CMPE 350 - Summer 2014 PS#1

30.06.14

Chapter 1

1.6 Give state diagrams of DFAs recognizing the following languages. In all parts the alphabet is $\{0, 1\}$.

- a) $\{w | w \text{ begins with a 1 and ends with a 0}\}$
- f) $\{w | w \text{ doesn't contain the substring } 110\}$

1.7 Give state diagrams of NFAs with the specified number of states recognizing each of the following languages. In all parts the alphabet is $\{0, 1\}$.

e) The language $0^*1^*0^*$ with three states.

1.21 Use the procedure described in Lemma 1.60 to convert the following finite automata to regular expressions.

a)

1.31 For any string $w_1w_2...w_n$ the reverse of w, written w^R , is the string w in reverse order, $w_n...w_2w_1$. For any language A, let $A^R = \{w^R | w \in A\}$. Show that if A is regular, so is A^R .

1.36 Let $B_n = \{a^k | \text{ where } k \text{ is a multiple of } n\}$. Show that for each n > 1, the language B_n , is regular.

• Say that string x is a prefix of string y if a string z exists where xz = y. Let A be a regular language and let $L_A = \{x | x \text{ is a prefix of some string in } A\}$. Prove that L_A is regular.