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Abstract— In this study, an FPGA-based, configurable, 
application-specific, SIMD-capable, non-pipelined RISC soft 
processor core that operates on variable-width fixed-point data 
is presented. The flexible SISD core with general-purpose 
instructions fits on small FPGAs, but can be easily configured 
to incorporate application-specific instructions and to operate 
in SIMD mode when higher performance is required. 

I. INTRODUCTION 

In recent years, the advents of chip design technology 
have reduced the unit price of FPGAs, hence soft CPU cores 
[1,2] that can be used in FPGAs have started to appear. A 
soft processor is one that is implemented using the FPGA 
logic, rather than being a fixed part of the chip circuitry, 
providing the flexibility to implement and potentially 
customize as required. The architecture of these processors is 
usually SISD (Single Instruction-Single Data). Xtensa [3] is 
a SISD architecture whose instruction set can be enhanced 
by including user-defined application-specific instructions, 
as well as by adding a SIMD engine for DSP applications. 
Many modern commercial microprocessors also have SIMD 
capability, which has become an integral part of the 
Instruction Set Architecture. 

This study presents the early results of a soft CPU core, 
the SIxD, a non-pipelined RISC system (load/store 
architecture) with fixed 16-bit instruction word and variable 
data space.  Depending on the size of the FPGA, the user can 
select the operation mode (SISD-only or SISD-SIMD) and 
shrink, extend or modify the instruction set for including 
application-specific instructions or excluding redundant 
instructions at compile-time. In the literature, there are 
processor architectures that incorporate both SISD and 
SIMD in a single core [4,5] using partitioned data words, 
however no cases of a completely parameterizable SIMD 
core have been observed. The non-pipelined implementation 
is useful for the ease of design, lower area occupation, 
dismissing the need for hazard prediction and pipeline stalls. 
Therefore, the SIxD is a quite novel soft core that can fit in 
as low as a 40K system gate FPGA, or offer high 
performance array processing on bigger FPGAs. The core is 

designed with VHDL for Xilinx FPGAs, but modifications to 
fit other vendors can be easily done. In the following section, 
the SIxD architecture is briefly explained in two parts, the 
scalar and the array/vector part. An illustrative 
implementation concerning the MPEG-7 Motion Activity 
Descriptors is explained in Section III, with conclusions and 
future work in Section IV. 

II.  THE SIXD ARCHITECTURE 

The SIxD is a configurable, application-specific system 
with fixed 16-bit instruction word and variable data space, 
fusing a non-pipelined RISC uni-processor with a SIMD 
multiprocessor. The SIxD supports application-specific 
modules, as well as general-purpose processor functionality. 
A configuration file determines ALU instructions, branching 
instructions, data space, and most importantly, activates the 
SIMD mode of the core with a user-defined number of 
Processing Nodes. 

A. The bare SISD core 
The SISD model is a non-pipelined RISC system with 8 

general-purpose registers, as well as dedicated special 
registers such as the Program Counter (PC), the Instruction 
Register (IR), Memory Address Registers (MAR) and 
Memory Data Registers (MDR). Attempting to make the 
most out of available FPGA resources, dedicated Block 
RAM resources are chosen to serve as Instruction Memory 
(IM) and Data Memory (DM) of the SIxD (Fig. 1). The 
Register File (RF) with a single-port input and a double-port 
output has been implemented as Select RAM in the FPGA. 
The primitive Hardware Multiplier, which is standard in 
Xilinx Virtex and Spartan 3 FPGAs, is the obvious choice 
for multiplier, requiring no LUT space on the chip. If no 
Hardware Multiplier is present on the target FPGA, the user 
must either remove the multiplication instruction or provide 
with a custom generic multiplier. 

The hardwired Control Unit (CU) is a Finite State 
Machine implementing a sequential circuit based on different 
states of the machine, issuing a set of control signals at each  
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Figure 1: The SISD datapath 

 

state. Depending on the instruction word input, the Control 
FSM completely describes the Instruction Set Architecture of 
the SIxD, by setting up the necessary bits for corresponding 
units to perform the correct operation. The instruction 
formats supported by the SIxD are: 

• Register-register (direct) 
• Register-constant (immediate)  
• Register-memory (indirect) 
• Branching format 
 

A custom unit can be a user-defined instruction or a 
custom-designed hardware module. The bare SISD core has 
an ALU, a multiplier and no custom unit. In order to create a 
custom instruction on the SISD, the custom unit must be 
placed with input(s) from the Register File, and output(s) to 
the RF input multiplexer.  A reserved opcode in the ISA 
must be associated with the control on the new unit and 
corresponding states must be revised for the proper enabling 
of the unit, and the correct choice of the select signal of the 
RF input multiplexer to assure the proper propagation of the 
outputs. The reserved places are used for custom instruction 
extension to the ISA. More custom units could be added to 
the ISA by having selection bits distinguish different 
instructions, like done in the shift instructions; two 
instructions in a single opcode, distinguished by an unused 
bit or field of the instruction word.  

Up to four interrupts are implemented, as well as an 
interrupt enable/disable instruction. The SIxD gives an 
exception when an invalid opcode is read. The 
interrupt/exception addresses are at the start of the 

Instruction Memory. There is no stack or accumulator on the 
SIxD, resulting in a single level of interrupt handling.  

TABLE I.  THE SIXD INSTRUCTION SET 

Opcode Explanation ~ b 

0000 NOOP-enable/disable interrupts-RET 2 

0001 A/L
a
 register (direct) 4 

0010 A/L
a
 register (immediate) 4 

0011 A/L
a
 register (indirect) 5 

0100-0110 Reserved - 

0111 Shift/Rotate right/left 4 

1000 Multiply 4/5 

1001 SIMD: execute instruction - c 

1010-1011 Load/store to/from memory 3 

1100-1101 Branch if less than/branch if equal to 5 

1110 SIMD: load/store/route/set_iter - c 

1111 
Immediate/indirect load/store from/to 
memory/port 

2/3/4 

a. A/L: Arithmetic/Logic (ADD/SUB/AND/OR/XOR). 

b. ~: clock cycles. 

c. See Table III. 

B. The Configuration File 

Although Table I shows the full instruction set, it should 
be noted that these instructions can be modified during the 
synthesis of the core with the aid of a configuration file 
written in VHDL. The following types of modifications are 
supported by the configuration file: 

1) Enable SIMD with a number of Processing Nodes: 
Depending on the size of chip, the user can enable SIMD 
instructions, choosing to have any number of Processing 
Nodes (PN) that is a multiple of two. 

2) Determine the data space (width and length): 
Depending on the size of data memory needed and the Block 
RAM available on the FPGA, the user can specify the data 
width as a multiple of 8 bits, and data length (at least 2K 
words).  

3) Select the most appropriate branching and shifting 
instructions: In the default instruction set, BL and BEQ are 
used. However, if greater-than operations are used more 
frequently than BL, then the user has the chance of 
replacing BL with BG. There are six possible branch 
instructions for two branch instruction slots: BEQ, BNEQ, 
BL, BLEQ, BG, and BGEQ. As for the shift instructions, 
arithmetical, logical shift or rotation operation can be 
inserted into the ISA. 

4) Remove unused instructions from the instruction set: 
As an example, removing the 16-bit XOR instruction would 
reduce the area of the ALU by 11 slices (Table II). This way, 
the SISD core can fit in a very small FPGA. 

 
 
 
 



TABLE II.  SISD SLICE INFORMATION 

Data Width 
Unit 

8-bit  16-bit 24-bit 32-bit 

SISD (all) 279 426 573 689 
ALU 68 148 231 310 

Register File 20 40 60 80 

Reg. MUX 22 44 66 88 

Control Unit 186 186 186 186 

C.  The SIMD functionality 
The SIMD functionality of the SIxD, depicted in Fig. 2, 

is initiated within the configuration file by the SIMDenable 
signal set high. This produces the generation of a number of 
user-defined Processing Nodes. A SIMD Processing Node is 
made up of a Local Memory (depicted as LM, a dual-ported 
Block RAM) and a Processing Element (PE), thus providing 
with the most elementary units for computation. The Local 
Memory (SIMD registers) also needs to be able to take 
inputs from the main Data Memory, resulting in a need for a 
multiplexer, completing the PN. 

The instructions that emerge with the activation of the 
SIMD are as shown in Table III. For these SIMD 
instructions, only register indirect addressing can be used, 
otherwise there would be no way of issuing a SIMD 
instruction inside a 16-bit instruction word. In these 
instructions, the register contents act as address locations for 
the DM and the LMs. The set_iter instruction sets an 
iterations register, iter, with a constant, determining the 
number of times to repeat the given SIMD instruction. Let’s 
say that a load vector instruction is being issued on the 
SIMD with 4 processing elements, and iter is set to 8. In this 
case, 32 values inside the DM are distributed dually (via 
dual-port Block RAMs) to 8 consecutive locations in the 4 
PEs. This way, the iterations register achieves the speeding 
up of data transfers between the DM and the LMs. A large 
data multiplexer is placed at the output to select which Local 

Memory to read from when writing back to the main Data 
Memory. 

For the SIMD part, the customization process differs in 
the sense that the new functional unit is added inside the 
Processing Element with a certain bit of the op_sel signal 
enabling it. For a single-cycle custom operation, no other 
modification of the core is necessary. If the custom unit 
outputs two results, setting the double_output bit high on the 
configuration file lets results to be written on two 
consecutive memory address locations. 

TABLE III.  SIMD INSTRUCTIONS OF THE  SIXD 

SIMD 
instruction 

Explanation ~ b 

Load vector  Loads a vector from DM to the LMs. 5+3i  a 

Store vector  Stores a vector from LMs to the DM. 5+3i  
a
 

Exec. vector  
Execute two vectors based on the op_sel 
signal, save to a vector in LMs. 6+2i  

a
 

Route Route a scalar from one LM to another.  9 

Set_iter  Set the number of iterations to perform. 2 

a. i: iterations. 

b. ~: clock cycles 

D. Intra-PE Communications 

It is easy to implement a SIMD with communication 
autonomy [6]; by having the LM input multiplexers (Fig. 2) 
take their inputs from all outputs of all PEs. Of course, this 
results in very large multiplexers and increased area usage. 
If an on-chip network is formed with routers in-between the 
LMs, these multiplexers can be removed. The slow but 
small method implemented in the SIxD employs none of 
these, but uses a pre-defined look-up table that contains 
encoded direction information for the movement of data 
between the LMs. The table consists of encoded bits of 
source and destination PEs, requiring no extra hardware, 
and only a few slices. For example, if the user defines “101” 
as a transfer from LM1 to LM4 in compile-time, using this 
bit sequence inside the “route” instruction, along with the 
source LM address and the destination LM address results 
in a data movement between these two Processing Units.  

The size of the SIMD is completely dependent on the 
application, since the number and the contents of the 
Processing Elements determine the size of the SIMD mode 
of the SIxD core. Section III gives better insight on the 
utilization and performance of the core with an 
implementation of MPEG-7 Motion Activity Descriptors on 
the SIxD. 

III.  IMPLEMENTATION EXAMPLE: THE MPEG-7 MOTION 

ACTIVITY DESCRIPTORS 

Although a detailed explanation can be found in [7], The 
MPEG-7 Motion Activity Descriptors (MAD) considered 
here are for motion intensity and spatial distribution of 
motion activity. The algorithm can be summarized as 

 
Figure 2: The SIMD  unit 



follows: In a set of motion vectors, first the hypotenuses of 
8-bit input pairs are calculated, and the average of the results 
are found. The spatial activity matrix is calculated by setting 
the values lower than the average to zero. Another averaging 
of this matrix gives the intensity of motion for the frame. The 
descriptor implementation which works with pre-calculated 
motion vectors has been employed on 16x16 motion vectors, 
requiring two sets of 256 elements each. Although the inputs 
are 8-bits wide, a 16-bit CPU was used because of the usage 
of multiplication and averaging. For the sake of processing 
comparison, data is previously loaded from the input ports, 
and is available in Data Memory. 

There are many ways to implement this “take-the-
hypotenuse/square root-and- accumulate- intensive” 
application. On the SISD, an 8-bit square root calculation 
takes about 280 clock cycles. A custom unit designed for this 
calculation and placed in opcode “0100” takes 5 cycles and 
55 slices to compute the square root. The whole algorithm 
runs for a total of 21,286 clock cycles. Another method is to 
use a specially-designed hypotenuse unit, taking 76 slices, 
and 5 clock cycles to execute. Using this unit that has two 
MUL, one ADD, and one SQRT operation combined into 
one HYP instruction, the total MAD runtime takes 19,413 
clock cycles. Finally, enabling the SIMD and using vector 
instructions on specially designed PEs that execute in two 
clock cycles and occupying 111 slices, the results are shown 
in Table IV. 

TABLE IV.  THE MPEG-7 MOTION ACTIVITY DESCRIPTOR ON THE 
SIXD 

No. 
PN 

Iter Total 
slices 

SIMD 
slices 

Max. 
freq. 

(MHz) 

Runtime 
(clock 
cycles) 

Power 
cons. 
(mW) 

2 128 963 475 109 1833 521 

4 64 1205 717 94 1196 548 

8 32 1647 1163 94 882 542 

16 16 2523 2049 89 734 566 

32 8 4266 3800 94 678 606 

64 4 7754 7288 83 686 647 

Fig. 3 shows the PE designed for the SIMD execution of 
the algorithm, and how the PE operation bits were used to 
manage the units. First the hypotenuses are calculated in 
parallel on all PNs, while the outputs are collected and added 
by the accumulator. Then, the final accumulator results are 
gathered by the SISD, added and shifted to compute the 
average, and sent back to the PNs of the SIMD. Afterwards, 
the compare instruction comes into play, comparing the data 
elements with the average, outputting zero if less than the 
average, or the input data itself if greater than or equal to the 
average, forming the spatial activity matrix. Meanwhile, it 
also accumulates its results, which are finally saved, added 
and scaled together for the final result, the intensity of 
motion for the frame. 

 

 
Figure 3: The Processing Node for the MPEG-7 Motion Activity 
Descriptor and the PE operation table. 

When the chosen number of Processing Nodes of the 
SIxD is redundant for the algorithm, the design not only 
takes up too much space, but is slower and inefficient: 
Experiments done with 128 and 256 PEs resulted in 14,780 
and 28,720 total slices and 762 and 944 clock cycles to 
execute, respectively. This is due to the fact that the data 
transfer starts taking more time than the processing. The 
ideal number of PNs is 16 or 32 for the Motion Activity 
Descriptor on a 16x16 motion vector frame, depending on 
area or time being a constraint. Furthermore, the 256-PE 
SIMD doesn't fit even fit the biggest Xilinx Virtex-II chip 
(8M gates), occupying 259 Block RAM and 513 MUL units. 

IV. CONCLUSIONS 

In this study, we have implemented a flexible 
application-specific soft processor that can be configured to 
run in scalar mode and fit in small FPGAs or run with vector 
processing (SIMD) capability for higher performance on 
larger chips. We have demonstrated an implementation of 
the core with the MPEG-7 Motion Activity Descriptors, 
showing how the core might be configured for up to 28-fold 
speedup in algorithm run time. In the future, the core’s 
flexibility is to be further tested with more complex 
algorithms. 

REFERENCES 
[1]  MicroBlaze Processor Reference Guide, Xilinx Inc. 

http://www.xilinx.com/ise/embedded/mb_ref_guide.pdf. 

[2]  Nios Embedded Processor, Altera Inc.  
http://www.xilinx.com/ise/embedded/mb_ref_guide.pdf. 

[3]  R.E. Gonzalez, "Xtensa: A Configurable and Extensible Processor, " 
IEEE Micro, vol. 20, no. 2, pp. 60-70, Mar. 2000. 

[4]  Freedom CPU, http://f-cpu.seul.org/. 

[5]  D. Etiemble and L. Lacassagne, "Introducing image processing and 
SIMD computations with FPGA soft-cores and customized 
instructions", in 1st International Workshop on Reconfigurable 
Computing Education, Karlsruhe, Germany, March 2006. 

[6]  P. J. Narayanan, "Processor Autonomy on SIMD Architectures," In 
Proc. the ACM International Conference on Supercomputing, pp. 
127--136, July 1993. 

[7]  Savakis A, Sniatala P, Rudnicki R. “Real-time video annotation using 
MPEG-7 motion activity descriptors,” Conference MIXDES 2003. 
Lodz: June 26-28: 2003. 


