## CMPE 350 - Spring 2018

## PS 2-19.02.18

1.7 Give state diagrams of NFAs with the specified number of states recognizing each of the following languages. In all parts the alphabet is $\{0,1\}$.
b) $\{w \mid w$ contains the substring 0101 i.e $w=x 0101 y$ for some $x$ and $y\}$
c) $\{w \mid w$ contains an even number of 0 s or contains exactly two 1 s$\}$
1.12 Let $D=\{w \mid w$ contains an even number of $a$ 's and an odd number of $b$ 's and does not contain the substring $a b\}$. Give a DFA with five states that recognizes $D$ and a regular expression that generates $D$. (Suggestion: Describe $D$ more simply.)
1.14 a) Show that if $M$ is a DFA that recognizes language $B$, swapping the accept and nonaccept states in $M$ yields a new DFA recognizing the complement of $B$. Conclude that the class of regular languages is closed under complement.
b) Show by giving an example that if $M$ is an NFA that recognizes language $C$, swapping the accept and nonaccept states in $M$ doesn't necessarily yield a new NFA that recognizes the complement of $C$. Is the class of languages recognized by NFAs closed under complement? Explain your answer.
1.18 Give regular expressions generating the languages of Exercise 1.6.
b) $\{w \mid w$ contains at least three 1 s$\}$
g) $\{w \mid w$ the length of $w$ is at most 5$\}$
l) $\{w \mid w$ contains at least two 0 s and at most one 1$\}$
1.20 For each of the following languages, give two strings that are members and two strings that are not members-a total of four strings for each part. Assume the alphabet $\Sigma=\{a, b\}$ in all parts
b) $a(b a)^{*} b$
c) $a^{*} \cup b^{*}$
e) $\Sigma^{*} a \Sigma^{*} b \Sigma^{*} a \Sigma^{*}$
h) $(a \cup b a \cup b b) \Sigma^{*}$
1.31 For any string $w_{1} w_{2} \ldots w_{n}$ the reverse of $w$, written $w^{R}$, is the string $w$ in reverse order, $w_{n} \ldots w_{2} w_{1}$. For any language $A$, let $A^{R}=\left\{w^{R} \mid w \in A\right\}$. Show that if $A$ is regular, so is $A^{R}$.
1.40 Recall that string $x$ is a prefix of string $y$ if a string $z$ exists where $x z=y$, and that $x$ is a proper prefix of $y$ if in addition $x \neq y$. In each of the following parts, we define an operation on a language $A$. Show that the class of regular languages is closed under that operation.
b) $\operatorname{NOEXTEND}(A)=\{w \in A \mid w$ is not the proper prefix of any string in $A\}$.

- For languages $A$ and $B$, we define the Even operation as Even $(A, B)=\{w=u v \mid u \in A, v \in$ $B$ and $|w|=2 k$ for some $k \geq 1\}$.

Is the set of regular languages closed under the Even operation? Prove your answer.

