
CMPE 350 - Spring 2018

PS 10 - 26.04.18

2.25 For any language A, let SUFFIX(A) = {v|uv ∈ A for some string u}. Show that
the class of context-free languages is closed under the SUFFIX operation

Let A be a context-free language recognized by the PDA M1. We are going to construct a PDA
M recognizing the language SUFFIX(A) to show that the language SUFFIX(A) is also context-free.

Let M2 be identical to M1. We update the transitions of M2 so that the transitions are
performed without consuming any input symbol. That is, any transition of the form a, b → c is
replaced with ε, b→ c. We add the transition ε, ε→ ε from each state in M2 to the corresponding
state in M1. M1 and M2 together form the PDA M . Start state of M is the start state of M2.

When M starts reading a string v, it will construct the stack as it was reading u without reading
u and without consuming any input symbol. This is possible since we updated all transitions in M2

accordingly. Then at some point, by following the transition ε, ε → ε, the computation continues
in M1 by reading the string v. So, the only accepted strings are those which are the suffixes of the
strings in A.

We conclude that the set of context-free languages is closed under the SUFFIX operation.

• Prove or disprove: “The class of non-context-free languages is closed under com-
plementation.”

We are going to prove that the class of non-context-free languages is closed under complemen-
tation. First let us prove that the set of context-free languages is not closed under complement.

We will first prove that the set of context-free languages is not closed under intersection. Let
L1 = {aibicj |i, j ≥ 0} and L2 = {aibjcj |i, j ≥ 0}. L1 and L2 are context-free, which can be
easily shown by constructing CFG’s or PDA’s. L1 ∩ L2 = {anbncn, n ≥ 0} which is known to
be non-context-free. Hence we conlcude that the set of context-free languages is not closed under
intersection.

Now suppose for a contradiction that the set of context-free languages is closed under com-
plement. Let A1 and A2 be two context-free languages. Then Ac

1 and Ac
2 are also context-free.

Ac
1 ∪ Ac

2 is also context-free since the set of context-free languages is closed under union. Taking
one more complement we obtain (Ac

1 ∪Ac
2)c which is also context free and equal to A1 ∩A2 using

De Morgan’s law. But since we have proven that the set of context-free languages is not closed
under intersection, we obtain a contradiction.

We have proven that the set of context-free languages is not closed under complement. (Oth-
erwise, it would be closed under intersection as well) It means that there exists some context-free
language L whose complement Lc is non-context-free. If the set of non-context-free languages were
closed under complement, then Lcc = L would also be non-context-free but this is not the case.
Hence, we can conclude that the set of non-context-free languages is not closed under complement.

Alternatively, you can pick L = {anbncn} or L = {ww|w ∈ {a, b}∗} which are non-context-free
and prove that their complements are context-free.

• Let A = {1p|p is a prime number greater than 2100} and B = {1k|0 ≤ k < 2100}. Is the
language A ∪B context-free? Prove your answer.

1

Suppose for a contradiction that A ∪ B is context-free and the Pumping Lemma holds. Let p
be the pumping length. Let s = an where n ≥ p and n is a prime number greater than 2100. Since
there are infinitely many prime numbers this is possible. According to Pumping Lemma, s = an

can be written as s = uvxyz where |vy| > 0 and |vxy| ≤ p. We can write v = aj and y = ak for
some j, k ≥ 0 (both not equal to 0 at the same time).

We usually pick i = 2 but this time uv2xy2z = an+j+k and we can not guarantee that it does
not belong to A ∪B. Let us look at uvixyiz in general.

uvixyiz = an+j(i−1)+k(i−1) = an+(i−1)(j+k). Let i = n + 1. Then uvixyiz = an+n(j+k) =
a(n+1)(j+k) /∈ A∪B. a(n+1)(j+k) /∈ A since (n+1)(j+k) is not a prime number as it is the product
of two integers and /∈ B since (n + 1)(j + k) is greater than 2100. We conclude that A ∪ B is not
context-free.

Bu soruda tek başına A’yı alıp context-free olmadığını göstermek yeterli değil. Bu yapılacaksa,
non-context-free ve finite iki dilin birleşiminin her zaman non-context-free olduğunu ıspatlamak
gerekir. String seçerken uzunluğunu 2100’den büyük seçtik ki pump ettiğimizde uzunluğunun
2100’den büyük olmasını garanti edelim ve B’nin içinde kalmasın. Pumping lemma’yı A yerine
A ∪ B üzerinde kullanmanın farkı bu. Burada i’nin seçimi önemli. i’yi n − 1 seçtik ki a’nın üssü
iki sayının çarpımı olarak yazılabilsin.

• Consider the language R = {w|w is a regular expression on the alphabet {0, 1}}. Is
R context-free?

We can construct a CFG generating R. Here is the grammar:

S → (S ∪ S)|(S∗)|(SS)|∅|ε|0|1

Bu soruda S variable, ∪, ∗, ∅, ‘ε′ . . . terminal. Dilin elemanı olan stringler valid birer regular
expression. Örneğin ((0 ∪ 1)0), (1∗)1 dilin elemanı iken)1∪, ∗1 dilin elemanı değil. Amacımız da
dilin elemanı olan stringleri üreteren bir gramer yazmak. Buradaki ε gramer kurallarındaki empty
string değil. Yani ∪S gibi bir şey üretilemiyor. ε regular expression kurallarındaki empty string.
Regular expression = regular language o da zaten context-free gibi bir yaklaşım yanlış. Çünkü
burada verilen dil regular değil, verilen dil regular expression dili.

• Prove that there exists a Turing machine M whose language L is decidable, but M
is not a decider.

Let M be a Turing machine which loops on every string. (For example, stay at the start start
state which is not an accept state, move right at each step and don’t change the tape) Then the
language recognized by M is the empty set and M is not a decider since it loops. On the other
hand, empty set is decidable (even regular).

Yani decidable (hatta regular) bir dil için de loopa giren bir makine yapılabilir. Bu o dilin
decidable olmadığını göstermez. Makinenin ‘kötü’ yapıldığını gösterir.

3.18 Show that a language is decidable iff some enumerator enumerates the language
in the standard string order

We need to show equivalence between a Turing machine that decides a language and an enu-
merator that enumerates it. Thus we need show the proof in both directions.

Let L be a decidable language and let M be its decider. We can use M to construct an
enumerator E as follows. We generate strings in lexicographic order, and input each string into
M . If M accepts, E prints the string. Thus, E prints all strings of L in lexicographic order.

Now we need to show the other direction. i.e., if we have an enumerator E for a language L,

2

then we can use E to construct a Turing machine that decides L. If L is a finite language, it is
decidable because all finite languages are decidable. If L is infinite, a decider M for L operates as
follows. On receiving input w, M runs E until a string greater than w in the lexicographic order is
printed by E. This must eventually occur since L is infinite. If w has appeared in the enumeration
already, then M accepts w. If w has not appeared yet, then it will never appear, and hence M
rejects.

3

