CMPE 300 ANALYSIS OF ALGORITHMS
MIDTERM ANSWERS

1. 
a) function InsertionSort (L[0:n-1], i)
	if (i>0) then
		call InsertionSort (L[0:n-1], i-1)		// sort L[0:i-1] by recursive calls;
		current  L[i]						// then place L[i] into proper position
		position  i-1						// in L[0:i-1]
		while (position ≥ 0) and (current < L[position]) do
			L[position+1]  L[position]
			position  position-1
		endwhile
		L[position+1]  current
	endif
end

The algorithm is called initially as “call InsertionSort (L[0:n-1], n-1)”.

b) Basic operation is the comparison “(current < L[position])”.

We can view the algorihm as formed of two parts: i) the recursive call (T1) and ii) placing L[i] into proper position in L[0:i-1] (T2). Thus, we can write
T = T1 + T2
So,
A(n) = E[T] = E[T1] + E[T2] = A(n-1) + E[T2]
Now, we need to find E[T2], i.e. part (ii) for data size n. This depends on where L[n-1] (current) will be placed in L[0:n-2]. We have the following cases:
There will be 1 comparison if L[n-2]≤L[n-1]
There will be 2 comparisons if L[n-3]≤L[n-1]<L[n-2]
There will be 3 comparisons if L[n-4]≤L[n-1]<L[n-3]
...
There will be n-1 comparisons if L[0]≤L[n-1]<L[1]
There will be n-1 comparisons if L[n-1]<L[0]
Assuming that each case is equally likely (there are n cases), we have the following probability distribution:
p(T2=i) = 1/n 	for 1≤i≤n-2
p(T2=i) = 2/n 	for i=n-1
Using the expectation formula,

So,
A(n) = A(n-1) + . That is,
A(n) = A(n-1) + x(n),  for x(n)=; A(0)=0
If we solve this by backward substitution, we get


2. 
a) Assume that n=2k+1.
Assume that when the algorithm is called with L[low:high] and the search element is compared with L[low+(high-low)/4)] (say, L[middle]), the two sublists will be L[low:middle] and L[middle:high] (instead of L[low:middle-1] and L[middle+1:high] as in the original algorithm) to maintain the 2k+1 data size at each call.
Best case occurs if we choose the smaller sublist at each iteration until we reach a sublist with size one. Then, the search element will be compared, for example, with L[2k/4] (i.e. L[2k-2]), L[2k-2/4] (i.e. L[2k-4]), L[2k-4/4] (i.e. L[2k-6]), ..., L[0]. The number of comparisons is k/2. So,
,   for n=2k+1.
 and  are eventually nondecreasing;  is Ө-invariant under scaling. So, by interpolation,
, for all n.

b) Assume that n=3k+1.
Worst case occurs if we choose the larger sublist at each iteration and the search element does not occur in the list. Then, X will be compared with L[n-3], L[n-6], L[n-9], ..., L[1]. The number of comparisons is . That is,
,   for n=3k+1.
 and  are eventually nondecreasing;  is Ө-invariant under scaling. So, by interpolation,
, for all n.

3. 
a) x(n) = 5 x(n-1) – 6 x(n-2)
Characteristic equation: α2 = 5α – 6
When we solve, we obtain two real roots: α = 2, α = 3
So, the solution will have the form: x(n) = c1 2n + c2 3n
From the initial conditions,
	9 = c1 + c2
	20 = 2 c1 + 3 c2
We obtain c1 = 7 and c2 = 2
Thus, the solution is:
x(n) = 7 2n + 2 3n

b) By backward substitution:




...

Set 







c) For any functions f(n), g(n), h(n)  ,
	Reflexivity: f(n)  Ө (f(n))
There must exist positive constants c1, c2, and no such that
c1 f(n) ≤ f(n) ≤ c2 f(n), whenever n ≥ no.
If we take c1 = c2 = no = 1, it is obvious that this equation is satisfied.
	Symmetricity: f(n)  Ө (g(n))  g(n)  Ө (f(n))
From the left part of the equation, we know that there exist positive constants c1, c2, and no such that
c1 g(n) ≤ f(n) ≤ c2 g(n), whenever n ≥ no.
It follows that
g(n) ≤ (1/c1) f(n) and g(n) ≥ (1/c2) f(n)
Thus, (1/c2) f(n) ≤ g(n) ≤ (1/c1) f(n), whenever n ≥ no (for the same no value)
Since (1/c1) and (1/c2) are constants, the property g(n)  Ө (f(n)) is satisfied.
	Transitivity: f(n)  Ө (g(n)) and g(n)  Ө (h(n))  f(n)  Ө (h(n))
From the left part of the equation, we know that there exist positive constants c1, c2, no, d1, d2, mo such that
c1 g(n) ≤ f(n) ≤ c2 g(n), whenever n ≥ no
d1 h(n) ≤ g(n) ≤ d2 h(n), whenever n ≥ mo.
It follows that
f(n) ≤ c2 (g(n)) ≤ c2 (d2 h(n)), whenever n ≥ maximum of (no, mo)
and
f(n) ≥ c1 (g(n)) ≥ c1 (d1 h(n)), whenever n ≥ maximum of (no, mo)
Thus, c1 d1 h(n) ≤ f(n) ≤ c2 d2 h(n), whenever n ≥ maximum of (no, mo).
Since c1 d1 and c2 d2 are constants, the property f(n)  Ө (h(n)) is satisfied.
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