CMPE 350 - Spring 2018

PS 1-12.02.18

1.6 Give state diagrams of DFAs recognizing the following languages. In all parts the alphabet is $\{0,1\}$.
a) $\{w \mid w$ begins with a 1 and ends with a 0$\}$
d) $\{w \mid w$ has length at least 3 and its third symbol is a 0$\}$
f) $\{w \mid w$ doesn't contain the substring 110$\}$
h) $\{w \mid w$ is any string except 11 and 111$\}$
i) $\{w \mid$ every odd position of w is a 1$\}$
1.36 Let $B_{n}=\left\{a^{k} \mid k\right.$ is a multiple of $\left.n\right\}$. Show that for each $n>1$, the language B_{n}, is regular. ($\Sigma=\{a\}$ and a^{k} means a string of $k a$'s. n is an integer.)

- Let $A_{n}=\left\{\left(a^{n} b^{n}\right)^{k} \mid k \geq 1\right\}$. Show that for each $n \geq 1$, the language A_{n}, is regular.
- x is a prefix of string y if a string z exists where $x z=y$. Let A be a regular language and let $L_{A}=\{x \mid \exists$ a string z such that $x z \in A\}$. Prove that L_{A} is regular.
- Proving methods

