CMPE 350 - Summer 2014 PS#2

07.07.14

- 1. Prove or disprove that regular languages are closed under infinite union.
- 2. Prove or disprove that regular languages are closed under infinite intersection.
- 3. Prove or disprove that regular languages are closed under set difference.
- 4. TRUE or FALSE
 - (a) If $L_1 \cup L_2$ is regular and L_1 is finite, then L_2 is regular.
 - (b) If $L_1 \cup L_2$ is regular and L_1 is regular, then L_2 is regular.
 - (c) If L_1 is regular and $L_2 \subseteq L_1$, then L_2 is regular.
 - (d) If L_1 is regular and L_2 is not regular, then $L_1 \cup L_2$ is not regular.
 - (e) If L_1 is regular and $L_1 \cup L_2$ is not regular, then L_2 is not regular.
 - (f) If L_1 is regular and L_2 is not regular, then $L_1 \cup L_2$ is not regular.
- 5. 1.29 Use the pumping lemma to show that the following languages are not regular.
 - (b) $A_n = \{www | w \in \{a, b\}^*\}$
- 6. **1.46** Prove that the following regular languages are not regular. You may use the pumping lemma and the closure properties of the class of regular languages under union, intersection and complement.
 - (a) $L = \{0^n 1^m 0^n | m, n \ge 0\}$
 - (c) $L = \{w | w \in \{0, 1\}^*\}$
 - (d) $L = \{wtw | w, t \in \{0, 1\}^*\}$
- 7. 1.54 Consider the language $F = \{a^i b^j c^k | i, j, k \ge 0 \text{ and if } i = 1, \text{ then } j = k$
 - (a) Show that F is not regular.
 - (b) Show that F acts like a regular language in the pumping lemma. In other words give a pumping length p and demonstrate that F satisfies the three conditions of the pumping lemma for this value of p.
 - (c) Explain why parts (a) and (b) do not contradict the pumping lemma.
- 8. Show that $L = \{a^{2^n} | n \ge 0\}$ is not regular.
- 9. TRUE or FALSE
 - (a) Union of two non-regular languages is always non-regular.
 - (b) Intersection of two non-regular languages is always non-regular.