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Abstract

We are proposing a Customizable Embedded Processor Array for Multimedia Applications (CPAMA). This architecture
can be used as a standalone image/video processing chip in consumer electronics. Its building blocks are all designed
to achieve low power and low area, thus it is a good candidate for low cost consumer electronics. Our contribution is,
designing a configurable embedded multimedia processor array considering the nature of image/video processing applica-
tions. This approach is considered in all the basic blocks of the architecture. Because of its configurable architecture and
ability to connect with other devices, it may be used in a large domain of applications. Our architecture is purely imple-
mented with VHDL. It is not dependent on any technology or design software. We have implemented our architecture
for di↵erent applications on a Xilinx Virtex-5 device and as a number of Application Specific Integrated Circuits (ASIC)
by using 90nm CMOS technology. Experimental case studies show that CPAMA has better or comparable results to the
existing similar architectures in terms of performance and energy consumption. Our studies show that throughput of
CPAMA is 0.3x-2.4x times better than ADRES. Energy consumption of CPAMA is 31%-50% less than ADRES. On the
other hand, in one configuration of IDCT application, CPAMA provides 56% less throughput and consumes 55% more
energy than ADRES.

Keywords: Customizable Processor Array, Flexible instruction, Image processing hardware, Domain specific
computing, Time-to-market

1. Introduction

Computing hardware design methodology has evolved
significantly over the years. As chips get larger and com-
plexity of each design increases, flexibility and quick time
to market in the form of reprogrammable/reconfigurable5

chips and systems increase in importance [1]. Several
Multi Processor System on a Chip (MPSoC) and Coarse-
Grained Reconfigurable Architectures (CGRA) have been
proposed in recent years [2, 3, 4]. Using CGRAs may be
preferred for several reasons such as speed, area, power or10

IP re-usability [3]. Furthermore, comparing to Field Pro-
grammable Gate Arrays (FPGA), CGRAs have a shorter
reconfiguration time. CGRAs are suitable for systems that
require intensive computations. By adjusting the number
and structure of processing elements on a CGRA, we can15

obtain an architecture that meets the requirements of the
computation.

Image/video processing is an area where algorithms
need intensive computation with high performance. Han-
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dling this kind of computation usually requires custom20

hardware [5]. Considering today’s technology, every
portable device tends to have a camera, e.g. glasses,
watches, smart phones, etc. Each device has its own con-
figuration and requires mostly di↵erent features. Design-
ing dedicated hardware for image processing tasks for ev-25

ery device is time consuming and not economically feasible
at all. In most devices, image processing tasks are handled
using System-on-Chips (SoC) with DSP or GPU cores. If
a designer chooses to use commercial SoCs, he/she has to
accept what the chip o↵ers, in terms of speed and power30

dissipation. Those architectures may include redundant
parts that might not be used at all. This redundancy leads
to extra chip area usage and power dissipation. On the
other hand, implementing an image processing task on a
CGRA yields e�cient results in terms of area, power dissi-35

pation, or speed comparing to commercial SoCs [6]. Time-
to-market of an image/video processing system, which is
implemented on customizable cores like CGRAs, is less
than that of a custom Application Specific Integrated Cir-
cuit (ASIC) [7]. Besides, it is easy to adopt such sys-40

tems for later alterations. Consequently, we can say that
CGRAs are suitable for image/video processing tasks of
low power, low cost consumer electronics.

In this paper, we introduce a Customizable Embedded

Preprint submitted to Integration, the VLSI Journal June 5, 2017

This is the accepted version of the paper published in INTEGRATION, the VLSI journal. Published version may differ. 
DOI: 10.1016/j.vlsi.2017.09.009



Processor Array for Multimedia Applications (CPAMA).45

CPAMA consists of a processor array for intensive com-
putation, and a host processor for control and coordina-
tion with other devices. Our configurable architecture is
designed by considering the nature and requirements of
image processing algorithms:50

• CPAMA processes a multimedia application in se-
quences of image blocks. Hence, we design a config-
urable processor array which concurrently processes
all pixels in an image block.

• Each processor of CPAMA can also be configured ac-55

cording to the position of a pixel in an image block
depending on the application.

This architecture can be used for domains that require in-
tensive computation such as image/video processing, and
scientific computations that can be mapped onto a 2 di-60

mensional (2D) processor array.
This paper is organized as follows: In Sec. 2 we mention

the related architectures in literature and demonstrate the
di↵erences with the proposed CPAMA. In Sec. 3, we ex-
plain the basic concepts that we refer in CPAMA design.65

In Sec. 4 we present the configurable hardware architec-
ture of CPAMA in details. In Sec. 5, we present our case
study implementations and make comparisons with the ex-
isting similar architectures. Finally in Sec. 6, we make our
remarks on the CPAMA architecture and conclude the pa-70

per.

2. Related Works

Mei et al. [3] proposed a template-based CGRA called
Architecture for Dynamically Reconfigurable Embedded
System (ADRES). Coarse grained reconfiguration refers75

to reconfiguration in relatively high level modules, not in
logic blocks or in Look Up Tables(LUT) as in an FPGA. A
design tool, namely Dynamically Reconfigurable Embed-
ded System Compiler (DRESC)[8], is used for this archi-
tecture to generate the design. Propagating data, in other80

words performing iterations, is implemented in a stream
manner. Total performance of the array is strictly related
to the e↵ectiveness of scheduling and mapping of the ap-
plication code onto processing elements, which is handled
by DRESC tool. It is known that optimum scheduling in85

DRESC is an NP-Hard problem. Therefore, the outcome
of the scheduler, which is implemented using a heuristic
method, is expected to be a sub-optimal solution. An-
other work related to ADRES [6] suggests that a failure in
performance increase despite increasing the size of the ar-90

ray may be caused by a lack of scalability of the scheduling
algorithm.

Marshall et al. [9] proposed another CGRA called
CHESS, where multimedia applications are taken into ac-
count. Despite the reconfiguration word in its definition,95

most of the features of this array are kept fixed, e.g., num-
ber of registers, processors, instructions, etc. The reconfig-
uration is performed by only changing the program mem-
ory. CHESS can be considered as predecessor of ADRES.

Related to CGRAs, data partitioning and instruction100

scheduling techniques are also studied [10]. The target ar-
chitecture is a variant of ADRES. Moreover, a recent study
[11] focuses on power optimizations on the same target ar-
chitecture. In these two studies [10, 11], the emphasis is
not on proposing a new architecture, but on instruction105

scheduling, data partitioning techniques for a CGRA like
ADRES in order to achieve better speed and power con-
sumption results.

Eichel [12] proposed MEP architecture for developing
multimedia applications. The architecture consists of a110

RISC processor and an accompanying VLIW co-processor.
The architecture has only instruction level parallelism.
The configurable part of the architecture is the VLIW part.
It is explained that, the RTL definition of the configurable
part is generated based on a customised instruction-set115

architecture.
Chu et al. [13] proposed a programmable architecture

called UniCore. This design is optimised for MPEG4 en-
coding. The whole architecture is not reconfigurable. It
is composed of a 32-bit conventional processor, DSP like120

units and 4 co-processors. Programmability is achieved by
the firmware that runs on the processor and co-processors.

Başsoy et al. [14] proposed an FPGA based customiz-
able processor architecture called SHARF. SHARF has
multiple ALU units controlled by the same control unit.125

ALUs receive instruction addresses from the same bus
which is driven by the control unit. ALUs are tightly cou-
pled with the control unit. In this architecture, tightly
coupling may cause communication overhead, and more-
over may restrict scalability.130

Masselos et al. [15] concentrated on low power mapping
of multimedia applications on VLIW multimedia proces-
sors. They searched methods for mapping tasks on the
commercial processors rather than designing their own ar-
chitectures.135

Sanghai and Gentile [16] explored software parallelism
in multimedia applications using a dual-core DSP. It is
expressed that developing scalable parallel software greatly
depends on the e�cient use of the interconnect network,
memory hierarchy, and the peripheral resources. While140

designing our CPAMA architecture, we have considered
the methods which are proposed for software parallelism
in [16].

Rashid et al. [17] proposed implementation of an appli-
cation specific instruction set processor using a software145

called LISATek, which is now owned by Synopsys [18]. In
this study, the speed-up relies on instruction level par-
allelism only. A RISC processor provided by LISATek is
extended by processor data-path extension using the mech-
anisms in the tool. In CPAMA, not only instruction level150

parallelism, but also processor level parallelism is targeted.
Göhringer and Becker [19] proposed a runtime recon-
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figurable architecture called Runtime Adaptive Multi-
Processor System-on-a-Chip (RAMPSoC). Parallel pro-
cessing elements of the architecture are connected through155

a Network-on-Chip (NoC) called Star Wheels. This net-
work is composed of groups that may have di↵erent num-
ber of processing elements. Processing elements of a group
can communicate with each other through a switch, and
processing elements of di↵erent groups can communicate160

through other larger switches.
Di↵erent digital implementations of Cellular Neural

Network, which is an analog image processing structure,
are proposed in several studies [20, 21, 22, 23]. These archi-
tectures are capable of filter based image/video processing165

algorithms.
A configurable video decoder architecture [7] was pro-

posed for mobile terminals. This architecture consists of a
conventional application processor accompanied by a co-
processor. The co-processor is composed of basic functions170

(hardware blocks) of H.264 decoder such as loop filter, mo-
tion compensation and integer transformation. Communi-
cation between the application processor and co-processor
is implemented with a bus architecture. This study aims
to decrease the time-to-market of a system that requires175

video decoding, and proposes an adaptable architecture
for future standards by making configurable parts.

STP engine [24] is a multi processor accelerator IP, cur-
rently provided by Renesas Inc. It is used with a com-
piler tool called Musketeer [25]. Di↵erent stream appli-180

cations [25, 26] are implemented using STP engine. The
current version [24] has 256 processing cores with 8-bit
word length. STP engine can be considered as a fixed size
CGRA with fixed word length.

The literature can be classified into three groups: 1)185

CGRAs, 2) architectures essentially built for specific ap-
plications, and 3) technology/device dependent architec-
tures.

The di↵erence between proposed CPAMA and CGRAs
[3, 9, 10, 11] is that CPAMA consists of fully customizable190

processors, whereas CGRAs consist of configurable func-
tional units, like Arithmetic Logic Units (ALU). Besides,
data are shared by multi-port register files in CGRAs, yet
this task is handled through NoC with packets in CPAMA.
Some CGRAs [3] have scalability issues. It is hard to com-195

ment on performance values in some studies [10, 11], be-
cause the results are given as normalized values. Last
but not least, the problem that needs to be solved on
ADRES [8] is stated as a loop expansion problem. Instead
in CPAMA, the nature of image processing algorithms is200

considered as explained in Sec. 3. Since STP [24] is a hard
IP, the number of processing cores and the word length are
fixed. On the other hand, in CPAMA, the full architec-
ture is compile-time configurable, including the number of
processing cores, word-length, array size and dimensions.205

Yet, contexts of CPAMA are also generated o✏ine as it is
done in STP.

The architectures mentioned in [7, 13, 20, 21, 22, 23] are
essentially designed for a specific purpose or an applica-

tion. These architectures are configurable for implement-210

ing that specific application, such as filtering, encoding,
etc. On the other hand, CPAMA is designed to support
several types of image/video processing applications as ex-
plained in Sec. 3.

Some architectures are tailored for a specific device or215

technology [14, 19]. For instance RAMPSoC [19] uses
FPGA primitives like reconfiguration ports. This type of
primitives make the architecture dependent on even some
specific FPGA vendors. The other architecture Sharf [14]
is targeting FPGAs as well but not necessarily dependent220

on them. However, tightly coupling between the controller
and the processor elements makes Sharf hardly scalable.
Our proposed architecture does not rely on a specific tech-
nology or a device, and it is easily scalable. CPAMA is a
soft IP. It is written in pure VHDL. Hence, FPGA is only a225

target platform for our architecture and we do not explic-
itly use any primitives of an FPGA device. However, when
CPAMA is mapped onto an FPGA, the synthesizer maps
adders, multipliers, memories, etc. onto primitives of the
FPGA. The same design concept also applies for mapping230

CPAMA to ASIC. Experimental results are given about
scalability of our architecture in Sec. 5 of this paper.

3. Basic Concepts of CPAMA

CPAMA is mainly designed to be vastly generic and flex-
ible. In every development cycle of CPAMA, requirements235

and characters of image processing applications have been
considered. Register files of the processors, data-path
design, instruction set of the processors, communication
among the processors, and FIFO structures are all studied
considering the image processing domain. CPAMA has a240

template-based configurable structure. As any template
structure, CPAMA has both fixed and configurable parts
in its design. We have primarily considered supporting as
many image processing algorithms as possible, while mak-
ing a decision about whether a unit should be fixed or245

configurable. For instance, the number of ports of Con-
stant Memory is fixed, however bit width of the address
input of Constant Memory depends on the number of dif-
ferent constant instances. This is further explained in Fig.
7 and in Sec. 4.1.250

Images are processed block by block on CPAMA. Each
block size is equal to size of the processor array, i.e. proces-
sor array height ⇥ processor array width. Due to advan-
tages of hardware & software co-design methods, CPAMA
is designed in two parts; hardware and software. Con-255

ceptual architecture of CPAMA is shown in Fig. 1. The
names in Fig. 1 are selected to present basic, abstract
structure of CPAMA. In Fig. 1, upper dashed blocks are
implemented on the same chip, that are hardware parts of
a target design. However, the host processor in the lower260

dashed block can be implemented on or o↵ the same chip.
Software running on the host processor would be the soft-
ware part of a target design. Global memory should be
implemented on a separate chip in most cases due to its
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size. In this paper, modules presented as work items in265

Fig. 1 will be mostly referred as processors. Hence, the
network that is composed of processor nodes will be called
as processor array. Every work item has a private memory
which may be registers that are available only for the work
item itself. In addition, there is a local memory available270

for data sharing between the work item and global data
cache. Local memory represents the FIFO registers of a
processor.

Global Data Cache

Global Memory

Global/Host Processor

Compute Device

work 
item

private 
memory

node 1,1

local memory

work 
item

private 
memory

node 1,2

local memory
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local memory

work 
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private 
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local memory

.

.
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Figure 1: Conceptual device architecture of CPAMA.

To clarify which image/video processing algorithms are
targeted, we would like to address classification of image275

processing algorithms that have been made earlier [27, 28].
Although there are di↵erences in expression of the classifi-
cations, these studies classify image processing algorithms
into three categories:

1. Point: The output value at a specific coordinate is280

dependent only on the input value at that same coor-
dinate.

2. Local: The output value at a specific coordinate is

dependent on the input values in the neighborhood of
that same coordinate.285

3. Global: The output value at a specific coordinate is
dependent on all the values in the input image.

With CPAMA, we target to cover the algorithms described
in 1 and 2 above. We do not focus on the third class in
this study although it can be achieved through our ar-290

chitecture. Besides, one should note that; although the
classification is given for still image processing algorithms,
CPAMA supports video processing and image processing
algorithms that are defined by more than one input image.
This classification is presented only to demonstrate what295

kind of processing we are dealing with, regardless of the
number of the input images or whether images/frames are
received continuously.

In CPAMA, the whole raw image is assumed to be
stored on a RAM to avoid standard image representations.
A dedicated memory management unit is responsible for
sending and receiving the blocks of an image. An image is
assumed to be like the one in Fig. 2. Surrounding pixels

pixel

block

neighboring pixels
non-real pixel case (r = 1)

iteration way

neighboring pixels
real pixel case (r = 2)

U‹·› L B:T‹ÿÂ·›ÿÂ;

Figure 2: Assumed image and primitive definitions of image pro-
cessing.

of a block are called neighboring pixels[29]. They may be
needed in an algorithm which calculates the result pixel by
its neighboring pixels, e.g. filtering algorithms. To explain
basic parameters in our architecture, a sample algorithm
is given in Eq. 1.

yi,j [u] =
rX

n=�r

c1 ⇤ x1i+n,j+n[u] + c2 ⇤ x2i+n,j+n[u] + ...

(1)
Throughout the text unless otherwise stated; r represents
the neighborhood depth, x represents images (frames), ci300

represents constants and u represents time. The number
of di↵erent x s (e.g. x1, x2, etc.) determines the number
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of images (frames) that are used in the algorithm. In fil-
tering applications the number of images can be just one.
However, in motion detection [30], and block-match [31]305

algorithms, there can be two or more successive frames of
a video.

Depth of the neighborhood is indeed an important pa-
rameter, since it a↵ects the amount of data to be sent.
This parameter is equal to one for the upper block and310

two for the lower block in Fig. 2. If a series of algorithms
are implemented on the same design, r only can be zero
or the same positive value in each algorithm, because r af-
fects the size of the FIFO which is explained in Sec. 4.1.1.
However one can change it before compilation.315

Non-real pixels in window
Depth  of windowing (p = 1)

iteration way

window
real pixel case (p = 2)

Block 2

Block 1

Figure 3: Image processing using windows. p represents the window
width.

When considering local image processing algorithms,
each block may not have real neighboring pixels like the
upper block shown in Fig. 2. Mentioned block is on the
boundary of the frame so its neighboring imaginary pixels
should be chosen in a specific way. They may be cho-320

sen as their own values (zero-flux method), fixed value
(e.g. zero), or pixels of a di↵erent block even in a di↵erent
frame. The last option may be needed if the algorithm is
performed by using more than one frame.

Imaginary pixels - non-real pixels - may be needed in325

other algorithms which use windows as well. Fig. 3 shows
how an algorithm may need non-existent pixels when they
do not use neighbouring pixels. Window is basically a sub-
block of an image which the algorithm is defined in. In Fig.
3, p represents the window width. Main di↵erence between330

the algorithms that are defined by using neighboring pix-
els and windowing is the amount of required data. In an
algorithm that is defined by an r neighborhood, processing
one block of an image requires (N + 2r) ⇤ (M + 2r) num-

ber of pixel data, where N and M are width and height335

of a block, respectively. However, when a window is used,
N ⇤M number of pixel is enough to do the processing. The
top left block in Fig. 3 shows the necessity of imaginary
pixels when we do not use neighboring pixels.

As explained in Fig. 2 and Fig. 3, processing a block340

requires pixels of the block itself and some extra pixels due
to neighboring, etc. To allocate the pixels required for the
computation, a data structure is created. We can assume
each image object has an accompanying data structure
instance in the cache that stores the block that is ready345

to be processed. In order to support di↵erent neighboring
configurations, we propose a FIFO communication that
sends cache content to processor array. These hardware
blocks are discussed in Sec. 4.1.1.

4. Hardware Design350

Hardware side of CPAMA consists of a 2D grid network
structure as shown in Fig. 4. Considering the nature of
image processing, there is a strong similarity between a
2D signal (image) and a 2D Mesh NoC. Therefore, we
preferred this type of network in CPAMA.355

Figure 4: Network on chip communication and basic blocks of hard-
ware.

One processor is connected to each node. Data com-
munication among processors is done by routers. Image is
delivered by FIFOs or routers through the network. FIFOs
are placed in processors, and deliver the data in one (ver-
tical) direction. Synchronization of the FIFOs is handled360

by global commands which are sent from host processor.
FIFO communication is built separately. In other words,
delivering one block of an image may not be carried out by
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routers. In this way, processing elements on the network
and FIFO elements, which are responsible from sending-365

receiving data, can operate concurrently.
We need to show how one block of an image is allocated

among our processor array architecture. Fig. 5 explains
the relation between the locations of pixels and the names
of registers together with their hosting processors. Fig. 5370

shows one block of an image. Each small square represents
a pixel. Inner square (blue) represents center pixels of the
processors. Outer (pink) pixels are neighboring pixels. Pi,j

represents the processors in the array. Rk represents the
registers storing the related pixel. Each register stores one375

pixel. In short, each pixel is stored in a register Rk which
is located in a processor Pi,j . From Fig. 5, one can see that
each Pi,j has to store di↵erent number of pixels, so each
one of them has di↵erent number of registers. Processors
which are not located on the boundaries have just one380

register to store one pixel of the related image.

Figure 5: Pixel allocation method for a block of image. r=2 on a
4⇥4 processor array.

For a better understanding, we show data communica-
tion through FIFOs in Fig. 6. The connections between
FIFO registers (FR) are shown in Fig. 6. Here, coor-
dinates (ids) of the processors are defined by colors and385

written at the bottom of each colored rectangle. So, regis-
ters with the same color belong to the same processor. For
instance, red registers belong to the top left most proces-
sor, i.e. P11. The connections between the FIFO registers
are in one vertical direction. Fig. 5 and Fig. 6 should390

be considered together. In both figures, r = 2, and we as-
sumed our design to have a 4 ⇥ 4 processor array. We have
mentioned that synchronization in the FIFO is handled by
global commands. When the FIFO receives all the data
of a block, global processor emits a command for copying395

content of the FIFO into registers of processors. Thus,
processors get ready to operate, and FIFO gets ready to
receive a new block. Further information about FIFO and
the register file is given in Sec. 4.1.1. We have a serial-

Figure 6: Communication of FIFO registers. r=2 on a 4⇥4 processor
array.

to-parallel data converter at the input of the FIFO and a400

parallel to serial data converter at the output of the FIFO.
In this way, we send and receive data serially to and from
FIFO. Sending cache content to the FIFO needs to be done
accordingly. In order to deliver the pixels to their corre-
sponding locations, the pixel that should be sent first, has405

to be the last pixel of the block. We also provide mul-
tiple data input and output capability instead of a data
converter. This option has to be chosen accordingly in
CPAMA design. We left this feature optional to the user,
because there might be no need to deliver all data in paral-410

lel in an application if computation takes more time than
the communication. The area shaded with gray in Fig. 6
shows FIFO registers that are required for center pixels of
the processors. Rest of them are needed for neighboring
pixels, when r is assumed as 2. Synchronization signals415

sent from software part are not shown here for the sake of
simplicity.

4.1. Processor

The processor has been implemented as a Very Long In-
struction Word (VLIW) architecture able to execute par-420

allel instructions. It supports all the basic ADD, MULT,
AND, JUMP, etc., instructions. Before giving our pro-
cessor model, first we would like to discuss similarities
between our processor and a conventional 32-bit proces-
sor (single cycle 32-bit MIPS)[32]. MIPS processor has425

a Program Counter (PC), Instruction Memory, Register
File, ALU, Data Memory and MUXes for input selection
related to these blocks. Our simplified processor model is
presented in Fig. 7.
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Figure 7: Main blocks of the processor.

MIPS and the processor model proposed in this work430

have the same blocks except two di↵erences: our model
has a Constant Memory for storing constants and does
not have a Data Memory.

MIPS Register File has two read data outputs and ac-
companying two selection inputs; one write data input and435

one accompanying selection input. MIPS architecture can
only execute one ALU or register operation in one cycle.
We design our processor such that it can execute ALU and
register operations simultaneously in one cycle.

As seen in Fig. 7, ACC is a special purpose register (ac-440

cumulator). One of its purposes is to provide concurrent
ALU and register operations. When an ALU operation is
being executed, a value can be fetched concurrently from
PortIn and stored in a register. In order to make concur-
rent ALU and register MOVE operations, the register file445

has to have another read port. This feature is provided
and optional in the architecture, but is not shown in Fig.
7 for the sake of simplicity.

Colored signals in Fig. 7 represent control signals de-
rived from instruction bits and other signals. Bit width450

of almost any signal is variable. They vary depending on
the application that is implemented. Number of the reg-
isters that are needed by the implementation determines
the value of R in Fig 7 . The variable Z is determined
by how many di↵erent instructions are used in the appli-455

cation. Therefore, this feature provides a variable opcode
width. ALUSrc chooses the inputs of ALU unit; in other
words, it acts like a selection signal of a MUX.

Constant values are not embedded in the instruction
in our processor model. Instead, we provide each di↵erent460

constant an address and store them in a Constant Memory.
For instance, if we had two 32-bit constants, we would
address them with a single bit. Thus, 1 bit would occupy
a space in the instruction word. Note that, this feature
also provides the ability of using di↵erent precision for465

constants. Variable W represents the word length of the
processor, i.e. precision of the ALU operations. Typically
we are taking W as the width of constants. C is the address
width of Constant Memory and varies depending on the
number of di↵erent constant instances.470

The address calculation of the program counter, PCSrc
chooses either the very next address, the JUMP address,
or the address that is delivered by FIFO. In the last case
GCtrl command must be set accordingly for external ad-
dress jump. This ability can be regarded as a function call,475

which is ordered by the host processor.
The processor has two kinds of communication. One of

them is handled by FIFO and will be explained thoroughly
in Sec. 4.1.1. The other communication, inter-processor
communication, is handled through routers from the ports480

PortIn and PortOut. These ports have accompanying ad-
dresses which determines the destination of the packet.
These addresses are not shown in Fig. 7 for simplicity.

All the blocks, wires and registers are instantiated on
a need-to-have basis. Without redundant blocks, we may485

obtain an e�cient circuit in terms of power consumption
and area utilization.
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Processors have some di↵erences in their designs accord-
ing to their locations. They are named as corner, edge and
middle processors (middle processors are the ones that are490

not located on the boundaries of the array).

4.1.1. Register File and FIFO

Register File is designed to support register and ALU
operations in one cycle. As shown in Fig. 8, the number
of registers depends entirely on the application program.495

This prevents usage of redundant and unnecessary hard-
ware. In Fig. 8 there are n-k registers for computation
and k registers for FIFO. Besides, width and depth of the
FIFO can change according to the place of the processor
in the network. SI, EI, SO, EO are selection and enable500

signals for input and output of register file, respectively.
Recall that r is the neighborhood depth of the image

processing algorithm and a is the argument number, i.e.
the number of the frames that are used to calculate one
result frame;505

• FIFO of the processors (FR) that is placed on the
corners of the network has (r + 1)2 registers. Depth
and width of the FIFO are (r + 1). For instance, top
left registers in Fig. 6; these are the FIFO registers
for P11 (processor 11).510

• FR that is placed on the north and south borders of
the network has (r+1) registers. Width of the FIFO
is 1 and depth of the FIFO is (r + 1). For instance,
the registers colored with black at the bottom of Fig.
6; these are the FIFO registers for P43.515

• FR that is placed on the west and east borders of the
network has (r + 1) registers. Width of the FIFO is
r + 1 and depth of the FIFO is 1. For instance, the
registers colored with orange at the left side of Fig. 6;
these are the FIFO registers for P21.520

• FR of the other processors has 1 register. Depth and
width of the FIFO are 1. For instance, the brown
register in the middle of Fig. 6; this is the FIFO
register for P23.

Number of FIFO registers (FR) depends on the placement525

of the processors in the network, however number of the
registers in register file that are related to the FIFO, i.e.
k, depends on the argument number, i.e. a, as well. Note
that a is taken as 1 in Fig. 8.

While designing the FIFO-register file structure, we530

have also considered power consumption in multi-port reg-
ister files. As suggested in studies [33, 34], there will be a
significant increase in power consumption of register files
if the number of the ports of the register file increases. Es-
pecially when the size of the register file gets bigger, power535

consumption of the register file should be taken into ac-
count more seriously. It is suggested that power consump-
tion will be proportional to N3 where N is the number
of the ports of the register file [34]. To conclude, register

Figure 8: Detailed model of Register File and FIFO. Data ex-
change between FIFO (FRs) and registers is synchronized by global
command (GCtrl).

files of the processors should have as minimum number of540

ports and minimum size as possible. In our approach, sizes
of register files are decided completely on a need-to-have
basis. Middle processors can get their neigboring pixels
from neighboring nodes through routers. Therefore, they
just store their center pixels. However, processors on the545

edges have to store neighboring pixels since no other unit
stores it. Keeping in mind that most of the nodes are
placed in the middle, we think that this e↵ective usage of
registers yields us better results in terms of chip area and
power consumption. Essentially, register files have two in-550

put (one for FIFO one for computation) and one output
port. In case a type of processor needs an extra port for
register file due to user program, an extra port will be gen-
erated only for that specific type of processor. Main goal
here is to keep the register file capacity and the number of555

the ports small.

4.1.2. Arithmetic Logic Unit

In this architecture, arithmetic unit is designed as a tem-
plate structure. It is designed to instantiate only the nec-
essary operations. In future versions of CPAMA, we are560

planning to enhance its configurability by generating it
from the algorithm definition.

In our arithmetic unit design, we have followed resource
sharing approach similarly done in multi-mode digital sig-
nal processing [35, 36]. For example, an ALU that can565

execute one addition and multiplication in one cycle, and
as separate instructions, is designed sharing common hard-
ware blocks.

In each target image processing application the imple-
mentation code may be di↵erent. Thus, the selected ALU570

operations may change. Therefore, we have designed a
flexible instruction set that has variable opcodes.

4.2. Router

Routers shown in Fig. 4 have North, South, East, West
and processor connections. A router basically decides575

which packet will be sent to which channel according to
the address values accompanied with the packet. A packet
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consists of a pixel, a destination address and an argument
number. In the network, it is assumed that there are no
conflicts in communication, i.e., more than one packet is580

never sent to same port of a router at the same time. To
eliminate possible temporary conflicts and make a stable
system, a priority is assigned to each port of the router.
Even if two channels try to send data to a processor at the
same time, router will only pass the packet which comes585

from the channel that has higher priority. A schematic of
the router is given in Fig. 9.

Router is basically composed of one multiplexer and one
de-multiplexer unit. Data and address pair to be sent
to next node is sent by the processor through the de-590

multiplexer unit. Incoming channels are selected by the
multiplexer according to their priority and are delivered
to the processor.

Figure 9: a) Inputs and outputs of the router are shown. Each
channel (North, South, etc) has data and address input-output. b)
The relations between inputs and outputs of the router are shown.

4.3. Reconfiguration in CPAMA

If the user wants to change between two or more pro-595

grams at run-time due to chip area restrictions; at first,
he/she has to have CPAMA’s Assembler instantiated all
the instructions and registers that are used in those pro-
grams in the processor architecture. Then, changing con-
tent of the Instruction and Constant memories will result600

in changing the program memory. If CPAMA is imple-
mented on an FPGA, run-time programmability can be
performed by partially reconfiguring memory blocks.

As explained in [37, 38], maximum bandwidth for config-
uration ports of a Xilinx Virtex-5 FPGA is 3.2 Gbps. Par-605

tial reconfiguration BIT file of a ROM consisting 64x32-
bit words took 63 frames (smallest unit that can be re-
configured) in our experiment. Size of a frame in Virtex-
5 is 41 32-bit words [39]. Note that, in our processors

total Instruction and Constant memory size is normally610

smaller than this size (64x32-bit). Including fix parts of
the BIT file, reconfiguration bit-stream length is 12,073
Bytes. Therefore, reconfiguration time of the memory
block takes (12, 073 ⇥ 8)bits ÷ 3.2Gbps = 30.2 microsec-
onds. The reconfiguration time scales fairly linearly as615

the partial BIT file size grows with the number of frames,
with small variances depending on the location and con-
tents of the frames [38]. Hence, total reconfiguration time
of CPAMA changes linearly with respect to the number of
the processors that are used in CPAMA.620

In the ASIC case, the memory contents can be delivered
through FIFO and written into the Instruction and Con-
stant Memory. This method can be used in the FPGA as
well. The architectural features related to programmabil-
ity in ASIC case have not been implemented yet.625

5. Case Studies

We have evaluated performance of CPAMA by imple-
menting four di↵erent algorithms; which are dot prod-
uct, TIFF to gray level image transformation (TIFF2BW)
[40], Inverse Discrete Cosine Transform (IDCT) and block-630

match.

5.1. Dot Product

Dot product is the core of many image processing algo-
rithms, e.g. filtering based image processing. According
to the classification made in Sec. 3, dot product algorithm
fits in the second group (local). We have implemented dot
product on a Xilinx Virtex-5 FPGA (xc5vtx240t) using
ISE 14.7 [41]. We have analyzed performance of CPAMA
changing the number of processors in the network, both
horizontally and vertically. We have evaluated 86 di↵er-
ent configurations. Fig. 10 and Fig. 11 show how size of
the network a↵ects the area occupation; and Fig. 12 and
Fig. 13 show how size of the network a↵ects the period of
the circuit. In these charts the neighborhood depth r is
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Figure 10: Area occupation with respect to number of horizontal
nodes.

equal to 1. Height and width of the network are presented
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Figure 11: Area occupation with respect to number of vertical
nodes.

Ï

Ó

#

Ú

Ù

ÌÏ

ÌÓ

Ì#

Ï ÌÏ ÓÏ ÔÏ #Ï ÒÏ ÚÏ

W!
å]}

%"
~v
ê*

t]%öZ

W!å]}%"¡]öZ"å!êâ!,ö"ö}"öZ!"+Z}å]Ã}vö.o"v}%!ê
,!]PZö"A"Ó

,!]PZö"A"#

,!]PZö"A"Ú

,!]PZö"A"Ù

,!]PZö"A"ÌÏ

,!]PZö"A"ÌÓ

,!]PZö"A"ÌÚ

,!]PZö"A"ÌÙ

,!]PZö"A"ÓÏ

,!]PZö"A"ÔÏ

,!]PZö"A"#Ï

,!]PZö"A"ÒÏ

Figure 12: Period with respect to number of horizontal nodes.

on the legend of the charts. Moreover, area and period
results for a subset of the above configurations are given
in Table 1 to express actual numbers. This time r = 1,
2. While doing this analysis, since manually doing each
synthesis, place & route would take long, we have written
a script to change network size and initiate the synthesize,
place & route software. In the script, we adaptively change
the period constraints to find the possible best value. How-
ever, the achievable best result for a given configuration
might be better than the value that the script finds, be-
cause we had to limit the iteration count of the script due
to long execution times. As seen in Table 1, our archi-
tecture is scalable. Table 1 also shows that area can be

Table 1: Performance results of several CPAMA configuration for
dot product application.
#Processor Width Height Period (ns) Area (Slice)

r = 1 r = 2 r = 1 r = 2

16
2 8 6.599 6.626 1771 2466
4 4 6.595 6.768 1496 2191

64
2 32 8.815 8.673 7976 8887
4 16 8.059 9.212 4950 5965
8 8 9.190 8.93 4628 5434

200
10 20 9.755 9.965 20227 21811
4 50 9.290 9.418 19635 22646
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Figure 13: Period with respect to number of vertical nodes.

utilized more e�ciently when the network is like a square,
i.e #horizontal nodes ⇡ #vertical nodes. Because, neigh-
boring pixels are necessary to compute dot product. As
explained in Sec. 4.1.1, a processor needs extra registers
to store neigboring pixels when it is placed on the cor-
ner or edge of the network. When a network is close to
square, it has fewer edge processors. Therefore, reducing
the number of edge nodes yields a better result in terms of
chip area occupation. Moreover, when the number of the
processors gets large, the capability of synthesis, place &
route tools are more dominant on the performance values.
To calculate throughput of CPAMA, Eq. 2 can be used.
This equation is valid for all kinds of applications that use
FIFO for delivering the data, including dot product.

CT = (NW + 2⇥ r)⇥ (NH + 2⇥ r)/BW

BT = max{CT, PT}+HS

fps = 1/((IS/NS)⇥BT ⇥ T )

(2)

Terms in Eq. 2 represent the following:

• IS: Image size, (width of the image) ⇥ (height of the
image)635

• NH: Network height, height of the processor array

• NW: Network width, width of the processor array

• NS: NW ⇥ NH

• r: neighborhood depth

• BW: Bandwidth between the processor array and data640

cache in terms of ”pixel per cycle”

• CT: Communication time, cycle count that is spent
for delivering pixels to the network

• PT: Process time, cycle count that is spent by the
processor array performing instructions645

• HS: Handshaking delay in terms of cycles, typically 3

• T: period, duration of one cycle in seconds
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• fps: frame per second

• BT: Cycle count that is needed to process a block.
Time that is spent for handshaking is included.650

Eq. 2 implies that CPAMA’s throughput is determined
by either computation or communication time. Since
computation and communication are performed concur-
rently on the processor array, the longer latency deter-
mines throughput of the architecture. If process time is655

less than communication time, which is usually the case
especially for large networks, then CPAMA works like a
stream processor. In other words, it produces the result
pixel/data as soon as it gets a new pixel/data. Further-
more, if bandwidth between data cache and processor ar-660

ray is larger than 1 pixel per cycle, this will a↵ect the
throughput favorably.

5.2. TIFF2BW

We have implemented TIFF2BW application on
CPAMA to make a comparison with the performance val-665

ues of ADRES architecture [6]. We have chosen ADRES
because it is not dependent on a specific device like RAMP-
SoC [19]. In additon, ADRES is well analyzed as a
CGRA architecture in literature [2]. More importantly the
TIFF2BW test that was done on ADRES [6] is repeatable.670

TIFF2BW application fits in the first group of image pro-
cessing applications (point) mentioned in Sec. 3. We have
implemented three di↵erent CPAMA instances by using
the same CMOS technology (90nm) as ADRES. To make
a fair comparison between two architectures, we have se-675

lected the same configurations, e.g. frequency, array size,
precision (32-bits), etc. Our results are shown in Table
2. Here, we refer the CPAMA instance (CPAMA 4⇥4*)
which has the same configurations as ADRES. The other
instances in Table 2 are presented to show the performance680

of CPAMA for di↵erent size of arrays and for di↵erent fre-
quencies.

We have implemented the design by using TSMC90GP
standart cell library [42] and Cadence [43] tools. First,
we have synthesized VHDL code of CPAMA by Cadence’s685

RTL Compiler. Synthesized circuit was placed and routed
automatically by Cadence’s Encounter. Placed and routed
design worked at a frequency of 300 MHz. We have made
a back annotated simulation at 300 MHz to obtain switch-
ing activities for CPAMA. Simulation was performed by690

Cadence’s NCSim. When generating switching activity
file, we have used the same picture obtained from [40] as
the input for CPAMA, thus we eliminated the e↵ect of
input on power measurement. Measurement of dynamic
power consumption of CPAMA was done by Cadence’s695

Encounter. As a result, Encounter measured 65.35 mW
for dynamic power consumption of CPAMA. This number
includes power consumption of all the parts of the 4⇥4
processor array. Since global memory and host processor
are not part of the processor array, they are not included700

in power measurement. Similar exclusions were made in

the compared study [6] too. Dynamic power of ADRES is
71.69 mW for TIFF2BW application [6]. TIFF2BW appli-
cation for an 1520 by 1496 image can be performed in 1.71
million cycles on 4⇥4 CPAMA however the best value 4⇥4705

ADRES can achieve is 2.25 million cycles for the same size
image. We can measure the energy that the architectures
consume as follows:
Energy = cyclecount⇥ clockperiod⇥ power.

Table 2: Comparison of performance values of CPAMA and ADRES
for TIFF2BW application.

architecture frequency throughput energy area
(MHz) (pixel/us) (mJ) (mm2)

ADRES 4x4 300 303 0.54 NA
CPAMA 4x4* 300 400 0.37 0.40
CPAMA 4x4 350 466 0.40 0.42
CPAMA 8x8 333 1641 0.54 1.45

710

According to our comparison regarding TIFF2BW ap-
plication, CPAMA architecture consumes 31% less energy,
and provides 32% more throughput than ADRES.

5.3. Inverse DCT

We have implemented 2D inverse DCT (IDCT) algo-715

rithm too, to compare the performance of our architecture
with other ADRES implementations [44]. In this ADRES
architecture, pipeline mechanism is enabled and the reg-
ister file structure is changed. Both 4⇥4 and 8⇥8 array
architectures are implemented and their performance re-720

sults are given. These ADRES instances are implemented
by using a 90nm low power CMOS library to lower the
power consumption.

To make a fair comparison with this study [44], we
implemented 4⇥4 and 8⇥8 CPAMA instances by using725

TSMC90LP (low power) library.
One should note that, IDCT algorithm does not fit into

the two categories (point, local) that are mentioned in Sec.
3. As mentioned, although we focus on image/video al-
gorithms that are in the first and second category, other730

applications may still be done. Here, by implementing
IDCT, we give an example to the third category. While
implementing IDCT, we used similar partitioning and ma-
trix multiplication approaches to the studies in literature
[45, 46]. Details of the ASIC implementation are similar to735

the TIFF2BW implementation. So, they are not repeated
here.

Since the method followed for IDCT implementations
of ADRES is not stated, we have implemented IDCT on
CPAMA by using two di↵erent methods. In this way, we740

aim to demonstrate two features of CPAMA: 1) Algorithm
selection truly e↵ects performance of CPAMA. 2) CPAMA
is scalable. In 4⇥4 CPAMA instance, we implemented
IDCT by using row-column decomposition, i.e. two 1D-
IDCT. In 4⇥4 CPAMA, we selected Chen-Wang [45] ap-745

proach for 1D-IDCT implementation. On the other hand,
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for 8⇥8 CPAMA instance, we used usual 8⇥8 matrix mul-
tiplication instead of Chen-Wang approach . We selected
cross-wired mesh array [46] approach for matrix multipli-
cation. This approach is proposed to multiply two vari-750

able matrices. However in IDCT, one multiplier is always
constant. Hence, by re-arranging the array structure of
the cross-wired mesh array, we mapped constant-variable
matrix multiplication onto CPAMA without cross connec-
tions. In 8⇥8 CPAMA instance, we delivered the input755

data through routers by doing a minor modification. We
could have used FIFO as usual for delivering the data; but,
in this instance, control of the network is easier this way.

Performance values of CPAMA and ADRES are com-
pared in Table 3.

Table 3: Comparison of performance values of CPAMA and ADRES
for IDCT application.

architecture frequency throughput energy area technology
(MHz) (block/us) (uJ) (mm2)

CPAMA 4⇥4 400 0.74 29.6 0.39 90nm LP
ADRES 4⇥4 312 1.70 19.1 1.08 90nm LP

CPAMA 8⇥8 303 5.60 21.7 1.41 90nm LP
ADRES 8⇥8 294 1.65 43.2 NA 90nm LP

760

In Table 3, throughput is given in terms of block/us.
This is the number of 8⇥8 blocks that are calculated in
one micro second. In ADRES implementations, the IDCT
execution time is given for 396 units of 8⇥8 blocks. So, in
Table 3, the throughput column is calculated dividing 396765

by execution time values.

Execution time and energy values for 8⇥8 ADRES im-
plementation are taken from the graph shown in [44]. Be-
cause their exact values are not given in that study.

As shown in Table 3, for IDCT application, 8⇥8770

CPAMA is more e�cient than 8⇥8 ADRES in terms of
energy consumption and throughput. CPAMA provides
2.4x more throughput and consumes 50% less energy than
ADRES in this configuration. On the other hand, for 4⇥4
array size, ADRES is more e�cient than 4⇥4 CPAMA775

in terms of energy consumption and throughput, except
area occupation. This time, CPAMA provides 56% less
throughput and consumes 55% more energy than ADRES.
According to Table 3, it can be deduced that scalability
is not an issue for CPAMA. Otherwise, the throughput780

wouldn’t be higher for the larger array. The method used
in implementing the application has direct e↵ect on the
performance of the architecture. Second method that we
have used is more suitable to implement on CPAMA.

There is a significant di↵erence in throughput between785

two CPAMA instances. Because, in the first approach that
is used for 4⇥4 CPAMA, 1D-IDCT is applied to each row
and then column one by one. This spends a significant
amount of handshaking time. Besides, the processor ar-
ray cannot be utilized well while using this method. On790

the other hand, the second method that is used for 8⇥8
CPAMA needs some hand work to be e�ciently mapped.

5.4. Block-match Application

We have implemented block-match algorithm as a proof-
of-concept for multiple frames. Block-match algorithm is795

used in video encoding. Since it requires extensive compu-
tation, it is generally implemented as a dedicated hardware
unit [31, 47]. Fig. 14 presents how block-match algorithm
works and motion vectors are computed. In Fig. 14, N
represents the block size and p represents the search win-800

dow size. In our application, the sum of absolute di↵er-

Figure 14: Block-matching and computation of motion vector.

ences (SAD) of pixels is computed to find the similarity
between two blocks. Three di↵erent instances of CPAMA
are presented in Table 4. Size of the blocks for match-
ing algorithm is taken the same as the network size. The805

word-length of the processors are selected as 16-bits in
each configuration. Frames are delivered to the network
as multiple words, i.e., one row of data is fed to the net-
work at a time. Each instance is implemented on a Xilinx
Virtex-5 FPGA (xc5vtx240t) using ISE 14.7. Changing810

configuration of these three CPAMA instances is managed
by only changing the size of the network parameter.

Table 4: CPAMA instances for Block-match application.
architecture frequency throughput area #pixels

(MHz) (block/us) (slice) in a block
CPAMA 4⇥4 140 6.94 1797 16
CPAMA 8⇥8 125 3.45 7233 64
CPAMA 16⇥16 83 1.21 26575 256

In Table 4, CPAMA 4⇥4 has a better throughput, but
image block size processed by CPAMA 4⇥4 is smaller than
that of CPAMA 8⇥8 and CPAMA 16⇥16 configurations.815

6. Conclusion

Our proposed architecture CPAMA is a highly config-
urable processor array targeted for low power, low cost im-
age/video processing devices. In comparison with ADRES,
CPAMA has shown better performance in TIFF2BW and820

comparable performance in IDCT application in terms of
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energy consumption, throughput and area occupation. We
think, this is because it occupies only the necessary hard-
ware for a given application. This is achieved by consid-
ering the image processing nature in every development825

cycle of CPAMA.
In the first and second group of multimedia processing

applications (point and local), CPAMA is quite reusable
and easily configurable. For these application groups, con-
figuration can be done by just changing the parameters of830

the array or/and processor program. In consumer elec-
tronics, improving time-to-market of a low cost and low
power image/video processing chip is a significant goal.
Due to re-usability of our design, design and verifica-
tion cycle of an implementation using CPAMA will be835

shorter. In addition, we have a toolchain project in its
final stages to automatically generate design files of the
CPAMA. This toolchain also accelerates the design pro-
cess. Consequently, we think CPAMA is a good candidate
for consumer devices that exploit image/video processing840

tasks.
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