
SIMDify: Framework for SIMD-Processing with RISC-V Scalar
Instruction Set

Mehmet Alp Şarkışla
Institute of Graduate Studies in Science and Engineering

Boğaziçi University
İstanbul, Turkey

Informatics and Information Security Research Center,
TUBİTAK

Kocaeli, Turkey
alp.sarkisla@boun.edu.tr

Arda Yurdakul
Institute of Graduate Studies in Science and Engineering

Boğaziçi University
İstanbul, Turkey

yurdakul@boun.edu.tr

ABSTRACT
In this work, we propose a parallel programming framework, SIMD-
ify, which generates single-instruction-multiple-data (SIMD) pro-
cessors that can achieve SIMD processing without using SIMD
instructions. SIMDify takes an application machine code compiled
for scalar RISC-V ISA and simulates it to determine the SIMD
processing regions. Then, SIMDify configures and generates the
application-specific SIMD processor that executes scalar RISC-V
instructions concurrently on the SIMD datapath. SIMD processor
consists of a single master and multiple slave processing elements
(PE). Slaves focus on SIMD level tasks, whereas the master is re-
sponsible for the central control. Proposed architecture is the first
SIMD capable RISC-V processor designed in HLS and can operate
with a faster clock frequency than the existing SISD RISC-V HLS
cores. SIMDify relieves the user from using custom instructions
with rigid programming models and offers a flexible solution. The
processor is designed and tested in Vivado High Level Synthesis
19.2. It operates at 78 MHz on Zynq Zedboard FPGA. Master PE
uses 5% and each slave uses 3.5% of FPGA resources. Test results
show that execution time can be improved by 8.5x with 9 slaves
and 19x with 29 slaves.

CCS CONCEPTS
•Computer systems organization→ Single instruction, mul-
tiple data; High-level language architectures.

KEYWORDS
SIMD, ASIP, RISCV, FPGA, HLS, Parallel Processing

ACM Reference Format:
Mehmet Alp Şarkışla and Arda Yurdakul. 2021. SIMDify: Framework for
SIMD-Processing with RISC-V Scalar Instruction Set. In Australasian Com-
puter Science Week Multiconference (ACSW ’21), February 1–5, 2021, Dunedin,
New Zealand. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3437378.3444364

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACSW ’21, February 1–5, 2021, Dunedin, New Zealand
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8956-3/21/02. . . $15.00
https://doi.org/10.1145/3437378.3444364

1 INTRODUCTION
In recent years the main attention has been optimizing general-
purpose processors for a given application domain to make them
more efficient [28].With the adoption of application specific instruc-
tion set processors (ASIP), area-efficient [14, 40], power-efficient [22,
24, 25, 35] and performance-efficient [13, 14, 20, 33, 40] processors
have been designed. One frequent way to enhance performance-
efficiency of special purpose processors is to exploit inherent data
parallelism in the algorithms and execute them simultaneously,
which is called SIMD (Single instruction, multiple data) processing.

For hardware, SIMD instructions are inherently simple to im-
plement, since they only require the duplicated structure of the
main execution unit’s datapath. But not all processors have built-in
instructions for SIMD processing. Traditional approaches to this
problem are solved by extending standard instruction set with
non-standard custom instructions (compiler retargeting) [26] or
using Just-in-time (JIT) compilers [9], both of which requires a
non-standard compiler as well as non-standard instructions in the
custom hardware. Since custom instructions are not standardized,
each individual accelerator requires a different compiler modifica-
tion. On top of the compiler modification, to properly introduce
new instructions, simulators and debuggers must be additionally
retargeted.

Accelerators are used in various fields such as machine learning
[38], speech recognition [16], raw data processing [12], cryptogra-
phy [23] and image detection and recognition [27] especially after
the rise of IoT. Though designed accelerators may extremely speed
up the execution, using them with custom instructions and com-
pilers is a tedious process that discourages software programmers
from using these accelerators [18]. SIMDify offers a flexible parallel
processing solution that reduces the user burden and removes the
custom instructions.

In this work, we present SIMDify [4], an open-source hardware-
software parallelization framework to design special purpose SIMD
processors without using any just-in-time compilation, extending
the default instruction set or retargeting the compiler. SIMDify
takes an application machine code compiled for scalar core and
SIMD parameters, and generates a customization header files. Us-
ing Vivado High-Level Synthesis (HLS) [5], SIMDify processes the
generated header files and automatically synthesizes the desired
SIMD capable special purpose processor architecture. Processor is
compatible with the RISC-V Instruction Set Architecture (ISA), and

https://doi.org/10.1145/3437378.3444364
https://doi.org/10.1145/3437378.3444364
https://doi.org/10.1145/3437378.3444364

ACSW ’21, February 1–5, 2021, Dunedin, New Zealand Trovato and Tobin, et al.

Figure 1: Block diagram of SIMDify Framework.

executes the native instruction set even during SIMD execution.
The main contributions of this paper can be summarized as follows:

• A flexible parallel programming framework called SIMDify
for generating, customizing and scaling SIMD capable pro-
cessors with minimal software level modification and using a
standard compiler. To generate the special purpose processor,
user only requires to write an algorithm in C, and compile
it in RISC-V compiler. SIMDify will generate custom header
files for the HLS, then synthesizes the SIMD soft processor
that accelerates the given algorithm. Generated processor
then can be mapped to an FPGA.

• A new RISC-V soft processor architecture that enables in-
memory SIMD processing is proposed. Generated processor
is the first SIMD capable RISC-V core designed using HLS.
Processor can achieve similar frequency with other HLS gen-
erated RISC-V cores even with 30 slaves, and it can execute
applications as SIMD by using only the base RISC-V ISA
without modifying the existing compiler.

Applicability of the SIMDify is tested on selected algorithms.
Clock speed, area and performance-efficiency of the generated soft-
processors are studied for Zynq Zedboard FPGA.

The rest of the paper is organized as follows. In sections 2 and 3
proposed hardware-software system is introduced. Section 4 pro-
vides an overview of SIMD processing, RISC-V, and HLS related
works, and in section 5, detailed experimental analysis on resource
usage and performance is given. Finally, section 6 concludes the
paper.

2 SIMDIFY FRAMEWORK
SIMDify can parallelize and accelerate an application with minimal
software level modification and using the standard RISC-V compiler.
It utilizes HLS pragmas and C like header structure of the HLS.
Using HLS, SIMDify processes the RISC-V compiler machine code
and HLS simulator outputs and automatically generates desired
SIMD processor architecture. SIMDify is fully automated and it
requires only 4 variables to configure the software, which reduces
the design time.

Operation of SIMDify framework is shown in Fig. 1. It takes the
compiled machine code that contains the algorithm and necessary
configuration parameters. The machine code is fed to the Memory
Map Extraction block to generate the Local Memory header file.
Then, the Local Memory header and the SISD (Single-instruction-
single-data) RISC-V ISS (Instruction Set Simulation) Model is fed
to the next block to detect the regions that will be executed as
SIMD (SIMDifiable Regions) and write them to the Address Header.
After that, the SIMDification block generates the SIMD header

file using the Address and Local Memory Header. Lastly, SIMD
RISC-V processor description code in C++ and all header files are
synthesized in Vivado HLS to generate SIMD RISC-V Core. All
steps are automated inside the SIMDify Framework. A detailed
explanation for each block in the figure is given in the rest of this
section.

2.1 Application Code with SIMD configuration
Four variables must be included in the C code to generate and
configure the SIMD processor successfully:

• StartPar: Determines the region which SIMD processing will
be executed. The user has to set StartPar to 1 just before the
loop begins and to 0 just after the loop ends.

• par_num: Unroll factor. Determines the number of SIMD pro-
cesses. Number must exactly divide the loop count. Denoted
by 𝑛.

• arr_str: Start local data memory address of the SIMD ar-
ray. Used in SIMD slaves. Equals to &SMA[0]; where
SIMD_memory_array (SMA) is the name of the array ac-
cessed in the SIMD loop with size X. Denoted by 𝐴𝑑𝑎𝑡𝑎,𝑠𝑡𝑎𝑟𝑡 .

• arr_end: Last local data memory address of the SIMD array.
Used in SIMD slaves. Equals to &SMA[X-1] + (&SMA[X-1]
- &SMA[X-2]); where SIMD_memory_array (SMA) is the
name of the array accessed in the SIMD loop with a size X.
Denoted by 𝐴𝑑𝑎𝑡𝑎,𝑒𝑛𝑑 .

In the local memory, variables have specific addresses which are
generated using the “section” command. This command is a GCC
variable attribute which is used for setting particular variables to
appear in individual sections (address ranges). Only the unroll factor
can be modified after compilation. To change the other three, code
must be re-compiled. Section names and addresses are determined
from the linker file.

Our SIMD processor template processing system consists of one
master processing element (PE) and 𝑛 − 1 slave PEs. Master can
access the complete local memory and executes the sequential code.
During SIMD execution, master also executes concurrently with the
slaves. So, during SIMD processing, 𝑛 PEs execute concurrently. In
order to fully benefit from SIMD operation, memory access range of
each PE has to be contiguous as shown in Fig. 2. To achieve this, the
user must write the SIMD loop part of the C code while considering
memory adjacency. For example, consider a four iteration loop for
matrix vector multiplication 𝐴[𝑖] [0..4] · 𝑣 [0..4] = 𝑟 [𝑖] where 𝐴 is
the name of the 4 × 5 matrix, 𝑣 is the multiplied vector with size 5
and 𝑟 is the result vector, Fig. 3.a. In 𝑖-th iteration each element in

SIMDify ACSW ’21, February 1–5, 2021, Dunedin, New Zealand

𝑖-th row of𝐴 is multiplied with elements in the vector and summed
up.

Figure 2: Accessible regions in the Local data memory for
n-1 Slave PEs and the Master PE. Different Tag values are

generated for each partition.

Figure 3: Coding example (a) Vector matrix multiplication
(b) Default memory allocation of arrays after declaration.
(c) Suggested SIMDifiable vector matrix multiplication
(d) SIMDifiable memory allocation after suggestion

The example code results in onematrix, one vector, and one result
block in the memory, Fig. 3.b. To design a SIMDifiable C code, all
addresses accessed in only one iteration in the SIMD loop, 𝑖-th row
of 𝐴 and 𝑟 , must be adjacent in the memory. So, code shown in Fig.
3.a, cannot be executed in our designed SIMD processor. We solve
this problem by adding another column to the matrix to store the
result vector bymodifying themultiplication as𝐴[𝑖] [0..4] ·𝑣 [0..4] =
𝐴[𝑖] [5], Fig. 3.c. In this way, all arrays that are read and written in
one iteration are compiled as adjacentmemory partitions 3.d. Hence,
each SIMD slave 𝑆𝑖 will be able to execute in its own dedicated
partition 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑆𝑖 , as shown in Fig. 2. Note that the master M
can access the entire local memory.

Local data memory in Fig. 2 consists of data and tag fields. Tag
field is used for local data memory access and the data field stores
the local data. It is a single block that contains address-to-partition
mapping. Tag field makes a trade-off between memory access la-
tency and area. By using tag field, area is increased. In return, the
SIMD architecture does not require many comparison and multi-
plexer blocks, which increase the latency of the address-to-partition
mapping process.

Size of the tag field is proportional to the size of the data field,
and each tag contains values from 0 to 𝑛 − 1. 0 value is for regions
that are only accessed by the master, and 1 to 𝑛 − 1 is for slave
regions 𝑆1 through 𝑆𝑛−1. How tag field is used for memory access
is detailed in Section 3.1.

C code of the example matrix multiplication structure should be
written as Fig. 4. Variables that are not accessed in only one iteration
in the parallelized loop need not be adjacent in the memory. So,
user only has to modify its SIMD execution loop and include the
four variables. Rest of the code remains the same.

As another example, we can present matrix matrix multiplication
(MMM). Fig. 5 shows MMM for loop, 𝐴[𝑖] [0..1] · 𝐵 [0..1] [0..2] =

𝐴[𝑖] [2..4], is SIMDified and each PE executes𝐴[𝑖] [0..1] ·𝐵 [0..1] [𝑥]
= 𝐴[𝑖] [𝑥 + 2] operation. In Fig. 5.d, B is the common memory and
can be accessed by all slaves and A is the partitioned memory and
can only be accessed by single slave. Master can access to the entire
local memory.

Figure 4: SIMD loop of the matrix multiplication example
C code.

Figure 5: Coding example (a) Matrix matrix multiplication
(b) Default memory allocation of arrays after declaration.
(c) Suggested SIMDifiable matrix matrix multiplication
(d) SIMDifiable memory allocation after suggestion

ACSW ’21, February 1–5, 2021, Dunedin, New Zealand Trovato and Tobin, et al.

2.2 RISC-V-compiler
In this work standard RISC-V compiler such as riscv32-unknown-elf,
riscv-none-embed, riscv64-unknown-elf GCC is used. To synthesize
memory in a partitionable way, the compiler optimization level
must be 3. The compiler generates the machine code, which consists
of the data memory before the execution, and the instructions to
be executed.

2.3 Memory Map Extraction
Memory Map Extraction block reads the machine code and gener-
ates the corresponding Local Memory header file for the HLS. Local
Memory header contains instruction and data array. In the instruc-
tion array, each element contains 32-bit instructions. The size of the
instruction array depends on the generated machine code. The data
array contains 32 bits as 4x8, partitioned as 4 dual port 8 bit sized
memory arrays. The length of the data array depends on the linker
file. The header also contains macros for each instruction in the
instruction binary. For example, if instruction binary contains an
ADDI instruction, header contains #define ADDI directive. Macros
are used in HLS to remove unused instructions of RISC-V and to
create an area efficient core.

2.4 SISD RISC-V ISS Model
This model is written in C++ to be simulated with the Vivado HLS.
With the use of HLS-specific constructs like ap_int library and HLS
directives, overall design time is reduced. SISD model is only used
in HLS C simulation to read instruction and data arrays in the local
memory and generate the address header, as explained in the next
part.

2.5 Detection of SIMDifiable Regions
Instructions in the local memory header are simulated in HLS with-
out Register-Transfer Level (RTL) synthesis using the SISD RISC-V
ISS model. While simulating, the model constantly reads the four
variables (StartPar, 𝑛, 𝐴𝑑𝑎𝑡𝑎,𝑠𝑡𝑎𝑟𝑡 , 𝐴𝑑𝑎𝑡𝑎,𝑒𝑛𝑑) from their respective
local addresses, Fig. 6. When the StartPar is read as “1”, it means
that simulation is entering the SIMD loop and when it is read as
“0”, it means that simulation is exiting the SIMD loop. Meanwhile
values 𝐴𝑑𝑎𝑡𝑎,𝑠𝑡𝑎𝑟𝑡 , 𝐴𝑑𝑎𝑡𝑎,𝑒𝑛𝑑 , and par_num, which are set before
SIMD loop, are saved to the Address Header.

After exiting the loop, the model checks the branch instruction of
the SIMD loop. The start of the SIMD loop, branch target address, is
equal to the sum of sign extended immediate offset, imm[12:1], and
branch PC address, Fig. 7. Together with the branch target address
and next value after branch PC address, the register numbers and
contents given in the source register (rs1 and rs2) fields of the branch
instruction are saved to the Address Header. Detailed explanation
about how register numbers and contents are used for transition
between normal processing mode and SIMD processing mode is
given in Section 3.1.

2.6 SIMDification
SIMDification block generates the HLS SIMD header file that con-
sists of slave PE and cache parameters, partitions, and functions
used in the SIMD execution. By default, this block uses the unroll

Figure 6: Flow diagram for Detection of SIMDifiable
Regions block.

Figure 7: B-type instruction structure for RISC-V, rs1 and
rs2 are the source registers for branch operation.

factor determined in the C code, but it can be overwritten to re-
configure SIMD processor without re-compiling it from scratch.
SIMD processing can be applied to any memory partitionable loop
in the application. SIMDified local data memory is generated by
allocating all the data between the 𝐴𝑑𝑎𝑡𝑎,𝑠𝑡𝑎𝑟𝑡 and 𝐴𝑑𝑎𝑡𝑎,𝑒𝑛𝑑 into
𝑛 equisized partitions, as shown in Fig. 8. The master PE acts as
𝑛-th slave during SIMD processing. Start and end addresses of the
partitions are saved to the SIMD header. These are also used while
transitioning between standard processing mode and SIMD pro-
cessing mode. SIMDification block also generates constant memory
tags for every word in the local data memory. CPU looks at the tags
to determine which memory address belongs to which memory
partition. Tagged memory architecture will be detailed in Section
3.1.

2.7 SIMD RISC-V processor description Code in
C++

SIMD RISC-V processor description Code is a HLS code that is
written in C++ and is responsible for generating processor system
with dynamic branch prediction. It generates two types of datapath:

• Master Datapath: It is always executed, unique and respon-
sible for branch prediction, stalls, and other control signals.
Master datapath can access all the local memory (data and
instruction), external memory, and register file array.

• Slave Datapath: There are 𝑛 − 1 slaves, which are executed
only while SIMD processing. Each slave can only access its
own register file and its own memory partition. In SIMD
processing, slaves are not executed if the instruction is a
branch or a jump, or an instruction is accessing a different
memory address than its own partition (common memory).

Master and slave datapaths are entangled in the processor and
not single blocks, but for the sake of clarity they will be referred as

SIMDify ACSW ’21, February 1–5, 2021, Dunedin, New Zealand

Master and Slave processing elements throughout this paper. An
illustrative partitioning is given in Fig. 8 for n=2 and n=4 for the
matrix-vector multiplication code. In a memory partitionable loop,
every load or store is accessing a different part of the memory or a
common memory address. So, there are no dependencies between
iterations. In each iteration SIMD loops either access to the common
memory (like vector load) or they all access to a different part of the
memory (like matrix load/store). In matrix multiplication, SIMD
Slaves are not executed when the code is accessing the common
memory (𝑣 block). Instead, master LOADs 𝑣 array and writes to all
𝑛 registers. Memory of the matrix is partitioned amongst PEs, the
vector memory will reside in the non-partitioned common memory,
and only the master PE can access it and write to all registers. If
𝑣 must be STOREd inside SIMD loop, it must be part of partition
matrix 𝐴.

Figure 8: Example partitioning for a) n=2 , b) n=4

2.8 High Level Synthesis
Using HLS, SIMDify synthesizes the processor using generated
headers and PE codes written in C++. For different applications
the flow must start from the beginning. For the same application
with different unroll factors, starting from the SIMDification step
is enough.

3 CORE ARCHITECTURE
Our soft application-specific SIMD-processor consists of two main
parts: A relatively large master PE and small slave PEs. Using HLS,
SIMDify can combine and connect master and slaves to generate
various SIMD processors for an application depending on the unroll
factor. The processor is designed in C++ and synthesized in Vivado
High-Level Synthesis 2019.2.

3.1 SIMD Processor
In our system, software loop is unrolled in hardware level to be
executed in parallel as SIMD. Execution results in𝑛 times the latency
gain for the SIMD executed part. The user guides the SIMDify, and
the framework configures the processor accordingly. This process
does not require inline assembly or custom instructions. It only
requires modification on the SIMDified loop itself, thus, rest of the
application does not need to be modified. Also, no extra instruction
overhead is added to instructions generated by the compiler.

The overall SIMD processor architecture is shown in Fig. 9. SIMD
processor consists of a master and 𝑛 − 1 slaves. Using HLS, SIMD-
ify combines and connects these PEs to generate different SIMD
processors for each application and unroll factor. Proposed proces-
sor architecture is the first RISC-V processor with SIMD support
designed using HLS. In the figure, thin arrows are for single data
and exclusive to master. Thick arrows indicate busses where both

master and slaves execute. The designed processor runs in one of
two different modes at any given time:

• Standard mode where the only active PE is the master.
• Parallel mode for SIMD processing where all PEs are active.

In the fetch stage, the master checks the PC value to start or end
the SIMD processing. Before beginning the SIMD processing, the
master initializes all slaves by writing different values of the SIMD
loop iterator to the register files. These values are pre-calculated
by the SIMDify tool as explained in the previous section.

In a SIMD loop machine code, rs1 and rs2 of branch source reg-
isters are set as initial and final addresses of the memory partition.
Register of the initial_address is incremented until it’s the same as
final_address. This is purely done by compiler and similar for every
SIMDifiable loop.

Consider an example where, unroll factor is 3, and SIMD loop
accesses addresses 1 to 30. So, initial_address is 1 and final_address
is 30. Master PE overrides “set rs1 and rs2” instruction and sets rs1
and rs2 values of the slave PEs as 1, 11 and 10, 20 and master PE as
21 and 30 respectively. This approach is similar to loop unrolling.
This does not take additional time, since initialization is executed
instead of “set rs1 and rs2” instruction. After the loop, master PE
continues its normal operation. Since memory accessed in each
iteration corresponds to different memory partitions, the system
can be executed as SIMD.

The master determines execution mode by checking the program
counter value in the fetch stage. System runs in the parallel mode if
the PC value corresponds to the SIMD loop and runs in the standard
mode if it does not. Additionally, only the master PE is active if the
instruction is LUI, AUIPC, JUMP, or BRANCH, or requires access
to non-partitioned (common) local memory.

Local data memory consists of a data field that has random access
data and a tag field that identifies this data. Tag field is generated
by the SIMDify and cannot be accessed by instructions. In the
execute stage, the tag of the data is read from the tag field, and it
is used to set the enable signals of the memory partitions. Then,
in the memory stage, enable signals are used by the PEs to access
the correct memory partition. There are three possible outcomes
depending of the tag values and current mode:

• In standard mode: Only the master is active and tag value
is used to give access to the master PE to the demanded
memory partition.

• In parallel mode and all addresses are the same: That means
PEs are reading from a common memory like 𝑣 . In this case
only the master PE accesses the memory and writes to all
register files.

• In parallel mode and all addresses are different: That means
core is executing as SIMD and every PE reads and writes to
its own partition, by using their dedicated RFs.

Size of the tag field depends of size of the local data memory
and the unroll factor as 𝐿𝑜𝑐𝑎𝑙𝐷𝑎𝑡𝑎𝑀𝑒𝑚𝑜𝑟𝑦

32 ∗ ⌈𝑙𝑜𝑔2 (𝑛)⌉ . If the unroll
factor is 1, tag field is not generated since there is only single
memory partition and single PE.

ACSW ’21, February 1–5, 2021, Dunedin, New Zealand Trovato and Tobin, et al.

Figure 9: Block diagram of overall system with 1 master PE and n-1 slave PEs. Local data memory is detailed in Fig. 2.

3.2 Master (Scalar) PE
The scalar PE is master for slave PEs and supports 𝑟𝑖𝑠𝑐𝑣32𝑖 in-
struction set and MUL, MULH, MULHSU, MULHU multiplication
instructions. It has a standard five-stage pipeline consisting of fetch,
decode, execute, memory, and writeback stages [19]. Instructions
are fetched and issued for execution in program order. Using the
aforementioned directives unused instruction blocks are removed,
which reduces the area. All data dependency hazards are solved via
stalling.

Branch hazards are handled with dynamic one-level branch pre-
diction with a 1-bit saturating counter. Jump instructions are re-
solved in the decode stage, which results in 1 cycle overhead. Branch
instructions are also resolved in the decode stage to reduce mis-
prediction penalty. In the figure, top input of the pipe registers
indicates flush, and bottom indicates stall. The core has a local
memory for faster processing, and memory can be expanded with a
cache connected to external memory. All instructions are stored in
the local instruction memory. Latency for memory stage is a single
cycle for local memory. If the cache is implemented, the overall
pipeline depth does not change, but the memory stage may take
multiple cycles to execute. All local memories and cache memories
are asynchronous read and synchronous write. It should be noted
that block diagram is behaviorally correct, however, in HLS register
file, writeback, and decode stages are written as one block. This is
done to generate two port asynchronous read, one port synchro-
nous write register file (RF). Operands are sent to the decode first,
and sent to the execute from there.

The master PE is also responsible for starting and ending the
SIMDprocessing. Before beginning the SIMDprocessing, themaster
PE initializes slave PEs as explained in the Section 3.1.

3.3 Slave PE
Slave PEs only consist of decode, execute, memory, and writeback
units. All slave PEs can only access to their individual 32-bit register
files, and their partition in the main memory. Since it is guaranteed
that all PEs will execute the same instruction at any given time,
redundant signals are trimmed to reduce area. Slave PEs also do
not have a stall, fetch, or branch units. They are generated only
when the user demands a SIMD processing and are fully controlled
by the master PE.

Slave PEs are generated by using HLS loop unroll pragmas with
case blocks. So, they use the same blocks and same unified local
memory as the master PE. SIMDify detects SIMD loops and guides
HLS to generate slave PEs accordingly. This approach generates gen-
eral purpose slave PEs and removes the need for designing custom
modules per application. Slave PEs can execute most instructions
of the supported ISA. Slave and master PEs are further reduced to
only execute necessary instructions per application basis, which
reduces area. If master PE is modified to include extra instructions,
slave PEs can be easily scaled to include these instructions as well.

4 BACKGROUND AND RELATEDWORKS
In this work, RISC-V [41] ISA is chosen due to its open-source,
free, active, and well-documented nature. Even though RISC-V ISA
defines two types of extended instruction sets for data parallel pro-
cessing, “P” (Packed SIMD) extension and “V” (Vector) extension,
”V” extension is not tailored for small scale SIMD applications, and
the ”P” extension cannot be scaled without recompiling the applica-
tion (not scalable). Scalable SIMD instructions can be implemented
in RISC-V processors by extending standard instruction set with
non-standard custom instructions [17, 21, 36].

V extension can work with small scale vector lengths, however
it’s intended for high performance computing with its OpenMP
support. Allowing vector processing requires significant changes
in the processor architecture, whereas SIMDify can unroll loops
with its simple core architecture. Widths of vector can only be a
power of 2, whereas SIMDify can take custom unroll factors as an
input.

P extension requires new machine code for every time when
number of parallel computing units is changed. SIMDify can use
same machine code for any number of parallel computing units.
Hence, user can easily explore design space to optimize overall
design without recompiling the software. Currently, P extension
is not supported by standard RISC-V compiler. Both extensions
are not standardized and there are no existing open-source designs
with these extensions. Note that, SIMDify is an open-source project.

In conventional SIMD processing, SIMD instructions are used,
which necessitates either inline assembly or modification of the
RISC-V GCC toolchain. Intermediate representation generated by
the compiler front end can also be used to detect SIMDifiable re-
gions with cost of forcing users to a custom compiler. SIMDify

SIMDify ACSW ’21, February 1–5, 2021, Dunedin, New Zealand

does not force users which compiler to use and it automates the
process after the compilation. In the literature, SIMD computation
is achieved using custom instructions in [17, 21, 36] by extending
RISC-V ISA, and in [15] by extending SimpleRISC ISA. Automated
tools like [3] or [1] where ISA extended processors can be generated
together with SDK exist, but this also limits the user by forcing one
IP ecosystem. Chipyard RoCC [2] is another commonly used frame-
work for designing accelerators for Rocket processor. However,
communicating accelerators with its RoCC interface also requires
a custom software toolchain. SIMDify solution can be applied to
any SIMD loop that satisfies the memory constraints, whereas, con-
temporary approaches might require different custom instruction
for each new application.

HLS tools give designers better authority over-optimization of
their design architecture. However, HLS often requires guidance
from the user to generate the architecture through the use of prag-
mas. Quality of the design is directly dictated by the selected prag-
mas. Hence, iterative design process for finding the best solution
takes a considerable design effort and time. In our approach, we
have already designed the template SIMD processor architecture.
The SIMDify framework, which generates application specific SIMD
architecture, greatly reduces the design effort and time of the user.
SIMDify fully utilizes HLS and its C like header structure to reduce
design time.

In [29] it is shown that HLS can reduce the design effort while
still achieving a good quality of results. In terms of area, the proces-
sor designed in HLS is %50 larger than its RTL equivalent. Several
implementations of RISC-V have been made in Chisel [8], a Scala-
embedded language that allows functional and object-oriented de-
scriptions of hardware circuits, like [11, 39]. Other RISC-V proces-
sors designed using a high-level synthesis are Comet core [32] in
Catapult HLS, HL5 [29] in SystemC and approximate CPU [37]
in Vivado HLS. All mentioned processors does not have a SIMD
support, but Comet does allow instruction extensions by modifying
the HLS code. However, compiler modification must be done by
the user. HL5 and Comet have stable 𝑟𝑖𝑠𝑐𝑣32𝑖𝑚 instruction sup-
port. [34] and [6] are MIPS architecture based processors, utilizing
Vivado and LegUp [10] HLS tools, respectively. In [22] SIMD pro-
cessor for software-defined radio (SDR) applications is designed
using high-level OpenCL language [30].

5 EXPERIMENTAL RESULTS
5.1 Setup
Experiments are carried out on Zynq-7020-2CLG484-1 FPGA as
hardware simulation. Each tested algorithm uses less than 32KB of
total memory, which fits in the local memory. C code is compiled
with riscv64-unknown-elf-gcc 7.2.0 with following options−𝑚𝑎𝑏𝑖 =

𝑖𝑙𝑝32−𝑔0−𝑂3−𝑚𝑎𝑟𝑐ℎ = 𝑟𝑣32𝑖𝑚−𝑊𝑙,−−𝑛𝑜−𝑟𝑒𝑙𝑎𝑥−𝑛𝑜𝑠𝑡𝑎𝑟𝑡 𝑓 𝑖𝑙𝑒𝑠 .
We implemented algorithms of matrix vector multiplication

(MVM), sum of absolute distances (SAD), sum of squared distances
(SSD), artificial neural networks (ANN), k-nearest neighbors with
selective sort (KNS) and k-nearest neighbors with qsort (KNQ).
Both massively parallelizable algorithms with large parallel por-
tions (MVM, SAD, SSD, ANN) and partially parallelizable algorithms
with smaller parallel portions (KNS, KNQ) are tested. Both large
and small scale applications only requires user modification on the

SIMD loop, rest of the application does not change. SIMDify focuses
on unrolling user picked critical loops in the application.

5.2 Results
We verified the HDL generated by SIMDify against SISD RISC-
V ISS Model and confirmed that their outputs agree. To measure
the latency, HLS cosimulation results are used, which are based
on synthesized HDL code. Resource usage and clock speed values
are taken from the synthesis report. Processor generation time is
around 4 min on a four-core Intel Xeon server.

Clock speeds are calculated when the target clock is 15ns, and
uncertainty is %12.5. Three different parameters affect the clock
speed: multiplication, cache and the number of PEs, i.e. 𝑛. If an algo-
rithm uses one of multiplication instructions, MUL block is inserted,
and its 11 ns slack causes the bottleneck. However, if it does not
use any multiplication instructions, its period changes depending
on the number of slave PEs, Table 1. In the algorithms mentioned
above, only SAD does not use any multiplication instructions. If the
unroll factor is one, only the scalar PE with one partition is used,
so extra logic for slave PE routing is removed. Cached clock-speed,
11.827 ns, is faster than the non-cached core, but, it requires three
times more clock cycles to complete. Different master and slave
PE architectures might change the clock speed of the generated
processor. However, SIMDify framework itself is independent from
the master and slave PEs.

Speed-up and latency values for each algorithm are given in Table
1. Latency without SIMD processing is given in terms of the number
of clock cycles, and the latency speedup is calculated as 𝐿𝑎𝑡1

𝐿𝑎𝑡𝑛
. 150

iteration MVM, SAD, SSD, KNS, and KNQ and 75 iteration ANN
algorithms are SIMDified with 5, 15, and 25 unroll factors. "Max"
is used to show maximum achievable parallelism. The processor
does not lose any clock cycles when going into or exiting the SIMD
mode. So, calculated latency values are in correspondence with the
Amdahl’s law [31]. However, since clock speed is different with and
without the slave PEs, it must also be considered when calculating
the true speed-up, which is also given separately in the Table 1.

The resource used for MVM algorithm is given in the Table 2.
The number of BRAM required for each algorithm is dependent
on the number of instructions in the algorithm. The number of
LUTs and FFs required is roughly similar for each tested algorithm.
The number of DSP blocks required is dependent on the number of
multiplication instructions used in the algorithm. So if all of MUL,
MULH, MULHSU, MULHU instructions are used, the processor will
require 12 DSPs per PE. For applications with no multiplication in-
structions, such as the SAD algorithm, no DSP blocks are used. DSP
usage improved drastically by application specific block removal
mentioned in the Scalar PE subsection. With the same technique,
BRAM and FF usage does not change, and LUT usage is improved by
∼4%. In all test cases, number of LUTs was the limiting factor in de-
ciding the maximum number of slave PEs (unroll factor). Maximum
25-30 PEs can be implemented inside the Zynq-7020-2CLG484-1
FPGA. It can be seen that DSP increase is linear w.r.t unroll factor.
For MVM with unroll factor 25, the application finishes 16.9 times
faster by using 8.53 times more BRAM, 25 times more DSP blocks,
12.09 times more FF, and 13.66 times more LUT.

ACSW ’21, February 1–5, 2021, Dunedin, New Zealand Trovato and Tobin, et al.

Table 1: Latency (clock cycles), Clock Speed and Speed-up for unroll factor 5, 15, 25, and maximum achievable parallelism

Algorithm
Single PE (n=1)
Latency (Cycles)

Clock Period (ns) Speed-up (Cycles) Speed-up (Time)
1 5 15 25 5 15 25 Max 5 15 25 Max

MVM 6580 12.75 12.78 12.78 12.78 4.63 11.75 16.96 50.62 4.62 11.72 16.92 50.50
SAD 10640 11.92 12.69 12.64 12.66 4.75 12.67 19.00 76.00 4.46 11.95 17.89 71.56
SSD 8680 12.75 12.78 12.78 12.78 4.72 12.40 18.39 66.77 4.71 12.37 18.34 66.58
ANN 14008 12.75 12.78 12.78 12.78 4.76 12.76 19.22 79.59 4.75 12.73 19.17 79.38
KNS 156622 12.75 12.78 12.78 12.78 1.36 1.45 1.47 1.50 1.35 1.44 1.46 1.49
KNQ 118332 12.75 12.78 12.78 12.78 1.55 1.70 1.73 1.79 1.54 1.69 1.72 1.78

Table 2: Resource usage of Matrix Vector Multiplication for
unroll factor 5, 15, 25

Type Available Utilization
1 5 15 25

BRAM 280 13 46 70 111
DSP 220 3 15 45 75
FF 106400 637 1619 4787 7699
LUT 53200 3406 9958 27649 46541

Table 3: FPGA Frequency Comparison table for RISC-V
HLS cores

Core Name Frequency SIMD Language
Comet [32] 70 MHz No Catapult HLS
Rocket [7] 76 MHZ No Chisel
HL5 [29] Unknown No SystemC

SIMDify with 78.4 MHz No Vivado HLSNo Slave PEs
SIMDify with 78.2 MHz Yes Vivado HLS30 slave PEs

In MVM, SAD, SSD and ANN, we showed experimentally that if
the latency is mainly due to partitionable loop, SIMDify can speed-
up the design drastically. However, this isn’t the case with KNS and
KNQ, which can only be reduced to 60% of single cycle latency due
to Amdahl’s law. Users must decide if SIMDifing can improve the
application, and how much.

It should also be mentioned that Comet [32] also reports around
70 MHz on Artix 7 FPGA and takes around 2 minutes to synthesize.
In [32], Rocket Core [7], another core written in Chisel HDL, has
been mentioned to have 76 MHZ on Artix 7 FPGA. Finally, HL5 has
clock frequency between 700 MHz and 2GHz in 32 nm CMOS. Pro-
posed SIMD processor architecture has a similar clock frequency
with aforementioned HLS cores even with 30 slaves, Table 3. The so-
lution proposed in this paper is scalable, open-source, and does not
depend on non-standard compilers to minimize the user workload.
Using SIMDify, hardware-level parallelization is achieved without
the use of additional instructions.

6 CONCLUSION AND THE FUTUREWORK
In this paper, SIMDify, hardware-software parallelization frame-
work for generating SIMD capable application-specific RISC-V in-
struction set processors, and the generated application specific
SIMD processor structure are presented. SIMDify combines HLS
with standard RISC-V compiler to generate a five-stage pipelined
SIMD processor written in C++. SIMD processor consists of master
and slave PEs. UsingHLS, SIMDify combines and connects these PEs
to generate different SIMD processors for each application. SIMD
processor architecture is the first HLS designed RISC-V processor
with SIMD support.

Applicability of the SIMDify is tested on selected algorithms.
System runs on Zynq-7020-2CLG484-1 FPGA and it operates on
approximately 78 MHz. Processor is based on an FPGA, so it can
be combined with other applications as an accelerator. Since it’s
designed in HLS it can be easily modified and improved by many
users.

In terms of scalar PE, cache implementation can be improved.
Also, forwarding structure can be implemented to reduce the num-
ber of stalls, and multi-cycle instructions such as DIV and REM can
be implemented for full 𝑟𝑖𝑠𝑐𝑣32𝑖𝑚 support. The main bottleneck
of the core is 11 ns single cycle 32x32 multiplication instruction,
which can be improved by using a custom multiplication block or
multi-cycle multiplication operation.

Existing external memory and cache structure can be used to
increase the total data memory size. However, data in the external
memory cannot be used in SIMD processing. So, to increase the
size of the SIMD processed memory, tag field size must also in-
crease. Since, SIMDification block generates constant memory tags
for every word in the local data memory, generated tag field size
increases proportionally with the local data field size. This problem
can be solved by decreasing tag field size per word or by changing
the memory structure to extend local memory without increasing
the tag size.

Designed ASIP and SIMDify framework can be applied to any
iterative loop if the loop does not include any conditional branch-
ing and if the loop satisfies the memory constraints. We believe
SIMDify solution is better and more comprehensive than the alter-
native: modifying an each application to make it compatible with
each custom instruction. SIMDify automates processor generation
and creates an open-source framework that can easily be used by
anyone to achieve SIMD computation. Despite the limitations of
the current HLS tools, the time to design and optimize the processor

SIMDify ACSW ’21, February 1–5, 2021, Dunedin, New Zealand

significantly decreased compared to traditional RTL flow. Address-
ing these limitations represents a research driver for future HLS
tools.

ACKNOWLEDGMENTS
Authors would like to thank Omer Faruk Irmak for his support in
machine code generation using compilers.

The authors would also like to thank anonymous referees for
their valuable comments and helpful suggestions. This work is sup-
ported by the Turkish Ministry of Science, Industry and Technology
under Grant No. 58135.

REFERENCES
[1] [n.d.]. ASIP Designer. Ph.D. Dissertation. https://www.synopsys.com/designware-

ip/processor-solutions/asips-tools.html
[2] [n.d.]. Chipyard. https://chipyard.readthedocs.io/en/latest/Customization/RoCC-

Accelerators.html
[3] [n.d.]. Codasip Studio. https://codasip.com/codasip-studio/
[4] [n.d.]. SIMDify Framework. https://github.com/alpsark/SIMDify
[5] [n.d.]. Vivado High-Level Syntesis. https://www.xilinx.com/products/design-

tools/vivado/integration/esl-design.html
[6] Tanvir Ahmed, Noriaki Sakamoto, Jason Anderson, and Yuko Hara-Azumi. 2015.

Synthesizable-from-C embedded processor based on MIPS-ISA and OISC. Pro-
ceedings - IEEE/IFIP 13th International Conference on Embedded and Ubiquitous
Computing, EUC 2015 (2015), 114–123. https://doi.org/10.1109/EUC.2015.23

[7] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-
colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-
vitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup Lee, Eric
Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert Ou,
David A Patterson, Brian Richards, Colin Schmidt, Stephen Twigg, Huy Vo,
and Andrew Waterman. 2016. The Rocket Chip Generator. EECS Department,
University of California, Berkeley, Technical Report UCB/EECS-2016-17 (2016).
https://doi.org/10.1023/A:1010000313106

[8] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,
Rimas Avižienis, John Wawrzynek, and Krste Asanović. 2012. Chisel: Construct-
ing hardware in a Scala embedded language. Proceedings - Design Automation
Conference (2012), 1216–1225. https://doi.org/10.1145/2228360.2228584

[9] Andrew Becker, Scott Sirowy, and Frank Vahid. 2011. Just-in-time compilation
for FPGA processor cores. In 2011 Electronic System Level Synthesis Conference
(ESLsyn). IEEE, 1–6. https://doi.org/10.1109/ESLsyn.2011.5952282

[10] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona,
Jason H. Anderson, Stephen Brown, and Tomasz Czajkowski. 2011. LegUp.
In Proceedings of the 19th ACM/SIGDA international symposium on Field pro-
grammable gate arrays - FPGA ’11. ACM Press, New York, New York, USA, 33.
https://doi.org/10.1145/1950413.1950423

[11] Christopher Celio, Pi Feng Chiu, Krste Asanović, Borivoje Nikolić, and David
Patterson. 2019. BROOM: An Open-Source Out-of-Order Processor with Resilient
Low-Voltage Operation in 28-nm CMOS. IEEE Micro 39, 2 (2019), 52–60. https:
//doi.org/10.1109/MM.2019.2897782

[12] Yao Chen, Kai Zhang, Cheng Gong, Cong Hao, Xiaofan Zhang, Tao Li, and
Deming Chen. 2019. T-DLA: An Open-source Deep Learning Accelerator for
Ternarized DNN Models on Embedded FPGA. In 2019 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI). IEEE, 13–18. https://doi.org/10.1109/ISVLSI.
2019.00012

[13] Sivakumar Chidambaram, Alexandre Riviello, J.M. PierreLanglois, and Jean-
Pierre David. 2018. Accelerating the Inference Phase in Ternary Convolutional
Neural Networks Using Configurable Processors. In 2018 Conference on Design
and Architectures for Signal and Image Processing (DASIP). IEEE, 94–99. https:
//doi.org/10.1109/DASIP.2018.8596860

[14] Peter Figuli, Carsten Tradowsky, Nadine Gaertner, and Juergen Becker. 2013.
ViSA: A highly efficient slot architecture enabling multi-objective ASIP cores.
In 2013 International Symposium on System on Chip (SoC). IEEE, 1–8. https:
//doi.org/10.1109/ISSoC.2013.6675270

[15] V. Ganesh and B. V.H. Sandilya. 2019. Implementation of SIMD Instruction
Set Extension for BLAKE2. 2019 10th International Conference on Computing,
Communication and Networking Technologies, ICCCNT 2019 (2019). https://doi.
org/10.1109/ICCCNT45670.2019.8944835

[16] Chang Gao, Stefan Braun, Ilya Kiselev, Jithendar Anumula, Tobi Delbruck, and
Shih-Chii Liu. 2019. Real-Time Speech Recognition for IoT Purpose using a Delta
Recurrent Neural Network Accelerator. In 2019 IEEE International Symposium
on Circuits and Systems (ISCAS). IEEE, 1–5. https://doi.org/10.1109/ISCAS.2019.
8702290

[17] Angelo Garofalo, Giuseppe Tagliavini, Francesco Conti, Davide Rossi, and Luca
Benini. 2020. XpulpNN: Accelerating Quantized Neural Networks on RISC-
V Processors Through ISA Extensions. In 2020 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 186–191. https://doi.org/10.23919/
DATE48585.2020.9116529

[18] Yuchen Hao, Zhenman Fang, Glenn Reinman, and Jason Cong. 2017. Supporting
Address Translation for Accelerator-Centric Architectures. In 2017 IEEE Inter-
national Symposium on High Performance Computer Architecture (HPCA). IEEE,
37–48. https://doi.org/10.1109/HPCA.2017.19

[19] David Money Harris and Sarah L. Harris. 2012. Digital design and computer
architecture, 2nd edition. Morgan Kaufmann. 1–690 pages. https://doi.org/10.
1016/C2011-0-04377-6

[20] Yuanhong Huo and Dake Liu. 2017. High-Throughput Area-Efficient Processor
for Cryptography. Chinese Journal of Electronics 26, 3 (5 2017), 514–521. https:
//doi.org/10.1049/cje.2017.03.004

[21] Yoshiki Kimura, Tomoya Kikuchi, Kanemitsu Ootsu, and Takashi Yokota. 2019.
Proposal of Scalable Vector Extension for Embedded RISC-V Soft-Core Processor.
In 2019 Seventh International Symposium on Computing and NetworkingWorkshops
(CANDARW). IEEE, 435–439. https://doi.org/10.1109/CANDARW.2019.00082

[22] Heikki Kultala, Timo Viitanen, Heikki Berg, Pekka Jaaskelainen, Joonas Multa-
nen, Mikko Kokkonen, Kalle Raiskila, Tommi Zetterman, and Jarmo Takala. 2019.
LordCore: Energy-Efficient OpenCL-Programmable Software-Defined Radio Co-
processor. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 27, 5
(5 2019), 1029–1042. https://doi.org/10.1109/TVLSI.2019.2897508

[23] Carlos Andres Lara-Nino, Arturo Diaz-Perez, and Miguel Morales-Sandoval.
2020. Lightweight elliptic curve cryptography accelerator for internet of things
applications. Ad Hoc Networks 103 (6 2020), 102159. https://doi.org/10.1016/j.
adhoc.2020.102159

[24] Chi-Ming Lee, Yong-Jyun Huang, Chih-Wei Liu, and Yarsun Hsu. 2016. DeAr:
A framework for power-efficient and flexible embedded digital signal processor
design. In 2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS).
IEEE, 658–661. https://doi.org/10.1109/APCCAS.2016.7804083

[25] Meng Li, Frederik Naessens, Min Li, Peter Debacker, Claude Desset, Praveen
Raghavan, Antoine Dejonghe, and Liesbet Van der Perre. 2013. A processor based
multi-standard low-power LDPC engine for multi-Gbps wireless communication.
In 2013 IEEE Global Conference on Signal and Information Processing. IEEE, 1254–
1257. https://doi.org/10.1109/GlobalSIP.2013.6737136

[26] Gai Liu, Joseph Primmer, and Zhiru Zhang. 2019. Rapid Generation of High-
Quality RISC-V Processors from Functional Instruction Set Specifications. In
Proceedings of the 56th Annual Design Automation Conference 2019. ACM, New
York, NY, USA, 1–6. https://doi.org/10.1145/3316781.3317890

[27] Zhiqiang Liu, Jingfei Jiang, Guoqing Lei, Kai Chen, Buyue Qin, and Xiaoqiang
Zhao. 2020. A Heterogeneous Processor Design for CNN-Based AI Applications
on IoT Devices. Procedia Computer Science 174 (2020), 2–8. https://doi.org/10.
1016/j.procs.2020.06.048

[28] Steffen Malkowsky, Hemanth Prabhu, Liang Liu, Ove Edfors, and Viktor Öwall.
2019. A programmable 16-lane SIMD ASIP for massive MIMO. In Proceedings
- IEEE International Symposium on Circuits and Systems, Vol. 2019-May. 1–5.
https://doi.org/10.1109/ISCAS.2019.8702770

[29] Paolo Mantovani, Robert Margelli, Davide Giri, and Luca P. Carloni. 2020. HL5:
A 32-bit RISC-V Processor Designed with High-Level Synthesis. Proceedings of
the Custom Integrated Circuits Conference 2020-March (2020). https://doi.org/10.
1109/CICC48029.2020.9075913

[30] Aaftab Munshi. 2009. The OpenCL specification. In 2009 IEEE Hot Chips 21
Symposium (HCS). IEEE, 1–314. https://doi.org/10.1109/HOTCHIPS.2009.7478342

[31] David P. Rodgers. 1985. Improvements in multiprocessor system design. ACM
SIGARCH Computer Architecture News 13, 3 (6 1985), 225–231. https://doi.org/
10.1145/327070.327215

[32] Simon Rokicki, Davide Pala, Joseph Paturel, and Olivier Sentieys. 2019. What
You Simulate Is What You Synthesize: Designing a Processor Core from C++
Specifications. In 2019 IEEE/ACM International Conference on Computer-Aided De-
sign (ICCAD), Vol. 2019-Novem. IEEE, 1–8. https://doi.org/10.1109/ICCAD45719.
2019.8942177

[33] Shanlin Xiao, Dongju Li, Hiroaki Kunieda, and Tsuyoshi Isshiki. 2016. Design of
an efficient ASIP-based processor for object detection using AdaBoost algorithm.
In 2016 7th International Conference of Information and Communication Technology
for Embedded Systems (IC-ICTES). IEEE, 96–99. https://doi.org/10.1109/ICTEmSys.
2016.7467129

[34] Sam Skalicky, Tejaswini Ananthanarayana, Sonia Lopez, and Marcin Lukowiak.
2016. Designing customized ISA processors using high level synthesis. 2015
International Conference on ReConFigurable Computing and FPGAs, ReConFig 2015
(2016), 0–5. https://doi.org/10.1109/ReConFig.2015.7393299

[35] Tomoki Sugiura, Shoko Nakatsuka, Jaehoon Yu, Yoshinori Takeuchi, and Masa-
haru Imai. 2014. An efficient data compression method for artificial vision
systems and its low energy implementation using ASIP technology. In 2014 IEEE
Biomedical Circuits and Systems Conference (BioCAS) Proceedings. IEEE, 81–84.
https://doi.org/10.1109/BioCAS.2014.6981650

https://www.synopsys.com/designware-ip/processor-solutions/asips-tools.html
https://www.synopsys.com/designware-ip/processor-solutions/asips-tools.html
https://chipyard.readthedocs.io/en/latest/Customization/RoCC-Accelerators.html
https://chipyard.readthedocs.io/en/latest/Customization/RoCC-Accelerators.html
https://codasip.com/codasip-studio/
https://github.com/alpsark/SIMDify
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://doi.org/10.1109/EUC.2015.23
https://doi.org/10.1023/A:1010000313106
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1109/ESLsyn.2011.5952282
https://doi.org/10.1145/1950413.1950423
https://doi.org/10.1109/MM.2019.2897782
https://doi.org/10.1109/MM.2019.2897782
https://doi.org/10.1109/ISVLSI.2019.00012
https://doi.org/10.1109/ISVLSI.2019.00012
https://doi.org/10.1109/DASIP.2018.8596860
https://doi.org/10.1109/DASIP.2018.8596860
https://doi.org/10.1109/ISSoC.2013.6675270
https://doi.org/10.1109/ISSoC.2013.6675270
https://doi.org/10.1109/ICCCNT45670.2019.8944835
https://doi.org/10.1109/ICCCNT45670.2019.8944835
https://doi.org/10.1109/ISCAS.2019.8702290
https://doi.org/10.1109/ISCAS.2019.8702290
https://doi.org/10.23919/DATE48585.2020.9116529
https://doi.org/10.23919/DATE48585.2020.9116529
https://doi.org/10.1109/HPCA.2017.19
https://doi.org/10.1016/C2011-0-04377-6
https://doi.org/10.1016/C2011-0-04377-6
https://doi.org/10.1049/cje.2017.03.004
https://doi.org/10.1049/cje.2017.03.004
https://doi.org/10.1109/CANDARW.2019.00082
https://doi.org/10.1109/TVLSI.2019.2897508
https://doi.org/10.1016/j.adhoc.2020.102159
https://doi.org/10.1016/j.adhoc.2020.102159
https://doi.org/10.1109/APCCAS.2016.7804083
https://doi.org/10.1109/GlobalSIP.2013.6737136
https://doi.org/10.1145/3316781.3317890
https://doi.org/10.1016/j.procs.2020.06.048
https://doi.org/10.1016/j.procs.2020.06.048
https://doi.org/10.1109/ISCAS.2019.8702770
https://doi.org/10.1109/CICC48029.2020.9075913
https://doi.org/10.1109/CICC48029.2020.9075913
https://doi.org/10.1109/HOTCHIPS.2009.7478342
https://doi.org/10.1145/327070.327215
https://doi.org/10.1145/327070.327215
https://doi.org/10.1109/ICCAD45719.2019.8942177
https://doi.org/10.1109/ICCAD45719.2019.8942177
https://doi.org/10.1109/ICTEmSys.2016.7467129
https://doi.org/10.1109/ICTEmSys.2016.7467129
https://doi.org/10.1109/ReConFig.2015.7393299
https://doi.org/10.1109/BioCAS.2014.6981650

ACSW ’21, February 1–5, 2021, Dunedin, New Zealand Trovato and Tobin, et al.

[36] Giuseppe Tagliavini, Stefan Mach, Davide Rossi, Andrea Marongiu, and Luca
Benini. 2019. Design and Evaluation of SmallFloat SIMD extensions to the RISC-V
ISA. In 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 654–657. https://doi.org/10.23919/DATE.2019.8714897

[37] İbrahim Taştan, Mahmut Karaca, and Arda Yurdakul. 2020. Approximate CPU
Design for IoT End-Devices with Learning Capabilities. Electronics 9, 1 (1 2020),
125. https://doi.org/10.3390/electronics9010125

[38] Tsung-Han Tsai, Yuan-Chen Ho, and Ming-Hwa Sheu. 2019. Implementation
of FPGA-based Accelerator for Deep Neural Networks. In 2019 IEEE 22nd Inter-
national Symposium on Design and Diagnostics of Electronic Circuits & Systems
(DDECS). IEEE, 1–4. https://doi.org/10.1109/DDECS.2019.8724665

[39] Angie Wang, Woorham Bae, Jaeduk Han, Stevo Bailey, Orhan Ocal, Paul Rigge,
Zhongkai Wang, Kannan Ramchandran, Elad Alon, and Borivoje Nikolic. 2019.
A Real-Time, 1.89-GHz Bandwidth, 175-kHz Resolution Sparse Spectral Analysis
RISC-V SoC in 16-nm FinFET. IEEE Journal of Solid-State Circuits 54, 7 (7 2019),
1993–2008. https://doi.org/10.1109/JSSC.2019.2913099

[40] Yi Wang and Yajun Ha. 2014. A Performance and Area Efficient ASIP for Higher-
Order DPA-Resistant AES. IEEE Journal on Emerging and Selected Topics in Circuits
and Systems 4, 2 (6 2014), 190–202. https://doi.org/10.1109/JETCAS.2014.2315877

[41] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanovi. 2011.
The RISC-V Instruction Set Manual, Volume I: Base User-Level ISA. Electrical
Engineering I (2011), 1–34. https://doi.org/10.1109/ESSCIRC.2014.6942056

https://doi.org/10.23919/DATE.2019.8714897
https://doi.org/10.3390/electronics9010125
https://doi.org/10.1109/DDECS.2019.8724665
https://doi.org/10.1109/JSSC.2019.2913099
https://doi.org/10.1109/JETCAS.2014.2315877
https://doi.org/10.1109/ESSCIRC.2014.6942056

	Abstract
	1 Introduction
	2 Simdify Framework
	2.1 Application Code with SIMD configuration
	2.2 RISC-V-compiler
	2.3 Memory Map Extraction
	2.4 SISD RISC-V ISS Model
	2.5 Detection of SIMDifiable Regions
	2.6 SIMDification
	2.7 SIMD RISC-V processor description Code in C++
	2.8 High Level Synthesis

	3 Core Architecture
	3.1 SIMD Processor
	3.2 Master (Scalar) PE
	3.3 Slave PE

	4 Background and Related Works
	5 Experimental Results
	5.1 Setup
	5.2 Results

	6 Conclusion and The Future Work
	Acknowledgments
	References

