CMPE 350 - Summer 2014
 PS\#1

30.06.14

Chapter 1

1.6 Give state diagrams of DFAs recognizing the following languages. In all parts the alphabet is $\{0,1\}$.
a) $\{w \mid w$ begins with a 1 and ends with a 0$\}$
f) $\{w \mid w$ doesn't contain the substring 110$\}$
1.7 Give state diagrams of NFAs with the specified number of states recognizing each of the following languages. In all parts the alphabet is $\{0,1\}$.
e) The language $0^{*} 1^{*} 0^{*}$ with three states.
1.21 Use the procedure described in Lemma 1.60 to convert the following finite automata to regular expressions.
a)

1.31 For any string $w_{1} w_{2} \ldots w_{n}$ the reverse of w, written w^{R}, is the string w in reverse order, $w_{n} \ldots w_{2} w_{1}$. For any language A, let $A^{R}=\left\{w^{R} \mid w \in A\right\}$. Show that if A is regular, so is A^{R}.
1.36 Let $B_{n}=\left\{a^{k} \mid\right.$ where k is a multiple of $\left.n\right\}$. Show that for each $n>1$, the language B_{n}, is regular.

- Say that string x is a prefix of string y if a string z exists where $x z=y$. Let A be a regular language and let $L_{A}=\{x \mid x$ is a prefix of some string in $A\}$. Prove that L_{A} is regular.

