
CMPE 350 - Spring 2015

PS Questions

PS 1 - 16.02.15

1.6 Give state diagrams of DFAs recognizing the following languages. In all parts the alphabet is
{0, 1}.

a) {w|w begins with a 1 and ends with a 0}

d) {w|w has length at least 3 and its third symbol is a 0}

f) {w|w doesn’t contain the substring 110}

h) {w|w is any string except 11 and 111}

i) {w|every odd position of w is a 1}

1.36 Let Bn = {ak| where k is a multiple of n}. Show that for each n > 1, the language Bn, is
regular.

• x is a prefix of string y if a string z exists where xz = y. Let A be a regular language and let
LA = {x|∃ a string z such that xz ∈ A}. Prove that LA is regular.

• If a DFA with n states accepts a string of length n− 1, then it also accepts infinitely many other
strings.
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1.7 Give state diagrams of NFAs with the specified number of states recognizing each of the fol-
lowing languages. In all parts the alphabet is {0, 1}.

b) {w|w contains the substring 0101 i.e w = x0101y for some x and y}

c) {w|w contains an even number of 0s or contains exactly two 1s}

1.14 a) Show that if M is a DFA that recognizes language B, swapping the accept and nonaccept
states in M yields a new DFA recognizing the complement of B. Conclude that the class of regular
languages is closed under complement.

b) Show by giving an example that if M is an NFA that recognizes language C, swapping the accept
and nonaccept states in M doesn’t necessarily yield a new NFA that recognizes the complement
of C. Is the class of languages recognized by NFAs closed under complement? Explain your answer.

1.31 For any string w1w2 . . . wn the reverse of w, written wR, is the string w in reverse order,
wn . . . w2w1. For any language A, let AR = {wR|w ∈ A}. Show that if A is regular, so is AR.

1.43 Let A be any language. Define DROP-OUT(A) to be the language containing all strings
that can be obtained by removing one symbol from a string in A. Thus, DROP-OUT(A) =
{xz|xyz ∈ A where x, z ∈ Σ∗, y ∈ Σ}. Show that the class of regular languages is closed under the
DROP-OUT operation. Give both a proof by picture and a more formal proof by construction as
in Theorem 1.47.

• If a language A is finite then it is regular. Show that the converse is not always true.
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1.29 Use the pumping lemma to show that the following languages are not regular.

b) A2 = {www|w ∈ {a, b}∗}

c) A3 = {a2n |n ≥ 0}

1.46 Prove that the following regular languages are not regular. You may use the pumping lemma
and the closure properties of the class of regular languages under union, intersection and comple-
ment.

a) L = {0n1m0n|m,n ≥ 0}

b) L = {0m1n|m 6= n}

c) L = {w|w ∈ {0, 1}∗}

d) L = {wtw|w, t ∈ {0, 1}∗}

1.54 Consider the language F = {aibjck|i, j, k ≥ 0 and if i = 1, then j = k

a) Show that F is not regular.

• Prove that regular languages are not closed under infinite union.

• Show that the class of regular languages are closed under set difference.

• TRUE or FALSE

1. If L1 ∪ L2 is regular and L1 is regular, then L2 is regular.

2. If L1 is regular and L2 ⊆ L1, then L2 is regular.

3. If L1 is regular and L2 is not regular, then L1 ∪ L2 is not regular.

4. If L1 is regular and L1 ∪ L2 is not regular, then L2 is not regular.

5. If L1 is regular and L2 is not regular, then L1 ∪ L2 is not regular.

• Show that union of two non-regular languages is not always non-regular.
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• Midterm Questions

2.4 Give context-free grammars that generate the following languages.

a) {w|w contains at least three 1’s}

b) {w|w starts and ends with the same symbol}

c) {w| the length of w is odd}

d) {w| the length of w is odd and its middle symbol is a 0}

e) {w|w = wR}

f) The empty set

2.4 Give context-free grammars that generate the following languages.

a) The set of languages over the alphabet {a, b} with more a’s than b’s.

b) The complement of the language {anbn|n ≥ 0}

c) {w#x|wR is a substring of x for w, x ∈ {0, 1}}

2.8 Show that the class of context-free languages are closed under the regular operations union,
concatenation and star.

2.10 Give a context-free grammar for the following langauge. A = {aibjck|i = j or j = k where i, j, k ≥
0}. Is your grammar ambigious?
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2.15 Convert the following CFG into Chomsky Normal Form.

A→ BAB|B|ε
B → 00|ε

2.26 Show that if G is a CFG in Chomsky Normal Form, then for any string w ∈ L(G) of length
n ≥ 1, exactly 2n− 1 steps are required for any derivation of w.

2.5 Give informal descriptions and state diagrams of pushdown automata for the languages in 2.4.

2.44 If A and B are languages, define A �B = {xy|x ∈ A and y ∈ B and |x| = |y|}. Show that if
A and B are regular languages, then A �B is CFL.

• For some n ≥ 1, does there exist an n-state PDA which accepts finitely many strings, and at
least one of those strings is of length n?

• Assume that we modify the PDA model so that the stack now has only a finite capacity. Can
this new type of machine recognize any infinite context-free language? Is the set of languages
recognized by this new type of machine equal to the set of regular languages?
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• Show that the following language is not context-free: {w#x|w is a substring of x for w, x ∈
{0, 1}∗} .

2.30 Use the pumping lemma to show that the following languages are not context-free.

a) {0n1n0n1n|n ≥ 0}

2.31 Let B be the language of all palindromes over 0, 1 containing an equal number of 0’s and 1’s.
Show that B is not context-free.

• Show that context-free languages are not closed under complementation and intersection.

2.18 a) Let C be a context-free language and R be a regular language. Prove that the language
C ∩R is context-free.

b) Use part a) to show that the language A = {w|w ∈ {a, b, c}∗ and contains equal number of
a’s, b’s and c’s} is not a CFL.

2.35 Let G be a CFG in Chomsky normal form that contains b variables. Show that if G generates
some string with a derivation at least 2b steps, L(G) is infinite.

3.5 Examine the formal definition of a Turing machine to answer the following questions, and
explain your reasoning.

a) Can a Turing machine ever write the blank symbol on its tape?

b) Can the tape alphabet Γ be the same as the input alphabet Σ?

c) Can a Turing machine’s head ever be in the same location in two successive steps?

d) Can a Turing machine contain just a single state?
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• Midterm Questions

3.10 A Turing machine with doubly infinite tape is similar to an ordinary Turing machine, but
its tape is infinite to the left as well as to the right. The tape is initially filled with blanks except
for the portion that contains the input. Computation is defined as usual except that the head
never encounters an end to the tape as it moves leftward. Show that this type of Turing machine
recognizes the class of Turing-recognizable languages.

3.12 A Turing machine with left reset is similar to an ordinary Turing machine, but the transition
function has the form

δ : Q× Γ→ Q× Γ× {R, RESET}.

If δ(q, a) = (r, b,RESET), when the machine is in state q reading an a, the machine’s head jumps
to the left-hand end of the tape after it writes b on the tape and enters state r. Note that these
machines do not have the usual ability to move the head one symbol left. Show that Turing ma-
chines with left reset recognize the class of Turing-recognizable languages.

3.13 A Turing machine with stay put instead of left is similar to an ordinary Turing machine, but
the transition function has the form

δ : Q× Γ→ Q× Γ× {R,S}.

At each point the machine can move its head right or let it stay in the same position. Show that
this Turing machine variant is not equivalent to the usual version. What class of languages do
these machines recognize?
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3.18 Show that a language is decidable iff some enumerator enumerates the language in lexico-
graphic order.

3.19 Show that every infinite Turing-recognizable language has an infinite decidable subset.

4.10 INFINITEDFA = {〈A〉| is a DFA and L(A) is an infinite language}. Show that INFINITEDFA
is decidable.

4.13 LetA = {< R,S > | R and S are regular expressions and L(R) ⊆ L(S)}. Show that A is
decidable.

4.24 A useless state in a pushdown automaton is never entered on any input string. Consider the
problem of determining whether a pushdown automaton has any useless states. Formulate this
problem as a language and show that it is decidable.

• If a language L is a Turing recognizable but not decidable, then any TM which recognizes L
must fail to halt for infinitely many input strings.

• Let L be the language of all Turing machine descriptions 〈M〉 such that there exists some input
on which M makes at least 5 moves. Show that L is decidable.
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4.20 Let A and B be two disjoint languages. Say that language C separates A and B if A ⊆ C
and B ⊆ C̄. Show that any two disjoint co-Turing-recognizable languages are separable by some
decidable language.

4.21 Let S = {< M > |M is a DFA that accepts wR whenever it accepts w}. Show that S is
decidable.

4.29 Let CCFG = {〈G, k〉|L(G) contains exactly k strings where k > 0 or k = ∞}. Show that
CCFG is decidable.

4.30 Let A be a Turing-recognizable language consisting of descriptions of Turing machines,
{〈M1),M2〉, . . . }, where every Mi is a decider. Prove that some decidable language D is not
decided by any decider Mi whose description appears in A. (Hint: You may find it helpful to
consider an enumerator for A.)

• Given an example of a language L such that L is co-Turing recognizable but its complement is not.

• Prove that the language {< M,w, q > | M is a Turing machine which visits state q during its
execution when started with input string w} is undecidable.

• Show that the set of undecidable languages are closed under complementation.

• Prove: A language is Turing recognizable iff there exists an enumerator which enumerates it such
that every string in the language appears only once in the listing.

• Disprove: Every countable language is decidable.

9


