
A Decentralized Framework with Dynamic and
Event-Driven Container Orchestration at the Edge

Umut Can Özyar
Computer Engineering Department

Bogazici University
Istanbul, Turkey

umut.ozyar@boun.edu.tr

Arda Yurdakul
Computer Engineering Department

Bogazici University
Istanbul, Turkey

yurdakul@boun.edu.tr

Abstract—Virtualization provides an abstraction layer for the
Internet of Things technology to tackle the heterogeneity of the
edge networks. Deploying virtualized applications on different
architectures requires autonomous scaling and load balancing
while ensuring their authenticity. A decentralized end-to-end
solution is necessary for applications with variable workloads
to co-exist on a heterogeneous environment with multiple edge
devices. Hence, this study lays down the fundamentals of a
framework for dynamic and event-driven orchestration towards a
fully decentralized edge. It provides a blockchain-based delivery
platform for containerized applications registered with their
resource requirements through a registry on a distributed file
system. The decentralized resource manager running on the
metrics scraped from the host and the virtualization platform,
i.e., Docker in our implementation, dynamically optimizes the
resources allocated to each container. An event-driven archi-
tecture is built over a lightweight messaging protocol, MQTT,
capitalizing on the asynchronous and distributed nature of the
publish/subscribe pattern to achieve a truly distributed system.

Index Terms—Edge computing, resource-constrained devices,
orchestration, containers, decentralized applications

I. INTRODUCTION

The term “Internet of Things (IoT)” describes a sophisti-
cated system of heterogeneous devices, dynamic environments,
and complex sub-systems [1]. The quality of IoT services
delivered to the end-users is a major concern of the application
developers. Edge computing has been proposed to improve
user experience by moving services, processing, and actionable
insights closer to the user. However, edge devices are also
heterogeneous in terms of processing power, memory amount,
and operating system. Hence, virtualization schemes, such
as containerization, widely used in computer systems have
recently stepped into the domain of edge computing [2]. As
containers can be scaled according to the available resources
of the host system, application developers can present an IoT
solution in a container that should ideally execute on almost
every edge device [3].

Even though the usage of containers is a breath-taking
solution for IoT application developers, it bears its own
problems that have to be resolved for a seamless user ex-
perience. Firstly, as edge devices are implemented with dif-
ferent types of hardware, container scaling should be done
at the edge autonomously. Since each application can have
a unique workload during runtime, dynamic load balancing

has to be taken into account to maximize resource utilization
while scaling the containers. Secondly, the authenticity of the
container should be ensured prior to its deployment or upgrade,
because malicious containers can overwhelm the host edge
device which may be running on scarce resources. Finally,
irresponsive or latent services at the edge should be avoided
to improve user experience through autonomous deployment
of containers to neighboring devices.

In this study, we propose a decentralized framework for
autonomous deployment and scaling of containerized appli-
cations on resource-constrained edge devices. The secure
delivery of containerized applications is enabled by a smart
contract that holds container registries on the blockchain. The
container images are stored in a decentralized file system,
namely, IPFS [4]. The use of blockchain and IPFS provides
the ubiquity of the applications for a seamless user experience.
Once the user registers to a service or employs an IoT device,
the container deployment is done autonomously based on
available on-device resources. An event-driven decentralized
resource manager is designed for this purpose. It analyzes
running services and forecasts future requirements. Based on
its findings, it scales containers running on the device. The
decision about the new container depends on where the edge
device is deployed. If there exist multiple devices at the edge,
their resource managers talk, and the device with maximum
abundant resources employs the container. Otherwise, only on-
device resources are used in giving the decision. Our study is
unique in the sense that it provides an end-to-end solution
between the application release and the user experience.

The rest of the paper is organized as follows: The next
section presents related studies in the literature. Section III
introduces the proposed framework while explaining design
choices and incorporated technologies. Section IV analyzes
the behavior of the framework under different experimental
setups. The final section concludes the work.

II. RELATED WORKS

In the recent literature, there exist several studies on edge
container orchestration frameworks. An overview is presented
in Table I.

As mentioned in the previous section, the heterogeneous
nature of IoT end devices requires scaling. Hence, autonomous

scaling (C1) of the containers has to be done at the edge for
a seamless user experience. If supported by the system, the
options are horizontal (H) or vertical (V). Horizontal scaling
refers to changing the number of containers of an application
to meet the varying loads. Performance on a single-CPU
single-threaded edge device may be degraded in horizontally-
scaled containers because having multiple instances of the
same application will have to execute sequentially. Thus, [5]–
[10] explore horizontal scaling across all available devices
in their networks. Vertical scaling is the adaptation of the
resources of an existing container. Containerization engines
such as Docker provide all necessary tools for vertical scal-
ing, making it inherently more straightforward to configure
than horizontal scaling. Scaling type is tightly correlated
with software heterogeneity (C3), such as accommodation
of different kinds of applications like microservices, batch
jobs, and streaming applications on the same device [5], [6],
[8], [11]–[14]. Since our target is the utilization of software
heterogeneity on resource-constrained edge devices, vertical
scaling is preferred.

Decision-taking for autonomous scaling can be either reac-
tive or predictive. Reactive methods only consider the current
state. Predictive methods (C2) consider the past and future
states of the system. In [10] predictive methods such as
machine learning are proposed for horizontal scaling. When
vertical scaling is considered, predictive solutions provide a
smoother user experience and better decision performance
than reactive ones. Our framework relies on statistical models
for time-series forecasting as a reliable method that doesn’t
depend on large amounts of training data. Auto-scaling de-
cisions are based on optimization metrics (C6). The two
main categories are application (A) and system (S) metrics.
Application metrics are driven by the application requirements
such as response time and error rate [7]–[10]. System metrics,
such as CPU and memory, are harnessed from the host.
Application metrics fail to offer a viable solution when it has to
execute on different types of hardware. Hence, our framework
utilizes system metrics so that the applications can run on all
types of hardware. Frameworks of [3], [5], [6], [10], [12],
[15] focus on the resource-constrained devices (C4) as we do,
while the rest are deployed on more powerful devices on the
edge. This makes on-device orchestration (C5) a challenging
issue since it also consumes system resources [3], [6], [7], [9],
[10], [13], [15]. In this study, on-device orchestration is also
adopted as it supports decentralization.

Edge computing paradigm inherently supports the decen-
tralization of every IoT service [13]. However, the studies
in the literature suffer from centralized application registries
throughout the whole delivery process. A centralized registry
gives the authority to set download rates, storage limits,
or pricing decisions to a single party, granting them unfair
advantages as well as introducing a single point of failure.
Traditional decentralized registry solutions may suffer from
some security issues such as access control, immutability, and
authenticity of applications. To cope with this limitation, our
decentralized delivery process leverages blockchain technol-

TABLE I
OVERVIEW OF EDGE ORCHESTRATION FRAMEWORKS.

Criteria1

Authors C1 C2 C3 C4 C5 C6 C7 C8 C9
[3] ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✗
[5] H ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗
[6] H ✗ ✓ ✓ ✓ S ✓ ✗ ✗
[7] H ✗ ✗ ✗ ✓ A ✗ ✗ ✓
[8] H/V ✗ ✓ ✗ ✗ S/A ✗ ✗ ✗
[9] H ✗ ✗ ✗ ✓ A ✓ ✗ ✗
[10] H/V ✓ ✗ ✓ ✓ S/A ✗ ✗ ✗
[11] ✗ ✗ ✓ ✗ ✗ S ✗ ✗ ✗
[12] ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗
[13] ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✓
[14] ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗
[15] ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓

This work V ✓ ✓ ✓ ✓ S ✓ ✓ ✓
1 Description of Abbreviations: C1: Auto-scaling, C2: Predictive Scal-
ing, C3: Software Heterogeneity, C4: Resource Constrained Hardware,
C5: On-Device Orchestration, C6: Optimization Metrics, C7: Event-
driven Communication, C8: Decentralized Application Delivery, C9: De-
centralized Load Balancing, H: Horizontal, V: Vertical, A: Application,
S: System

ogy and a tamper-proof distributed file system to provide
proof of ownership on the smart contracts (C8). Decentralized
communication between edge devices is also essential. Event-
driven communication (C7) using the publish/subscribe pattern
is adopted in many studies [3], [5], [6], [9], [14] as its
resilience and robustness make it a popular choice on the
edge for building scalable platforms. It is also strategic for
decentralized load balancing (C9) across a cluster of edge
devices autonomously [7], [13], [15] to distribute the load on
other edge devices. Since these works assume trustless setups,
a consensus mechanism is implemented. Since we consider
secured resource-constrained devices and blockchain is used
for secure application delivery, a two-step broadcast followed
by an approval-by-silence mechanism is proposed in this work.

III. FRAMEWORK ARCHITECTURE

The proposed framework manages the lifecycle of con-
tainerized applications, including design, delivery, execution,
and optimization steps. It provides data storage, resource
management, monitoring, application registry and delivery
solutions, including service upgrades and software updates.
The overview of the framework’s architecture on the edge is
illustrated in Figure 1. The framework on the edge is designed
as a distributed set of components to support decentralized
orchestration. It consists of four components deployed on the
edge device. Monitor scrapes metrics from the host system
and shares them with the rest of the framework. Deployer
responds to application deployment and resource optimization
requests. New deployment requests are accepted through a
REST endpoint. Analyzer evaluates incoming requests with
the data made available by the other components and makes
predictive analysis. Forecaster provides time-series forecasting
capabilities to the framework.

The four components of the framework rely on an array of
tools and technologies to form the full framework as shown
in Figure 1. Docker provides an engine with virtualization

Blockchain

User MonitorDeployer

Analyzer Forecaster

Metrics

REST

Developer

Host
File System

New Device

Container Application

MQTT

Fig. 1. Overview of the framework’s architecture on the edge.

TABLE II
SUPPORTED ORCHESTRATION ACTIONS AND MQTT TOPICS

Action Topic
Deployment Request Deploy
Deployment Analysis Request Analyze
Deployment Optimization Request Analyze
Forecast Request Forecast
Forecast Response Forecast
Deployment Accept Deploy
Deployment Cancel Deploy
Deployment Update Deploy
Monitoring Result Monitor

capabilities to the edge and means to execute and monitor
containerized applications. IPFS grants the distributed file
storage for the Docker registry and long-term storage for
application metrics. IPFS-Backed Docker Registry (IPDR) is
a Docker registry proxy that utilizes IPFS for decentralized
image storage [16]. Blockchain hosts smart contracts that con-
nect the application delivery process with the edge framework.
Host File System is a mounted volume through Docker to
grant short-term storage for application metrics on the host
device. The framework’s components communicate with the
publish/subscribe pattern. Message Queueing Telemetry Trans-
port (MQTT) Broker is a prominent lightweight protocol for
event-driven architectures on the edge with low resource and
power consumption [17]. Here, components publish messages
on specific topics to pass events and data for subscribed com-
ponents to pick up. Messages contains the action field for
identification of a message’s purpose. Subscribed components
act upon the received action and payload of a message. Table
II presents a list of supported actions and their target topics.

A. Application Delivery

The application delivery process provides a pipeline for
developers to publish and deliver applications to their clients.
The pipeline shown in Figure 2 is built over a decentralized
application registry. Versioning, updates, and upgrades are
managed on top of IPFS using IPDR as a decentralized and
agile solution. IPDR offers the advantage of downloading

layers of a Docker image individually with the use of less
bandwidth and local storage. In this work, an interface for this
decentralized Docker registry is developed as a decentralized
application with a smart contract using the data structures and
functions in Listing 1. Developers start the Release process
of a container application. The application release consists of
either Publish, or subsequent Update processes recurring for
each service upgrade and software update. First, the released
or updated Docker image must be stored on IPDR, which
returns an IPFS hash. Then, the application metadata stored on
the blockchain is manipulated through the smart contract. The
metadata consists of the image hash acquired from IPFS and
an optional set of resource limits such as requestedLimit
and baseLimit that can be configured by the developer.
Data stored on IPFS cannot be traced to its owner unless
proof of ownership is deliberately included; nevertheless, the
smart contract allows developers to prove the application’s
authenticity. The delivery process ensures that applications
are tamper-proof and only the owner can deliver updates and
upgrades.

1 /* Image ownership */
2 mapping(address => Image) images;
3 /* Image metadata */
4 struct Image {
5 string imageHash;
6 string imageName;
7 uint baseLimitMemory;
8 uint requestLimitMemory;
9 uint baseLimitCPU;

10 uint requestLimitCPU;
11 }
12 /* Get image metadata */
13 function get(address imageOwner,
14 string memory imageName)
15 public view returns (Image memory);
16 /* Set image metadata */
17 function set(string memory imageHash,
18 string memory imageName,
19 uint baseLimitMemory,
20 uint requestLimitMemory,
21 uint baseLimitCPU,
22 uint requestLimitCPU
23) public;

Listing 1. Core data structure and functions for application delivery.

B. Application Orchestration

The framework components shown in Figure 1 asyn-
chronously pass messages between each other to provide
dynamic orchestration shown in Figure 2. The messaging
architecture is inspired by the service providers and session
messages described in [18]. The orchestration flow is a step-
by-step process executed on the edge. It is responsible for
managing incoming application deployments and dynamically
adapting allocated resources for each container. The self-
adaptive properties are modeled after Monitor-Analyze-Plan-
Execute-Knowledge (MAPE-K) loops [19].

1) Deployment Admission: The deployment request is initi-
ated by a request that is made externally using the REST API
provided by the Deployer. The actor invoking the request can
either be the user or an IoT device connected to the network.

Blockchain

APPLICATION DELIVERY

APPLICATION ORCHESTRATION

Docker

A new containerized IoT
application is released on

the market

Release Publish

- Upload the application
image to IPFS-based
registry
- Store image hash on
smart contract

REST

User / New Device

Application deployment is
requested by the user or

a new IoT device

Update

- Upload the updated
image to IPFS-based
registry
- Store the new image hash
on the smart contract

IPFS

Pull the application from
the IPFS-based registry
with the hash acquired
from the smart contract

Deployment Admission Resource Allocation Container Execution Monitoring Optimization

- Expose a REST API
endpoint for external clients
to deploy a new application
- Pull image from registry
- Trigger an event for the
intended deployment

- Forecast future resource
utilization of the system
- Determine resource limits
for the container
- Trigger a response event for
the intended deployment

- Spin up a container with
resource constraints such
as CPU and memory limits

- Scrape metrics from Docker
- Store metrics on IPFS and
host file system
- Detect and broadcast
container if it is exited
- Trigger events to analyze
optimization opportunities

- Optimize container's CPU
and memory limits based
on the monitoring metrics
- Restart container with
adjusted resource limits if it
is exited

MQTT

Fig. 2. Application delivery and orchestration workflows of the framework.

Then, the Deployer acquires the image hash and resource
limits stored on the blockchain via the smart contract. After
pulling the corresponding application image from the registry,
a deployment analysis request is published with the resource
limits on the analysis topic.

2) Resource Allocation: Each container is deployed with a
set of CPU and memory limits specified in the smart contract.
These limits are used in scaling the containers based on
the status of other active deployments and vendor-defined
resource limits. The Analyzer is subscribed to two different
topics: analyze and forecast. It listens to deployment analysis
requests and publishes a corresponding deployment analysis
response on the analyze topic as shown in Table II. The
analysis determines the feasibility of a new deployment with
its resource requirements.

The analysis takes the future availability of the resources
into account rather than their current values to ensure the
long-lasting stability of the system. Therefore, a time-series
forecasting analysis is conducted by the Forecaster. It is
subscribed to the forecast topic and acts on a forecast request
messages published by the Analyzer. The Autoregressive In-
tegrated Moving Average (ARIMA) model is used to interpret
the trends in time-series data and predict the future values with
statistical analysis [20], [21]. The time-series data consist of
the metrics collected and stored locally by the Monitor as
described in Section III-B4. Auto-Regression and Integrated
models of ARIMA are configured together to capture non-
stationary patterns seen in each analyzed metric and forecast
their values. The ARIMA model used in our implementation
is with an order of (5,1,0), which can capture the short time
trends in available metrics data. This configuration sets up a
lag order of 5 to smooth the time-series data and a degree
of differencing of 1. The use case scenarios depend on the

environment where the edge unit is deployed. This work
focuses on daily patterns which can be observable in smart
homes or offices. In order to take this temporal characteristic
into account, data points are aggregated hourly.

The prediction results for each container are its predicted
CPU and memory utilization based on its lifecycle. These
results, Putil

r,c , are published on the forecast topics so that
Analyzer will be able to compute the feasibility of deploying
a new container. To achieve this, it has to compute system
availability, P avail

r,S . Existing containers’ resources are always
prioritized over a new deployment. Hence, their resources,
Lcurrent
r,c , are not lowered. Therefore, Putil

r,c is updated as
Putil

r,c [t] := max(Lcurrent
r,c ,Putil

r,c [t]) for each time point t. Pre-
dicted availability of each resource in the host Pavail

r,S := Stotal
r

is updated as Pavail
r,S −= maxt(P

util
r,c [t]) for each Cc and Rr.

The symbol list is given in Table III.
The analysis request includes Ltarget

r,c which can be one of
the resource limit values: Lrequest

r,c , or Lbase
r,c . In their absence,

a default value is used. The Analyzer approves a deployment
request if Ltarget

r,c ≤ P avail
r,S , meaning that the system will have

enough resources to accommodate the incoming application
deployment. Otherwise, the request is rejected.

3) Container Execution: Deployment analysis responses
received by the Deployer can be twofold, corresponding to
either a deployment accept or a deployment cancel as shown
in Table II. If a deployment is tried with Lrequest

r,c and rejected,
the Deployer sends a second analysis request with Lbase

r,c . For
accepted deployments, a container is executed with Ltarget

r,c ,
successfully allocating the required amount of resources.

4) Monitoring: Resource utilization metrics are acquired
from Docker API by calling the relevant endpoints and cgroup
stats in Linux systems by the Monitor. These metrics are
published as a Monitoring Result on the monitor topic and

TABLE III
TABLE OF SYMBOLS.

Symbol Description
Rr Resource r ∈ {cpu,mem}
Cc Container c
S System
Stotal
r Total resources Rr of the system S

Savail
r Availability of resource Rr of the system S

Cutil
r,c Utilization of resource Rr by container Cc

Pavail
r,S Predicted availability of resource Rr of the system S

Putil
r,c Predicted utilization of resource Rr by container Cc

P throttle
c Predicted CPU throttling percentage of container Cc

Lcurrent
r,c Current limit definition of resource Rr for container Cc

Ltarget
r,c Target limit definition of resource Rr for container Cc

Lrequest
r,c Request limit definition of resource Rr for container Cc

Lbase
r,c Base limit definition of resource Rr for container Cc

Lthrottle Limit CPU throttling percentage
Lbuffer
r Buffer ratio for scaling of resource Rr

Lscale
r,i Limit scaling amount of Rr for i ∈ {up, down}

also stored locally. After the retention time configured in the
framework is reached, the metrics are uploaded to IPFS, and
their hashes are stored on the blockchain via a smart contract
as long-term storage. Monitor also identifies containers that
have stopped prematurely. New deployment request messages
are published based on the retry counts. The Monitor also
initiates the optimization process for active containers.

5) Optimization: In this step, the framework dynamically
adjusts the resource limits of active containers. The aim is
to downscale underutilized containers and upscale containers
approaching the limits. Analyzer determines whether the opti-
mization is necessary. The target resource limits, Ltarget

r,c are
calculated based on the predictions provided by the Forecaster.
Then, an analysis response message is published on the
deploy topic for the container if it is scheduled for resource
optimization. Finally, the Deployer interacts with the Docker
engine if there is a need for optimization.

Optimization analysis starts with the calculation of P avail
r,S ,

identical to the process explained in Section III-B2. Then,
Ltarget
r,c is derived from Lcurrent

r,c for CPU and memory,
respectively as explained in the following paragraphs. After
every approved optimization response, P avail

r,S is updated with
Pavail

R,S := Pavail
R,S −∆LR,c where ∆Lr,c := Ltarget

r,c −Lcurrent
r,c .

Optimization for memory limit sets Ltarget
mem,c, which is

bounded by system-defined minimum and maximum resource
values, Lmin

mem and Lmax
mem. The upper limit ensures that a

single container cannot allocate a very high share of system
memory. The lower limit protects the container from scaling
down indefinitely. The amount for scaling up and down,
Lscale
mem,up and Lscale

mem,down, are constants that can be config-
ured in the framework. However, since Cutil

mem,c exceeding
Lcurrent
mem,c is a risk that can kill the container, a margin is

defined between Putil
mem,c and Ltarget

mem,c while scaling up. If
Putil
mem,c is less than Cutil

mem,c, the Analyzer computes Ltarget
mem,c

as Lcurrent
mem,c − Lscale

mem,down to scale down the container. After
the Ltarget

mem,c is set, in case of downscaling, the new limit is

once again compared with max(Putil
mem,c) to make sure that the

container is not scaled below the allocated margin. Otherwise,
Lcurrent
mem,c is returned, and memory is not scaled down any

further. For scaling up, a similar approach is adopted.
Optimization for CPU limit sets Ltarget

cpu,c . If max(Putil
cpu,c) is

greater than Lcurrent
cpu,c , container is upscaled with Ltarget

cpu,c :=
Lcurrent
cpu,c + Lscale

cpu,up. In the opposite case, container is down-
scaled with Ltarget

cpu,c := Lcurrent
cpu,c − Lscale

cpu,down. Setting a limit
on the CPU causes throttling in Docker [22]. As high amount
of Cthrottle

c severely degrades the application performance,
two extra precautions are taken while downscaling the con-
tainers that have already been throttling. Firstly, P throttle

c is
compared against Lthrottle which is a constant defined in our
framework. If maxt(P

throttle
c [t]) is greater than Lthrottle, an

adjustedScale amount where adjustedScale := (Lscale
cpu,up ×

maxt(P
throttle
c [t]))/100 is used instead of Lscale

cpu,up for a
minor scale up. The second control is applied before returning
Ltarget
cpu,c , which can cause throttling after a scale-down. In

order to prevent sudden throttling, Ltarget
cpu,c is recalculated as

Ltarget
cpu,c := max(Putil

cpu,c) × Lbuffer
cpu , which is set to 110% in

our framework. Buffer ensures the application to have enough
room for unexpected load spikes until the next optimization
without causing unnecessary throttling. After this adjustment,
it is possible that Ltarget

cpu,c can be above Lcurrent
cpu,c . In that case,

any scaling operations are overturned by returning Lcurrent
r,c

as the throttling was already below Lthrottle.

C. Cluster Deployment

The proposed framework can be deployed on multiple edge
devices as a cluster in the same network. This strategy supports
not only load balancing across the connected hosts but also
decentralized orchestration of deployments. The setup depends
on MQTT bridges where brokers can automatically broadcast
configured messages in the network. Each device’s IP address
is provided to each other broker to set up the bridges. However,
it is also possible to set up an MQTT device discovery
mechanism to automatically find other brokers on the network
[23]. Shared topics, monitor and deploy, are configured and
prefixed with the cluster keyword so that each component can
differentiate internally or externally generated messages.

Deployer on each device is subscribed to both monitor and
cluster/monitor topics. Key/value pairs of IP addresses and
Savail
r are generated by the Deployer for each device and

updated with each monitoring result message. Deployer uses
these pairs to track the available resources of all devices in the
network. It is also subscribed to the deploy and cluster/deploy
topics where it receives deployment requests made on all
devices. When a new request is received, each Deployer selects
the device with the highest amount of available resources
from its key/value pairs. Then, only the device that decides
itself as the best candidate continues with the deployment by
publishing a deployment analysis request. Cluster deployment
follows the same steps as the regular deployment workflow.
If Savail

r of multiple devices are the same, each device marks
the device with the smallest IP address for deployment.

IV. EXPERIMENTS AND RESULTS

All experiments are carried out on Raspberry Pi 4 Model
B with a 64-bit quad-core Cortex-A72 processing unit, 8GB
LPDDR4-3200 SDRAM, and Broadcom BCM2711. A slice
with 1 CPU and 1GB memory with disabled swap usage
is created to emulate a resource-constrained device. Docker
daemon’s cgroup parent is assigned to this slice to limit the
maximum allowed resource usage. CPU limits and utilization
are given in CPU units. 1 CPU is equal to a single CPU
core, and 50% of this core is represented as 500mCPU.
The framework also exists on the same hardware. The CPU
utilization is negligible for most components except for the
Forecaster and IPFS. The Forecaster utilizes all available
CPUs during forecasting to produce results as quickly as
possible. IPFS utilizes 50-250 mCPU on average. It can be
reduced by switching to a minimal setup, disabling unneces-
sary features, and limiting the peers. The memory footprint
of the entire framework is currently 400MB, which can be
reduced significantly by pruning and optimizing the libraries.

In order to create a controlled environment for the tests,
containerized applications are prepared for each resource type.
Five workload patterns proposed in [24] for container-based
cloud applications are adapted to this work to generate work-
load patterns that represent different IoT application types:

1) Slowly rising/falling workload pattern
2) Drastically changing workload pattern
3) On-off workload pattern
4) Gently shaking workload pattern
5) Real-world workload pattern
The IoT applications can be classified as data-dominant and

CPU-dominant. Hence, ten containerized applications are gen-
erated. Labels for each workload pattern are referenced with
the class name. For example, a slowly rising/falling pattern
for the data-dominant workload is identified as Memory 1.
The same pattern for CPU-dominant workload is represented
by CPU 1. The experiments are carried out on each group
separately. This approach does not exclude the case where a
CPU-dominant application coexists with a data-dominant ap-
plication on the same device as different algorithms execute for
memory optimization and CPU optimization. The maximum
memory amounts in these workloads are 95MB, 95MB, 95MB,
80MB, and 95MB, respectively, as listed above. Similarly,
150m, 150m, 150m, 120m, and 140m represent the maximum
CPU utilization. The experiments are carried out on each group
separately. This approach does not exclude the case where
a CPU-dominant application coexists with a data-dominant
application on the same device as different algorithms execute
for memory optimization and CPU optimization. The experi-
mental results are presented in Figure 3 where solid and dashed
lines show workloads and resource limits, respectively.

A. Orchestration of Multiple Containers on a Single Device

These experiments are carried on for a single device that
has to host multiple containers with different limit settings
and deployment scenarios. The first two scenarios consider

application deployments in an extremely short period. This
usually happens when the device is installed for the first time.
The third scenario simulate deploying new applications on an
already running device. The fourth scenario handles the case
where the host is extremely low on resources

1) Sequential Deployment Requests with Ample Resource
Limits: In this scenario, the application limits specified are
above the expected peak memory usage of the workloads.
For each data-dominant workload, Lrequest

mem,c = 150MB and
Lbase
mem,c = 100MB. As shown in Figure 3(a.1-5), all five

workloads start simultaneously. The memory limits converge
to the actual usage in a few iterations of optimization steps
every 5 minutes. The initial delay before the first optimization
allows the framework to collect enough metrics to make
utilization predictions for the upcoming optimization interval.

In CPU-dominant workloads, Lrequest
cpu,c = 300m and

Lbase
r,c = 100m. Recall that if neither Lrequest

cpu,c nor Lbase
cpu,c

is accepted, the deployment is rejected because of the lim-
ited resource of the system. Note that total request makes
1500mcore which is more than the allocated CPU on the
emulation hardware. Thus, the first deployment of the fourth
workload with Lrequest

cpu,c is rejected and deployed with Lbase
cpu,c

in a second attempt by the framework, as shown in Figure
3(b.1-4). With the first four workloads running on the sys-
tem, neither Lrequest

cpu,c nor Lbase
cpu,c for the fifth workload can

be satisfied (Figure 3(b.5)). The limits of the successfully
deployed workloads are initially lowered drastically with a
constant Lscale

cpu,down, which is later adjusted based on Putil
cpu,c

and P throttle
c resulting in more minor decrements.

2) Sequential Deployment Requests with Drastically Low
Resource Specifications: This scenario assumes that all limits
are given much lower than the actual requirements. In this
experiment, we set Lrequest

mem,c = 15MB and Lbase
mem,c = 10MB

. All five memory workloads fail to start for the first couple
of tries, as shown in Figure 3(c1-5). After the initial two de-
ployment attempts with no prior knowledge of the application,
the framework begins assigning by rapidly increasing Ltarget

mem,c

based on Lbase
mem,c incremented by Lscale

mem,c by several retry
counts. Then, after the first four tries, Memory 1 and Memory
2 can be deployed as their resource usage is comparatively
lower than the rest in the first one-third of their period.
Other workloads keep getting killed as they immediately try to
allocate more memory than allowed by Lcurrent

mem,c . These burst
restarts cause their Ltarget

mem,c to increase so rapidly that this limit
surpasses Cutil

mem,c. However, once the containers are deployed,
their limits are lowered by Lscale

down,mem until a tighter fit based
on Putil

mem,S is found.
The deployment behavior of the CPU workloads vastly

differs from the memory workloads. This is due to the absence
of an error similar to out of memory. The limits are set as
Lrequest
cpu,c = 100m and Lbase

cpu,c = 50m. All five deployments are
accepted simultaneously due to their misconfigured Lrequest

cpu,c

values. These workloads typically exhibit Cutil
r,c higher than

Lcurrent
cpu,c . Consequently, they are fully throttled and containers

exhibit delays in their workload which is shown with light red

0 1000 2000 3000
Time (s)

0

50

100

150
M

em
or

y
(M

B)

(a.1) Memory 1

0 1000 2000 3000
Time (s)

0

100

200

300

CP
U

(m
)

(b.1) CPU 1

0 1000 2000 3000
Time (s)

0

50

100

150

M
em

or
y

(M
B)

(c.1) Memory 1

0 1000 2000 3000
Time (s)

0

100

200

300

CP
U

(m
)

(d.1) CPU 1

0 2000 4000 6000
Time (s)

0

50

100

150

M
em

or
y

(M
B)

(e.1) Memory 1

0 2000 4000 6000
Time (s)

0

100

200

300

CP
U

(m
)

(f.1) CPU 1

0 500 1000 1500
Time (s)

0

50

100

150

M
em

or
y

(M
B)

(g.1) Memory 1

0 1000 2000 3000
Time (s)

0

50

100

150

M
em

or
y

(M
B)

(a.2) Memory 2

0 1000 2000 3000
Time (s)

0

100

200

300

CP
U

(m
)

(b.2) CPU 2

0 1000 2000 3000
Time (s)

0

50

100

150

M
em

or
y

(M
B)

(c.2) Memory 2

0 1000 2000 3000
Time (s)

0

100

200

300

CP
U

(m
)

(d.2) CPU 2

0 2000 4000 6000
Time (s)

0

50

100

150

M
em

or
y

(M
B)

(e.2) Memory 2

0 2000 4000 6000
Time (s)

0

100

200

300

CP
U

(m
)

(f.2) CPU 2

0 500 1000 1500
Time (s)

0

50

100

150

M
em

or
y

(M
B)

(g.2) Memory 2

0 1000 2000 3000
Time (s)

0

50

100

150

M
em

or
y

(M
B)

(a.3) Memory 3

0 1000 2000 3000
Time (s)

0

100

200

300

CP
U

(m
)

(b.3) CPU 3

0 1000 2000 3000
Time (s)

0

50

100

150

M
em

or
y

(M
B)

(c.3) Memory 3

0 1000 2000 3000
Time (s)

0

100

200

300

CP
U

(m
)

(d.3) CPU 3

0 2000 4000 6000
Time (s)

0

50

100

150

M
em

or
y

(M
B)

(e.3) Memory 3

0 2000 4000 6000
Time (s)

0

100

200

300

CP
U

(m
)

(f.3) CPU 3

0 500 1000 1500
Time (s)

0

50

100

150

M
em

or
y

(M
B)

(h.1) Memory 1

0 1000 2000 3000
Time (s)

0

50

100

150

M
em

or
y

(M
B)

(a.4) Memory 4

0 1000 2000 3000
Time (s)

0

100

200

300

CP
U

(m
)

(b.4) CPU 4

0 1000 2000 3000
Time (s)

0

50

100

150

M
em

or
y

(M
B)

(c.4) Memory 4

0 1000 2000 3000
Time (s)

0

100

200

300

CP
U

(m
)

(d.4) CPU 4

0 2000 4000 6000
Time (s)

0

50

100

150

M
em

or
y

(M
B)

(e.4) Memory 4

0 2000 4000 6000
Time (s)

0

100

200

300

CP
U

(m
)

(f.4) CPU 4

0 500 1000 1500
Time (s)

0

100

200

300

CP
U

(m
)

(i.1) CPU 1

0 1000 2000 3000
Time (s)

0

50

100

150

M
em

or
y

(M
B)

(a.5) Memory 5

0 1000 2000 3000
Time (s)

0

100

200

300

CP
U

(m
)

(b.5) CPU 5

0 1000 2000 3000
Time (s)

0

50

100

150

M
em

or
y

(M
B)

(c.5) Memory 5

0 1000 2000 3000
Time (s)

0

100

200

300
CP

U
(m

)

(d.5) CPU 5

0 500 1000 1500
Time (s)

0

100

200

300

CP
U

(m
)

(j.1) CPU 1

Memory Utilization (MB)
Memory Limit (MB)
CPU Utilization (m)
CPU Limit (m)
Delay

Fig. 3. Workload CPU/memory utilization/limit and delays observed in each experiment.
Sequential deployments with ample resource specification: Memory (a), CPU (b).
All workloads with drastically low resource specification: Memory (c), CPU (d).
Interleaved deployment of workload pairs: Memory (e), CPU (f).
Extreme resource constraints on the system: Memory (g,h), CPU (i,j).

vertical regions in Figure 3(d.1-5). The framework optimizes
Lcurrent
cpu,c after a couple of optimization cycles, eventually

matching the limits similar to those in Figure 3(b.1-5). Note
that the delay is removed.

The deployment behavior of the CPU workloads vastly
differs from the memory workloads, as shown in Figure 3(c.1-
5). This is tied to the absence of an error similar to out of
memory. Therefore, all five deployments are deployed with
their misconfigured Lrequest

cpu,c values. These workloads typically
exhibit a Cutil

r,c higher than this Lcurrent
cpu,c . Consequently, they

are all immediately throttled. Fully throttled containers exhibit
delays in their workload which is demonstrated in Figure
3(d.1-5) for workloads CPU 1-5. The framework optimizes
Lcurrent
cpu,c responsible for the throttling after a couple of opti-

mization cycles, eventually matching the limits similar to those
in Figure 3(b.1-5).

3) Interleaved Deployment of Workload Pairs: This ex-
periment studies the effects of introducing a new container
to a stabilized system. For this purpose, after the first two
workloads are optimized, deployment requests from the last
two workloads will be received.

As shown in Figure 3(e.1-4) and Figure 3(f.1-4), the out-
come is the same for CPU and memory workloads. The opti-
mization steps adapt to the new workloads without interfering
with the past deployments. The optimization of the newly
introduced applications starts once enough data is collected

for predictions to be performed.

4) Extreme Resource Constraints on the System: Some
hosts can be running on extremely low resources. Pre-existing
deployments can impose very tight constraints on the new
requests. To simulate this environment for data-dominated
applications, we set Savail

mem = 400MB and studied with the
first three memory workloads. The first two workloads are
deployed with their Lrequest

mem,c (Figure 3(g.1-2)). The third work-
load cannot be deployed as there is not enough memory for
the third workload’s Lrequest

mem,c or Lbase
mem,c. Another experiment

is run with a similar configuration with Savail
mem = 200MB. As

shown in Figure 3(h.1), only the first deployment is accepted
as any subsequent deployments would require more memory
than Stotal

mem.

Similar results are obtained from the same experiments
for CPU images. We set Savail

cpu = 350m and deployment
requests for the first three workloads are sent. Only the first
one is accepted with Lrequest

cpu,c as shown in Figure 3(i.1).
However, Savail

cpu is not enough to deploy the remaining two
workloads. These workloads are tried twice with Lrequest

cpu,c

and Lbase
cpu,c before they are rejected. Then, the experiment is

rerun with even tighter resources where Savail
cpu = 100m. A

similar deployment pattern can be seen in in Figure 3(j.1).
The only difference is that the first workload is deployed
with Lbase

cpu,c. This container exhibits delays at regular intervals;

nevertheless, it cannot be scaled up due to lack of Savail
cpu .

B. Experiments with Cluster Deployment

This experiment is devised to observe the load balancing
capabilities of the framework across multiple devices. Three
edge devices with identical resources, Savail

r , are used for this
purpose. Device IP addresses increase from device 1 to 3,
where device 1 is the device with the smallest IP address. The
first device receives sequential deployment requests from the
first four memory workload patterns, i.e. Memory 1-4.

Firstly the MQTT broker on each device starts, and the
framework is deployed. Then device 1 receives Memory 1
workload. It deploys it on itself since its IP is the smallest.
Following this deployment, all three devices synchronize their
resource availability key/value pairs with monitoring result
messages published by device 1. With the second request,
each device identifies device 2 as the processor. The same
steps are followed for the remaining two applications. The
third application is deployed on device 3 which evens up the
resource availability of all three devices. The final application
is deployed on device 1 which has the smallest IP address. It
should be noted that the cluster deployment does not introduce
latency overhead during deployments. Only a single extra
event is exchanged over the cluster/deploy topic if another
device satisfies the deployment request while the rest of the
workflow stays the same.

V. CONCLUSION

In this paper, we have presented an end-to-end solution for a
seamless user experience between application developers and
end-users on the IoT edge. The exploitation of virtualization
and decentralization technologies transformed heterogeneous
and resource-constrained edge gateways into vendor-agnostic
hosts for IoT applications. Our framework lowers the edge
computing footprint by sharing hardware and maximizing re-
source utilization with autonomous scaling and load balancing
in the presence of multiple devices. The event-driven resource
manager establishes a fair and reliable platform for all involved
parties based on analysis of running services and forecasts
of future requirements. Concerns about the authenticity of
deliveries such as releases and upgrades are ensured through
smart contracts and distributed files system. Specific aspects of
the framework can be effortlessly extended due to its modular
architecture of message queues and distributed components.

ACKNOWLEDGMENTS

This research is partially supported by Boğaziçi University
Scientific Research Projects No: 17A01P7 and Textkernel B.V.

REFERENCES

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(iot): A vision, architectural elements, and future directions,” Future
generation computer systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[2] Z. Tao, Q. Xia, Z. Hao, C. Li, L. Ma, S. Yi, and Q. Li, “A survey of
virtual machine management in edge computing,” Proceedings of the
IEEE, vol. 107, no. 8, pp. 1482–1499, 2019.

[3] K. Dolui and C. Kiraly, “Towards Multi-Container Deployment on
IoT Gateways,” in 2018 IEEE Global Communications Conference
(GLOBECOM), Dec. 2018, pp. 1–7.

[4] J. Benet, “IPFS - Content Addressed, Versioned, P2P File System,” arXiv
Computing Research Repository [CoRR], Jul. 2014.

[5] Y. Xiong, Y. Sun, L. Xing, and Y. Huang, “Extend Cloud to Edge with
KubeEdge,” in 2018 IEEE/ACM Symposium on Edge Computing (SEC),
Oct. 2018, pp. 373–377.

[6] S. Muralidharan, G. Song, and H. Ko, “Monitoring and managing iot
applications in smart cities using kubernetes,” Cloud Computing, vol. 11,
2019.

[7] L. Baresi, D. F. Mendonça, and G. Quattrocchi, “PAPS: A Framework
for Decentralized Self-management at the Edge,” in Service-Oriented
Computing, S. Yangui, I. Bouassida Rodriguez, K. Drira, and Z. Tari,
Eds. Cham: Springer International Publishing, 2019, pp. 508–522.

[8] S. Yang, Y. Ren, J. Zhang, J. Guan, and B. Li, “KubeHICE:
Performance-aware Container Orchestration on Heterogeneous-ISA Ar-
chitectures in Cloud-Edge Platforms,” in 2021 IEEE Intl Conf on
Parallel Distributed Processing with Applications, Big Data Cloud
Computing, Sustainable Computing Communications, Social Comput-
ing Networking (ISPA/BDCloud/SocialCom/SustainCom), Sep. 2021, pp.
81–91.

[9] O. Ajayi, J. Rafferty, J. Santos, M. Garcia-Constantino, and Z. Cui,
“BECA: A Blockchain-Based Edge Computing Architecture for Internet
of Things Systems,” IoT, vol. 2, pp. 610–632, Oct. 2021.

[10] T. Subramanya and R. Riggio, “Centralized and federated learning for
predictive vnf autoscaling in multi-domain 5g networks and beyond,”
IEEE Transactions on Network and Service Management, vol. 18, no. 1,
pp. 63–78, 2021.

[11] V. Struhár, S. S. Craciunas, M. Ashjaei, M. Behnam, and A. V.
Papadopoulos, “REACT: Enabling Real-Time Container Orchestration,”
in 2021 26th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), Sep. 2021, pp. 1–8.

[12] T. Goethals, F. De Turck, and B. Volckaert, “FLEDGE: Kubernetes
Compatible Container Orchestration on Low-Resource Edge Devices,”
Jan. 2020, pp. 174–189.

[13] A. Pires, J. Simão, and L. Veiga, “Distributed and Decentralized Or-
chestration of Containers on Edge Clouds,” Journal of Grid Computing,
vol. 19, no. 3, p. 36, Jul. 2021.

[14] L. Cui, Z. Chen, S. Yang, Z. Ming, Q. Li, Y. Zhou, S. Chen, and Q. Lu,
“A Blockchain-Based Containerized Edge Computing Platform for the
Internet of Vehicles,” IEEE Internet of Things Journal, vol. 8, no. 4, pp.
2395–2408, Feb. 2021.

[15] C. Cicconetti, M. Conti, and A. Passarella, “A Decentralized Frame-
work for Serverless Edge Computing in the Internet of Things,” IEEE
Transactions on Network and Service Management, vol. 18, no. 2, pp.
2166–2180, Jun. 2021.

[16] “IPDR: InterPlanetary Docker Registry,” accessed in February 2022.
[Online]. Available: https://github.com/ipdr/ipdr

[17] H. Koziolek, S. Grüner, and J. Rückert, “A Comparison of MQTT
Brokers for Distributed IoT Edge Computing,” in Software Architecture,
ser. Lecture Notes in Computer Science, A. Jansen, I. Malavolta,
H. Muccini, I. Ozkaya, and O. Zimmermann, Eds. Cham: Springer
International Publishing, 2020, pp. 352–368.

[18] G. Nalin, “Orchestration of smart objects with MQTT for the
Internet of Things,” accessed in February 2022. [Online]. Available:
http://tesi.cab.unipd.it/44964/

[19] P. Arcaini, E. Riccobene, and P. Scandurra, “Modeling and Analyzing
MAPE-K Feedback Loops for Self-Adaptation,” in 2015 IEEE/ACM
10th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, May 2015, pp. 13–23.

[20] “Time-series | Stata,” accessed in February 2022. [Online]. Available:
https://www.stata.com/features/time-series/

[21] “Arima — statsmodels,” accessed in February 2022. [Online]. Available:
https://www.statsmodels.org/stable/generated/
statsmodels.tsa.arima.model.ARIMA.html

[22] “Runtime options with memory, cpus, and gpus,”
accessed in February 2022. [Online]. Available:
https://docs.docker.com/config/containers/resource constraints/

[23] D. Rende, “Dag Rende: Find the MQTT broker without an
IP address,” accessed in February 2022. [Online]. Available:
http://dagrende.blogspot.com/2017/02/find-mqtt-broker-without-hard
-coded-ip.html

[24] S. Taherizadeh and V. Stankovski, “Dynamic multi-level auto-scaling
rules for containerized applications,” The Computer Journal, vol. 62,
no. 2, pp. 174–197, 2019.

