_ /

Requirements
Engineering

— - /

Requirements engineering

® Process of figuring out
¢ Services the customer needs

e Constraints of operation

e [t is about WHAT will be built!

— - /

Why Develop Requirements Specs?

[believe that on any non-trivial project (more
than about 1 week of coding or more than 1
programmer), if you don't have a spec, you will
always spend more time and create lower
quality code.

Joel Spolsky

http://www.joelonsoftware.com

Requiremen ts engineering

— - /

Requirement

® Descriptions of
e system services

e constraints

® Gathered during the requirements
engineering process.

Requirements engineering

— - /

What is a requirement?

® Depends...
e high-level abstract statement

¢ detailed mathematical functional
specification

— - /

Formal Specification -- VDM

pi: Path = 1311<_token = {mk_Conflict(p1,p3),
("AiNorth"); mk_Conflict(p1,p4),
p2 : Path = mk_token mk_Conflict(p2,p3),

HA S th" ;
(| ; a(ilﬁ ! 111](en mk_Conflict(p2,p4),

(
(
(
P3 A66East"); — mk_Conflict(p3,p1),
mk_Conflict(p4,p1),
(
(

l)(‘k Aggwes’ﬂq;{(_tOl(en mk_Conflict(p3,p2),
lights : map Path to Light mk_Conlflict(p4,p2)};
= {p1 |-> <Red>,
p2 |-> <Red>, Types
p3 |-> <Green>, Light = <Red> | <Amber> |
<Green>;

P4 |-> <Green>};

Requirements engineering

— - /

Requirement Spec Use

® Design

¢ Communicate

® Test

/ o /

Types of Requirements

¢ Functional
e Behavior of system
e From users point of view
e Non-functional
e Non behavior related constraints

o L /

Types of requirement

e User requirements
e Written for customers
e Natural Language
e Diagrams

e System requirements

e Detailed descriptions system functions, services, and
operational constraints.

Requirements engineering

/

/Tmrequir?ments

e Functional
e Services the system must provide

e Non-functional
e Constraints on the services
e i.e timing, development process, standards, etc.

e Apply to whole system rather than functions

Requirements engineering 10

— - /

Good SRS

e Correct

e Unambiguous

e Complete

e Consistent

e Ranked for importance and/or stability
e Verifiable

e Modifiable
e Traceable

11

— - /

Clear description

® Must be precise

® Ambiguous requirements
e Different interpretation

e How can we avoid ambiguity?

— - /

Completeness & Consistency

e Should be complete & consistent

e Complete
e All required functionality is stated
e Consistent

e There are no conflicts between
requirements

® In practice: Impossible

Requiremen ts engineering 13

/ - /
Non-functional requirements

e System properties and constraints
e Up time
e Response time
e Storage requirements
e Usability
® Process requirements
e IDE
e Programming language
e Development method.
® May be more critical than functional requirements

Requirements engineering 14

_Verifiable Non-fu\ncﬁonaf/

Requirement Description

e Verifiable non-functional requirement
e Measurable
e Can be tested

e Difficult to state precisely - difficult
to verify.

_ /

Metrics for nonfunctional requirements

Property Measure

Speed Processed transactions/second
User/event response time
Screen refresh time

Size Mbytes
Number of ROM chips

Ease of use |Training time
Number of help frames

Requirements engineering 16

__Metrics for NFW

Reliability Mean time to failure
Probability of unavailability
Rate of failure occurrence

Availability

Robustness | Time to restart after failure
Percentage of events causing
failure

Probability of data corruption on
failure

Portability Number of target systems

Requirements engineering 17

Gmfor writing requirements

e Use a standard format

® Be consistent

e Use shall for mandatory requirements

e Highlight key parts

e Use structure to group related requirements

e EFnumerate

— - /

Requirement Language

e Requirements are often written in natural
language (e.g., English).

e inherently ambiguous

e should be reviewed by an independent
party to identify ambiguous language so
that it can be corrected

— - /

Consistency
e With external objects

e Incorrect descriptions of real objects

e Ex: Blue background vs Green background
® Logical (AxBvsA/B)
e Temporal (A after B vs A and B simultaneously)
e Note: Use consistent and precise terminology

® Agreement with terminology in a project team
is crucial

Requirements engineering 20

_Requirern ong —

guirements engineering
processes

® Requirements elicitation

e Requirements analysis

¢ Requirements validation
® Requirements management

¢ In practice
e iterative activity
e processes are interleaved.

Requirements engineering 21

_Requirements elicitation and

analysis

e Requirements discovery
® Requirements classification and organization
e Requirements prioritization and negotiation

e Requirements specification

— - /

Scenarios

® Scenarios are real-life examples
e Consists of
e Starting situation
e Normal flow of events
e What can go wrong
e Information about other concurrent
activities
e Finishing situation

Requirements engineering 23

— - /

Use cases
e Scenario based technique in the UML

e [dentifies the actors and the interaction

e A set of use cases should describe all
possible interactions with the system.

Requirements engineering 24

— - /

Use cases for Hospital System

Register Export
patient % statistics
% < View Aanag§ c t
Medical receptionist personal info. enerate
report
% View record % /
Nurse
: Doctor
Edit record
Setup

consultation

Requirements engineering 25

— - /

Requirements validation

® Do the requirements define the system that
the customer really wants?

® Requirements error is very costly

— - /

Requirements checking

e Validity. Does the system provide the functions
which support customer needs?

e Consistency. Are there requirements conflicts?

e Completeness. Are all functions required by the
customer included?

e Realism. Can the requirements be implemented
given available budget/technology

e Verifiability. Can the requirements be checked?

Requiremen ts engineering 57

mments validation

® Requirements reviews

e Systematic manual analysis of requirements.
® Prototyping

e Using an executable model of the system to
check requirements.

® Test-case generation

e Developing tests for requirements to check
testability.

Requirements engineering 28

— - /

Review checks
e Verifiability
¢ [s the requirement realistically testable?
e Comprehensibility
¢ [s the requirement properly understood?
e Traceability
e [s the origin of the requirement clearly stated?
e Adaptability

e Can the requirement be changed without a
large impact on other requirements?

Requiremen ts engineering 29

— - /

Summary

e What software requirements are
® How to write requirements

e Good practices

e Elicitation

¢ Validation

Requirements engineering 30

