SIxD: A Configurable Application-Specific
SISD/SIMD Microprocessor Soft-Core

Nehir S6nmez Arda Yurdakul
Department of Computer Engineering Department of Computer Engineering
Bogazici University Bogazici University
Istanbul / Turkey Istanbul / Turkey
nehir.sonmez@boun.edu.tr yurdakul@boun.edu.tr

Abgract— In this study, an FPGA-based, configurable, designed with VHDL for Xilinx FPGAs, but modificatis to
application-specific, SIMD-capable, non-pipelined RSC soft fit other vendors can be easily done. In the foltmnsection,
processor core that operates on variable-width fbd@pointdata ~ the SIXD architecture is briefly explained in twarts, the

is presented. The flexible SISD core with generalppose scalar and the array/vector part. An illustrative
instructions fits on small FPGAs, but can be easilgonfigured implementation concerning the MPEG-7 Motion Actjvit
to incorporate application-specific instructions am to operate Descriptors is explained in Section I, with camibns and

in SIMD mode when higher performance is required. future work in Section IV.
. INTRODUCTION II. THE SIXD ARCHITECTURE
In recent years, the advents of chip design tecigyol The SIxD is a configurable, application-specificsteyn

have reduced the unit price of FPGAs, hence sdff €&tes with fixed 16-bit instruction word and variable dagpace,
[1,2] that can be used in FPGAs have started teapp fusing a non-pipelined RISC uni-processor with &SI
soft processor is one that is implemented usingFR&A multiprocessor. The SIxD supports application-dfeci
logic, rather than being a fixed part of the chipudtry, modules, as well as general-purpose processoridnatity.
providing the flexibility to implement and potedlja A configuration file determines ALU instructionsamching
customize as required. The architecture of theseegsors is instructions, data space, and most importantlyyatets the
usually SISD (Single Instruction-Single Data). Xgar{3] is SIMD mode of the core with a user-defined number of
a SISD architecture whose instruction set can wameed Processing Nodes.

by including user-defined application-specific mstions,

as well as by adding a SIMD engine for DSP appticat A, ThebareS <D core

Many modern commercial microprocessors also hawtbsSl The SISD model is a non-pipelined RISC system With

::a[?[abm.ty, SWh'Xh hhas become an integral part of th general-purpose registers, as well as dedicateaiaspe
nstruction Set Architecture. registers such as the Program Counter (PC), thrudtion
This study presents the early results of a soft €Bté, Register (IR), Memory Address Registers (MAR) and
the SIxD, a non-pipelined RISC system (load/storeMemory Data Registers (MDR). Attempting to make the
architecture) with fixed 16-bit instruction wordchmariable ~ most out of available FPGA resources, dedicatedckBlo
data space. Depending on the size of the FPGAjgbecan RAM resources are chosen to serve as Instructiomdvig
select the operation mode (SISD-only or SISD-SIMDY (IM) and Data Memory (DM) of the SIXD (Fig. 1). The
shrink, extend or modify the instruction set focliding Register File (RF) with a single-port input andaailole-port
application-specific instructions or excluding redant output has been implemented as Select RAM in tHeA=P
instructions at compile-time. In the literatureets are The primitive Hardware Multiplier, which is standain
processor architectures that incorporate both Sk8@ Xilinx Virtex and Spartan 3 FPGAs, is the obvioumice
SIMD in a single core [4,5] using partitioned datards, for multiplier, requiring no LUT space on the chif.no
however no cases of a completely parameterizadiéDSI Hardware Multiplier is present on the target FP@¥, user
core have been observed. The non-pipelined impltatien ~ must either remove the multiplication instructionpsovide
is useful for the ease of design, lower area odéwmpa With a custom generic multiplier.

dismissing the need for hazard prediction and pipedtalls. The hardwired Control Unit (CU) is a Finite State

Therefore, the SIxD is a quite novel soft core tat fit in Machine implementing a sequential circuit basediéfarent

as low as a 40K system gate FPGA, or offer hig . o .
performance array processing on bigger FPGAS. the is NStates of the machine, issuing a set of controlddgat each

This work has been fully supported by the Turkislufidation of
Science and Technology, under Kariyer Researcle&r&rogram, pr.
no:104E038.

r.1AF\¢t:D—'
Instruction MORin1—* Data M=|:|R|:|l.|11
— ——
po| Memory | g | pape —»| Memory |
MDRIn2 —™ MDRoul2
.
IR Control ea| VD Porl(s)
chirch = ESM
rasol —
Adl I
Conlrad .
Signals Register
File
v ¥
e 1 1
[- tp |
[
| 7 4
ICusiom
. iy
Figure 1: The SISD datapath

state. Depending on the instruction word input, Grantrol
FSM completely describes the Instruction Set Aeddtitre of
the SIxD, by setting up the necessary bits foresponding
units to perform the correct operation. The ingtouc
formats supported by the SIxD are:

* Register-register (direct)

» Register-constant (immediate)
* Register-memory (indirect)

* Branching format

A custom unit can be a user-defined instructionaor
custom-designed hardware module. The bare SISDhawe
an ALU, a multiplier and no custom unit. In ordercteate a
custom instruction on the SISD, the custom unit tnines
placed with input(s) from the Register File, andpot(s) to
the RF input multiplexer. A reserved opcode in I5&
must be associated with the control on the new anit
corresponding states must be revised for the prepabling
of the unit, and the correct choice of #sect signal of the
RF input multiplexer to assure the proper propagatif the
outputs. The reserved places are used for custsinudtion
extension to the ISA. More custom units could bdeaidto
the ISA by having selection bits distinguish diéet
instructions, like done in the shift instructionswo
instructions in a single opcode, distinguished byuaused
bit or field of the instruction word.

Up to four interrupts are implemented, as well as a

interrupt enable/disable instruction. The SIxD givan
exception when an invalid opcode is

Instruction Memory. There is no stack or accumulatothe
SIxD, resulting in a single level of interrupt héing.

TABLE I. THE SIXD INSTRUCTIONSET

Opcode Explanation ~°
0000 NOOP-enable/disable interrupts-RET 2
0001 A/Laregister (direct) 4
0010 A/Laregister (immediate) 4
0011 A/Laregister (indirect) 5
0100-0110 Reserved -
0111 Shift/Rotate right/left 4
1000 Multiply 4/5
1001 SIMD: execute instruction c-
1010-1011 Load/store to/from memory 3
1100-1101 Branch if less than/branch if equal to 5
1110 SIMD: load/store/route/set_iter -
1111 Lr:;nr:]ecijrijtpec/)irrt\direct load/store from/to 2/3/4

a. A/L: Arithmetic/Logic (ADD/SUB/AND/OR/XOR).
b. ~: clock cycles.

c.See Table 1.

B. TheConfiguration File

Although Table | shows the full instruction setslitould
be noted that these instructions can be modifigthglithe
synthesis of the core with the aid of a configormatfile
written in VHDL. The following types of modificatits are
supported by the configuration file:

1) Enable SIMD with a number of Processing Nodes:
Depending on the size of chip, the user can enable SIMD
instructions, choosing to have any number of Processing
Nodes (PN) that is a multiple of two.

2) Determine the data space (width and length):
Depending on the size of data memory needed and the Block
RAM available on the FPGA, the user can specify the data
width as a multiple of 8 bits, and data length (at least 2K
words).

3) Select the most appropriate branching and shifting
instructions: In the default instruction set, BL and BEQ are
used. However, if greater-than operations are used more
frequently than BL, then the user has the chance of
replacing BL with BG. There are six possible branch
instructions for two branch instruction dots: BEQ, BNEQ,
BL, BLEQ, BG, and BGEQ. As for the shift ingtructions,
arithmetical, logical shift or rotation operation can be
inserted into the | SA.

4) Remove unused ingtructions from the ingtruction set:
As an example, removing the 16-bit XOR instruction would
reduce the area of the ALU by 11 dices (Table I1). Thisway,
the SISD core can fit in a very small FPGA.

read. The
interrupt/exception addresses are at the start haf t

TABLE Il SISDSLICEINFORMATION

. Data Width
Unit - - - -
8-hit 16-bit 24-bit 32-bit
SISD (all) 279 426 573 689
ALU 68 148 231 310
Register File 20 40 60 80
Reg. MUX 22 44 66 88
Control Unit 186 186 186 186

C. TheSIMD functionality

The SIMD functionality of the SIxD, depicted in Fig,
is initiated within the configuration file by thé MDenable
signal set high. This produces the generationrafraber of

Memory to read from when writing back to the maiat®
Memory.

For the SIMD part, the customization process diffier
the sense that the new functional unit is addeitiénthe
Processing Element with a certain bit of the sd signal
enabling it. For a single-cycle custom operatioo, ather
modification of the core is necessary. If the costonit
outputs two results, setting theuble_output bit high on the
configuration file lets results to be written on otw
consecutive memory address locations.

user-defined Processing Nodes. A SIMD ProcessimeN®

made up of a Local Memory (depicted as LM, a dwated
Block RAM) and a Processing Element (PE), thus iding

with the most elementary units for computation. Toeal

Memory (SIMD registers) also needs to be able i@ ta
inputs from the main Data Memory, resulting in @chéor a

TABLE Il SIMD INSTRUCTIONS OF THESIXD
. SIMD Explanation ~°
instruction
Load vector Loads a vector from DM to the LMs. 5+3i 2
Store vector Stores a vector from LMs to the DM. 5+3i 2
Exec. vector Execute two vectors based on te sd 642i 2

signal, save to a vector in LMs.

multiplexer, completing the PN.

Route Route a scalar from one LM to another.

The instructions that emerge with the activationthef

Set_iter Set the number of iterations to perform. | 2

SIMD are as shown in Table Ill. For these SIMD
instructions, only register indirect addressing tenused,

otherwise there would be no way of issuing a SIMD

instruction inside a 16-bit instruction word. Inete
instructions, the register contents act as addoeasions for
the DM and the LMs. Thest iter instruction sets an
iterations registerjter, with a constant, determining the
number of times to repeat the given SIMD instructibet's
say that a load vector instruction is being issoedthe
SIMD with 4 processing elements, aite is set to 8. In this
case, 32 values inside the DM are distributed duiia
dual-port Block RAMSs) to 8 consecutive locationstlie 4
PEs. This way, the iterations register achievessfieeding
up of data transfers between the DM and the LMarge
data multiplexer is placed at the output to seltith Local

A Processing
Node

MDRout1

MDRout2

L .
! 3 | =
LM LM I LM
¥ ¥ ¥ ¥ l v ¥

|
—]] | -
. T —
MDRin1 MDRIin2

Figure 2: The SIMD unit

a. i: iterations.

b. ~: clock cycles

D. Intra-PE Communications

It is easy to implement a SIMD with communication
autonomy [6]; by having the LM input multiplexeisid. 2)
take their inputs from all outputs of all PEs. @ficse, this
results in very large multiplexers and increasezharsage.

If an on-chip network is formed with routers in\veen the
LMs, these multiplexers can be removed. The slow bu
small method implemented in the SIxD employs nofie o
these, but uses a pre-defined look-up table thataots
encoded direction information for the movement atad
between the LMs. The table consists of encoded dfits
source and destination PEs, requiring no extravienel
and only a few slices. For example, if the usemesf“101”

as a transfer from LM1 to LM4 in compile-time, ugithis

bit sequence inside the “route” instruction, alomigh the
source LM address and the destination LM addressitse
in a data movement between these two Processing.Uni

The size of the SIMD is completely dependent on the
application, since the number and the contents hef t
Processing Elements determine the size of the Stivide
of the SIxD core. Section Ill gives better insight the
utilization and performance of the core with an
implementation of MPEG-7 Motion Activity Descripson
the SIxD.

I1l. IMPLEMENTATION EXAMPLE: THE MPEG-7MOTION

ACTIVITY DESCRIPTORS

Although a detailed explanation can be found in THe
MPEG-7 Motion Activity Descriptors (MAD) considered
here are for motion intensity and spatial distiitut of
motion activity. The algorithm can be summarized as

follows: In a set of motion vectors, first the hypauses of
8-bit input pairs are calculated, and the averddleeoresults
are found. The spatial activity matrix is calcuthtey setting
the values lower than the average to zero. Anatheraging
of this matrix gives the intensity of motion foetframe. The
descriptor implementation which works with pre-cidted

motion vectors has been employed on 16x16 motiotovg

requiring two sets of 256 elements each. Altholnghiiputs
are 8-bits wide, a 16-bit CPU was used becaudeeofisage
of multiplication and averaging. For the sake adgassing
comparison, data is previously loaded from the irgmrts,

and is available in Data Memory.

There are many ways to implement this “take-the-
intensive”

hypotenuse/square root-and- accumulate-
application. On the SISD, an 8-bit square root watwon
takes about 280 clock cycles. A custom unit desidaethis
calculation and placed in opcode “0100” takes Hesyand
55 slices to compute the square root. The wholerittgn
runs for a total of 21,286 clock cycles. Anotherttmoed is to
use a specially-designed hypotenuse unit, takinglices,
and 5 clock cycles to execute. Using this unit thed two

x

Local
MEmary
£re 1 £re 2 Up_sel PEnpemt'lm.
e 2 o0l Hypoternse
I+ |'—;'__'| =1 010 Chatput the acounmlabor
: - : 011 Hypoternse+acmnmilate
| I 1m Compare with sreragze
—t 1 : 110 Compare+acmimmlate
|
|

Figure 3: The Processing Node for the MPEG-7 Motiorctivity
Descriptor and the PE operation table.

When the chosen number of Processing Nodes of the
SIxD is redundant for the algorithm, the design ooty
takes up too much space, but is slower and ineffici
Experiments done with 128 and 256 PEs resulted}jA8D
and 28,720 total slices and 762 and 944 clock sytte

MUL, one ADD, and one SQRT operation combined intoexecute, respectively. This is due to the fact that data

one HYP instruction, the total MAD runtime takes,41138
clock cycles. Finally, enabling the SIMD and usiegtor
instructions on specially designed PEs that exetut®vo
clock cycles and occupying 111 slices, the resulisshown
in Table IV.

TABLE IV. THE MPEG-7MOTION ACTIVITY DESCRIPTOR ON THE
SIxD
No. Total SIMD Max. Runtime Power
PN Iter slices slices freq. (clock cons.
(MHz) cycles) (mW)
2 128 963 475 109 1833 521
4 64 1205 717 94 1196 548
8 32 1647 1163 94 882 542
16 | 16 2523 2049 89 734 566
32 |8 4266 3800 94 678 606
64 |4 7754 7288 83 686 647

Fig. 3 shows the PE designed for the SIMD execution
the algorithm, and how the PE operation bits weseduto
manage the units. First the hypotenuses are ctdduia
parallel on all PNs, while the outputs are collécead added
by the accumulator. Then, the final accumulatoultsesare
gathered by the SISD, added and shifted to comthee
average, and sent back to the PNs of the SIMD rdteds,
the compare instruction comes into play, compattiegdata
elements with the average, outputting zero if libss the
average, or the input data itself if greater thaegual to the
average, forming the spatial activity matrix. Meduile; it
also accumulates its results, which are finallyesawadded
and scaled together for the final result, the isitgnof
motion for the frame.

transfer starts taking more time than the procgssite
ideal number of PNs is 16 or 32 for the Motion Ritti
Descriptor on a 16x16 motion vector frame, dependin
area or time being a constraint. Furthermore, t66-RE
SIMD doesn't fit even fit the biggest Xilinx Virtdk chip
(8M gates), occupying 259 Block RAM and 513 MULtsni

IV. CONCLUSIONS

In this study, we have implemented a flexible
application-specific soft processor that can befigared to
run in scalar mode and fit in small FPGAs or ruthwiector
processing (SIMD) capability for higher performance
larger chips. We have demonstrated an implementatfo
the core with the MPEG-7 Motion Activity Descripsor
showing how the core might be configured for u28&sfold
speedup in algorithm run time. In the future, trorets
flexibility is to be further tested with more coraegl
algorithms.

REFERENCES

[1] MicroBlaze Processor Reference Guide, Xilinx Inc.

http://www.xilinx.com/ise/embedded/mb_ref_guide.pdf

[2] Nios Embedded Processor, Altera
http://www.xilinx.com/ise/embedded/mb_ref_guide.pdf

[3] R.E. Gonzalez, "Xtensa: A Configurable and ExteesiRrocessor, "
IEEE Micro, vol. 20, no. 2, pp. 60-70, Mar. 2000.

[4] Freedom CPU, http://f-cpu.seul.org/.

[5] D. Etiemble and L. Lacassagne, "Introducing imagecessing and
SIMD computations with FPGA soft-cores and cust@diz
instructions”, in 1st International Workshop on Befigurable
Computing Education, Karlsruhe, Germany, March 2006

[6] P. J. Narayanan, "Processor Autonomy on SIMD Aedhitres," In
Proc. the ACM International Conference on Superaging, pp.
127--136, July 1993.

[7] Savakis A, Sniatala P, Rudnicki R. “Real-time videmotation using
MPEG-7 motion activity descriptors,” Conference NIKS 2003.
Lodz: June 26-28: 2003.

Inc.

