampled with $T_s = 10 \text{ msec } (100 \text{ Hz})$

The REST of the STORY

- Spectrum of x[n] has more than one line for each complex exponential
 - Called <u>ALIASING</u>
 - MANY SPECTRAL LINES
- SPECTRUM is PERIODIC with period = 2π
 - Because

$$A\cos(\hat{w}n+j) = A\cos((\hat{w}+2p)n+j)$$

ALIASING DERIVATION

Other Frequencies give the same

$$x_1(t) = \cos(400\pi t)$$
 sampled at $f_s = 1000$ Hz
 $x_1[n] = \cos(400\pi \frac{n}{1000}) = \cos(0.4\pi n)$
 $x_2(t) = \cos(2400\pi t)$ sampled at $f_s = 1000$ Hz
 $x_2[n] = \cos(2400\pi \frac{n}{1000}) = \cos(2.4\pi n)$
 $x_2[n] = \cos(2.4\pi n) = \cos(0.4\pi n + 2\pi n) = \cos(0.4\pi n)$
 $\Rightarrow x_2[n] = x_1[n]$ 2400 $\pi - 400\pi = 2\pi(1000)$

LIASING DERIVATION-2

Other Frequencies give the same

If
$$x(t) = A\cos(2\pi(f + |f_s|)t + \varphi)$$

$$t - \frac{n}{f_s}$$

and we want : $x[n] = A\cos(\hat{w}n + i)$

then:
$$\hat{\omega} = \frac{2\pi(f + \ell f_s)}{f_s} = \frac{2\pi f}{f_s} + \frac{2\pi \ell f_s}{f_s}$$

$$\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s} + 2\pi \ell$$

ALIASING CONCLUSIONS

- ADDING f_s or 2f_s or -f_s to the FREQ of x(t) gives exactly the same x[n]
 - The samples, x[n] = x(n/f_s) are EXACTLY THE SAME VALUES

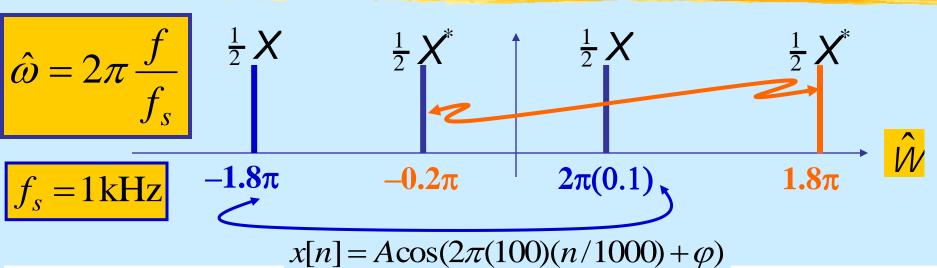
GIVEN x[n], WE CAN'T DISTINGUISH f_o
 FROM (f_o + f_s) or (f_o + 2f_s)

NORMALIZED FREQUENCY

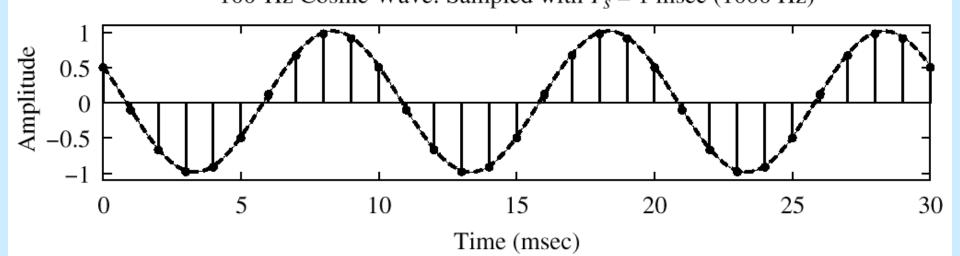
DIGITAL FREQUENCY

Normalized Radian Frequency

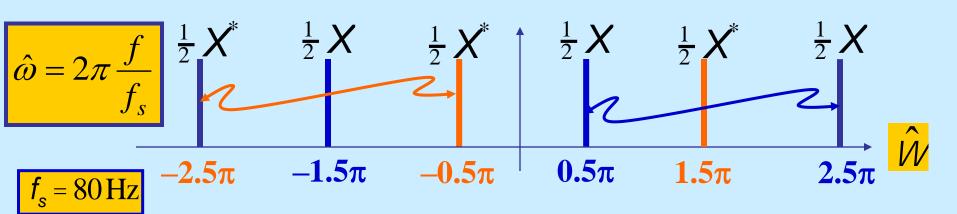
$$\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s} + 2\pi \ell$$


Normalized Cyclic Frequency

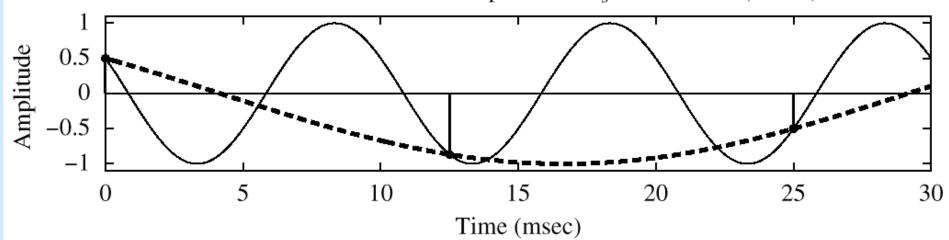
$$\hat{f} = \hat{\omega}/(2\pi) = fT_s = f/f_s$$


SPECTRUM for x[n]

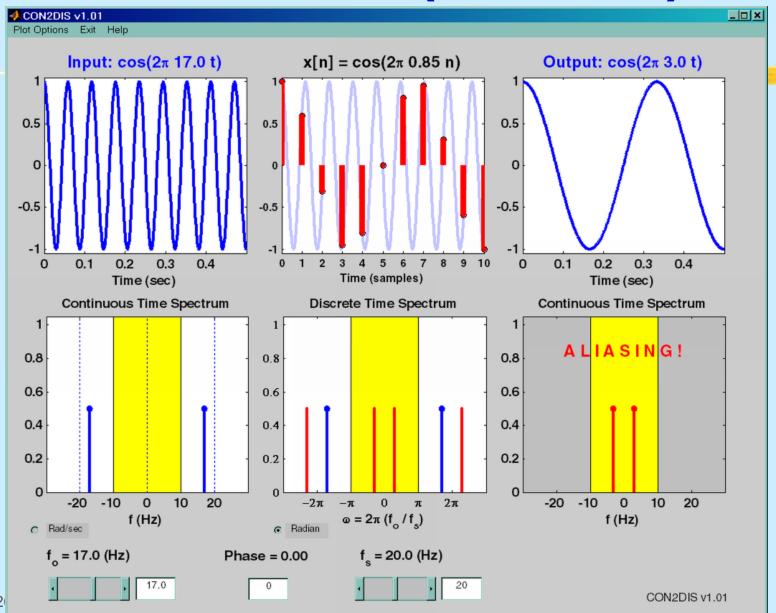
- PLOT versus NORMALIZED FREQUENCY
- INCLUDE ALL SPECTRUM LINES
 - ALIASES
 - ADD MULTIPLES of 2π
 - SUBTRACT MULTIPLES of 2π
 - FOLDED ALIASES
 - (to be discussed later)
 - ALIASES of NEGATIVE FREQS


SPECTRUM (MORE LINES)

 $\chi[n] = A\cos(2\pi(100)(n/1000) + \varphi)$ 100-Hz Cosine Wave: Sampled with $T_s = 1$ msec (1000 Hz)

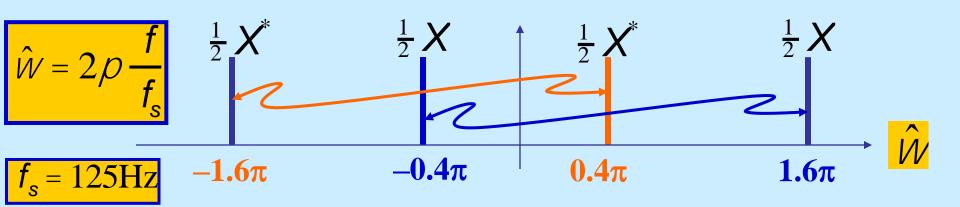


SPECTRUM (ALIASING CASE)

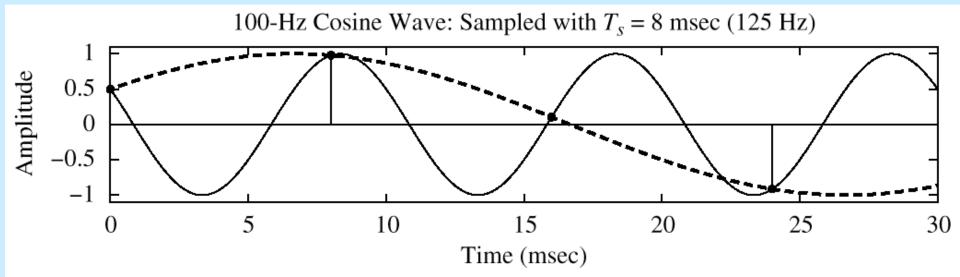


$$x[n] = A\cos(2\pi(100)(n/80) + \varphi)$$

100-Hz Cosine Wave: Sampled with $T_s = 12.5$ msec (80 Hz)



SAMPLING GUI (con2dis)



2/15/2

SPECTRUM (FOLDING CASE)

$$x[n] = A\cos(2\pi(100)(n/125) + \varphi)$$

