
Programming Assignment 5
CMPE 250, Data Structures and Algorithms, Fall 2014

Instructor: A. T. Cemgil
TA’s: Barış Kurt, Atakan Arıkan

Due: 10 January 2015, 23:59

External Sorting

Sorting is the most fundamental algorithmic problem in computer science and it’s usually the first
step of the solutions of many large scale problems. Therefore, many sorting algorithms have been
invented for different purposes. With the recent developments in networking and mobile services, we
are constantly generating and processing huge amounts of data that is impossible to fit into a single
memory. Instead, we use external sorting methods.

External sorting is a term for a class of sorting algorithms that can handle massive amounts of
data. External sorting is required when the data being sorted do not fit into the main memory of
a computing device (usually RAM ) and instead they must reside in the slower external memory
(usually a hard drive).

External sorting typically uses a hybrid sort-merge strategy. In the sorting phase, chunks of data
small enough to fit in main memory are loaded to memory, sorted, and written out to a temporary
file. In the merge phase, the sorted data portions in the temporary files are merged into a single
larger file.

1. Read data from the disk that can fit into your memory.

2. Sort the data with a conventional sorting algorithm.

3. Write the sorted data to a temporary file on the disk.

4. Repeat steps [1-3] until all the data is partially sorted.

5. Merge the data in the temporary files into a single file.

Assignment

You are going to be given a text file containing a few thousands of double precision numbers and
you will not be allowed to use memory of size 8 × 1024 = 8K bytes, which means you can load at
most 1024 double precision numbers into your memory at once.

1



60K

8K

sorted

8K

sorted

8K

sorted

8K

sorted

8K

sorted

8K

sorted

8K

sorted

4K

sorted

16K

sorted

16K

sorted

16K

sorted

12K

sorted

32K

sorted

28K

sorted

60K

sorted

Figure 1: 2-way external sorting of a file of size 60K bytes. The temporary files are drawn dashed.

Rules:

• You need to implement your own sorting algorithm for step 2. It’s recommended that you
implement one of the O(n log n) algorithms like HeapSort, MergeSort, or QuickSort. But
remember the memory rule: you cannot exceed your memory limit. For example, if you use
MergeSort, you can sort at most 512 numbers, since the sort algorithm itself uses O(n) space
for merging. You can use recursive QuickSort although it uses O(log n) memory in the stack
space.

• You are free to implement any merging algorithm. Figure 1 shows an example of 2-way external
merge sort. You can use different merging methods if you want.

• You cannot use any containers in the STL or any 3rd party library. This means using vector,
map, set, queue, priority queue, etc... is forbidden. If you want to implement HeapSort, you can
use std::make heap(), std::push heap(), std::pop heap() functions from the algorithm library.

• If you do not make external sorting, or do not write your own sorting function you are going
to get negative points for cheating.

2



Input/Output

Your algorithm will be tested with the following command:

./project5 [input_file] [output_file]

The input file contains the unsorted double precision numbers, one at a line. The first line in
the input file will be the total number of numbers. The output file will contain those numbers in
increasingly sorted order.

Temporary Files

There’s no limit on the number of temporary files you can open. But you can create temporary files
under the /tmp directory only. In Linux systems, /tmp is specially designed to store temporary files
and it’s cleared at reboot. However, in this project you are supposed to delete your own temporary
files immediately when they are no more required. In C++, there is a remove() function for deleting
files which is defined in cstdio library.

Report

This time, you are asked to write a 1 page report in .pdf format to explain your strategy in solving
this problem. You need to be specific and clear about which sorting algorithm you used to sort small
parts, and how did you merge the temporary results. What is the total runtime of your design? How
much extra external memory do you use? You shoud submit this document also via git.

Submission Details

You are supposed to use the Git system provided to you for all projects. No other type of submission
will be accepted. Also pay attention to the following points:

• All source codes are checked automatically for similarity with other submissions and exercises
from previous years. Make sure you write and submit your own code.

• You are expected to use C++ as powerful, steady and flexible as possible. Use mechanisms
that affects these issues positively.

• Make sure you document your code with necessary inline comments, and use meaningful vari-
able names. Do not over-comment, or make your variable names unnecessarily long.

3


