
Exploring Embedded Symmetric Multiprocessing
with Various On-Chip Architectures

Gorker Alp Malazgirt∗, Bora Kiyan†, Deniz Candas‡, Kamil Erdayandi∗ and Arda Yurdakul∗
∗Department of Computer Engineering
Bogazici University, Istanbul, Turkey

Email: alp.malazgirt, kamil.erdayandi, yurdakul@boun.edu.tr
†Robert College, Istanbul, Turkey

Email: bora.kiyan@gmail.com
‡Istanbuler Gymnasium, Istanbul, Turkey

Email: dnzcandas@gmail.com

Abstract—Multicore embedded systems have evolved to ap-
pear in different domains. In this paper, we explore and compare
various on-chip architectures with respect to a number design
metrics. Unlike earlier published works that majorly concern
with optimizations in processor, memory and cache hierarchies,
in this paper, we aim to ascertain the best on-chip architectures
for given processor cores, Level 1-2-3 caches modeled from Intel
Atom embedded processor family. We investigate topologies that
haven’t been considered before for symmetric multiprocessing
in embedded systems domain. These architectures consist of
shared instruction caches between cores and heterogenous cache
topologies that feature bypassing a level in the cache hierarchy.
Through our experiments with multithreaded workloads, we elicit
the unconventional topologies that could provide more perfor-
mance and energy efficiency than regular topologies. In addition,
using our experimental data, we conclude that certain design
metrics could depend on given workload, however there also
exists some metrics that are more dependent on the underlying
topologies. Thus, we urge the need for future exploration tools
to gather the necessary metrics while choosing the appropriate
SMP architectures.

I. INTRODUCTION

In the last decade, embedded systems have evolved into
new concepts like Cyber Physical Systems and Internet-of-
Things. These systems have to be designed for specific func-
tions under extreme design constraints such as low-power,
timely response with an admissable quality of service, light-
weight, low-cost etc. High-end systems like smart phones
tend to support more applications from different domains
such as multimedia streaming and gaming which require high
performance. In contrast, low-end systems like sensory devices
try to provide more ubiquitous experiences with extended
battery lifetimes. As a result, different types of processing
platforms are available on the embedded market.

While designing an embedded system, the processing plat-
form is selected according to the benchmarks or previous
design experiences. In this design paradigm, the architecture
of the processing platform is initially fixed. Design space
exploration tools [1] find the best memory size for the ”given”
architecture. These tools operate jointly with powerful cache
[2], memory [3], architectural [4] and energy [5] simulators
so as to evaluate the energy or performance of a point in
the design evaluation space and iterates between an optimizer
and a simulator until sufficiently good result is achieved.

Design space exploration tools make use of not only cycle-
accurate simulators that support different levels of hardware
customizations [6], but also compilers [7] that allow numerous
optimizations for different processor architectures from given
applications, as well. These tools are sometimes accepted as
inadequate and hidebound for providing successful design of
embedded systems; especially the architectural design space
exploration provided by cycle accurate simulators are over-
whelmingly large but very beneficial.

Embedded processors are used extensively in areas ranging
from embedded systems to high performance computing [8].
In these different domains, the processors are configured with
different configurations. For instance, when an Intel Atom pro-
cessor is configured for a laptop, L3 cache is included, whereas
for a handheld device, L3 cache is omitted due to power
requirements [9]. When we investigated the processor product
lineups, we saw that the number of cores and clock speed,
the number of instruction/data caches and their connectivity
are three most important design parameters that differ [10].
Hence, we are interested in exploring the design space that is
depended on the aforementioned parameters.

This work’s contributions can be summarized below:

• Exploring SMP with unconventional on-chip archi-
tectures such as shared L1 instruction caches, het-
erogenous exposure of L1 and L2 caches from pro-
cessor cores to main memory and combining bus
interconnection with ring topology in order to support
aforementioned heterogeneity

• Analyzing and identifying workload dependent and
architecture dependent design metrics which help in
selecting on-chip architectures from simulation out-
puts

We have experimented with four different benchmarks. We
have shown that unconventional heterogenous cache connec-
tions can provide performance and power advantages over
conventional hierarchies. The major differences of our work to
other works are that available works have not investigated SMP
with unconventional architectures in the embedded domain. In
addition, we have analyzed our experimental results, and elab-
orated the necessity of using multiple metrics for architecture
exploration.

2015 IEEE 13th International Conference on Embedded and Ubiquitous Computing

978-1-4673-8299-1/15 $31.00 © 2015 IEEE
DOI 10.1109/EUC.2015.19

1

2015 IEEE 13th International Conference on Embedded and Ubiquitous Computing

978-1-4673-8299-1/15 $31.00 © 2015 IEEE
DOI 10.1109/EUC.2015.19

1

The number of variables and workloads in this work might
not cover the broad embedded systems design space. However,
we have explored and constructed the design space with
parameters which have not been studied broadly in embedded
systems and SMP domain before. Additionally, in this study
we have elevated the importance of designing with numerous
metrics instead of a single metric.

In the next section, we present the related works in the
literature. Our reference architecture is explained in Section
III, and Section IV discusses the generation of on-chip archi-
tectures. Section V presents our results. We finalize our paper
with our discussion and our conclusion in Section VI.

II. RELATED WORK

There has been a considerable amount of research work
aiming to explore the best architecture, the global optimization
of such large design space is inherently a hard problem [11].
Our work differentiates from other works in three different
ways. First of all, our work explores the design space of em-
bedded architectures at the component level, such as number
of cores, number and types of caches and on chip connec-
tivity. Second, we explore sharing L1 instruction caches in a
general purpose computing environment. Lastly, we explore
heterogenous connection of processor cores to main memory
via different levels and types of caches. In addition, we discuss
the necessity of architecture exploration by using multiple
design metrics instead of a single metric. According to our
investigations, there has not been any work that presents in
the same context as this work.

Our work differs from design space exploration tools which
focus on cache hierarchy based methods because our tool does
not consider the modification of cache architectures [12], [13]
or employ configurable caches [14]. Instead, our L1, L2 and L3
cache architectures are fixed, thus we explore the connectivity
and instances of these caches with processor cores and main
memory. Thus, we explore unconventional topologies which
has not shown previously such as asymmetrical L3 exposure to
processor cores. However, our methodology can be combined
with methods that explore cache structures. Nevertheless, this
addition of cache structure optimization would increase the
design space.

The work in [15] explores different on-chip memory hier-
archies based on energy cost models and aims to minimize re-
sources. In our work, we elaborate the importance of designing
with multiple metrics instead of only energy. We do not take
into account the memory space partitioning problem for the
intercommunication of processor cores. We use shared memory
communication models which is supported by programming
APIs such as OpenMP.

Authors in [12] apply designtime/runtime combined ap-
proach for creating power efficient architectures for embedded
systems. They identify hardware and software parameters for
design space exploration for minimum power and execution
time. However, since different applications require different
hardware requirements, they choose to average over different
applications for the best fit. In our work, we define scenarios
by combining different applications which are likely to occur
in real life cases.

Shared instruction caches have been researched in SIMD
based architectures since it provides more energy efficiency
than multiple instruction caches. The presented work in [16]
has explored the benefits of instruction caches in general pur-
pose computing. The authors have shown that in several signal
processing applications, shared caches with a special multicast
data distribution feature fits in smaller area and provides a
similar performance with respect to a conventional private
cache design. In this work, we do not explore the structure of
the instruction cache. Instead we explore sharing L1 instruction
caches in a general purpose computing environment.

The authors in [17] have explored parameters of shared
instruction cache architectures in multiprocessors. For shared
instruction caches, they have built logarithmic interconnects
and divided the cache to different banks. In this way, they
have aimed to reduce instruction fetch contentions. Our work
do not customize the interconnect structure or the structure
of the caches such as the number of cache memory banks.
We try different connection topologies of caches and cores.
The authors of [17] have increased performance with shared
instruction caches when the number of banks and the amount
parallelism from the given application match. However, we
increase performance through exploring different types of on-
chip topologies.

III. REFERENCE MULTICORE ARCHITECTURE

Our reference multicore architecture is a shared memory
symmetric multi processing system (SMP) and each processor
core supports up to three levels of cache memory. The commu-
nication between cores and memory units are handled by bus or
ring interconnection networks. There are various possibilities
to design a shared memory SMP, however it is not feasible to
investigate all topologies, because generated topologies have
to be realistic and suitable for embedded systems domain.

Figure 1 presents an example topology from our topology
pool. This topology has four cores and four Level 1 (L1)
data caches. Two L1 instruction caches are shared by the
four cores. The caches are connected to higher levels via a
bus interconnection network. At the second level, there are
two Level 2 (L2) data caches and a single L2 instruction
cache. Similarly, L2 caches are connected to L3 caches via
bus interconnection. At the last level, there is a ring topology
which connects L3 data cache, L2 instruction cache and the
memory. There exists a memory management unit that handles
the data connection between the nodes in the ring topology
and the main memory which is an off-chip hardware block.
However, this unit is not shown. We call the example topology
shown in Figure 1 a ”bypass” topology. In general, we divide
our topologies into three categories:

Regular: Regular topologies consist of symmetric connec-
tions of core to memory. If all cores are Harvard architectures,
their caches are private. They don’t share instruction caches
with any other core. In addition, in regular topologies, cache
sharing between cores occur only if cores are Von Neumann
architectures because caches provide both data and instruction
to all cores. Regular topologies are used extensively today in
all commercial embedded processors [10], [18].

Hybrid: Hybrid constructions allow sharing caches be-
tween cores in Harvard architectures. For instance in a four

22

core topology, each pair of cores can share an L1 instruction
cache. Similarly, in a 2-core system, both cores can share an
instruction cache at the L1 and L2 level. In our experiments,
we have observed that architectures that have shared data
caches and private instruction caches have caused significant
performance degradation, therefore shared data caches are not
considered.

By-pass: By-pass topology is the denotation for any kind
of topology that features a level jump in the hierarchy. For
instance an L1 cache may be connected to an L3 cache,
bypassing the L2 level. An L2 cache may be connected to Main
Memory, bypassing L3 level; and if there is no L3, an L1 cache
may be connected to the Main Memory, bypassing the L2 level.
This unconventional type of topology architecture prevents the
redundant usage of caches in cases where limited instructions
or data is utilized. This distinctive topology prevents the
overcrowding of CPU space as well as speeding up the CPU.

The processor cores for each topology are identical. At
each level, we have determined the structures of the caches.
The bandwidth of the interconnection networks increase to-
wards higher levels, thus resembles a fat tree network. The
process of generating topologies are explained in Section IV
and the specifications of each hardware block used in the
experiments are explained in Section V.

IV. TOPOLOGY GENERATION

In this section, we introduce our on-chip topologies. We
generate different topologies based on the rules that we have
identified. These rules yield systematically generated topolo-
gies.

• Rule 1: Each core can either have a shared instruction
and data cache or they can be separate and private to
the core. Namely, each core can have either a Von
Neumann or a Harvard topology. This is shown in
Figure 2.

• Rule 2: In Harvard topologies, two cores can share
an instruction cache. Figure 3 shows our two-core
template. The four- core version is obtained by mirror-
ing the template. In Von Neumann architectures, two
and four cores can be connected to a single cache. In
addition, when instruction and data caches are private
at a lower level, they never split when going higher
levels. However, a data cache and an instruction cache
can be connected to a cache at a higher level.

• Rule 3: When building hybrid topologies, we have
always chosen the number of instruction caches equal
to or less than the number of data caches. Our
experiments have shown that the topologies which
have a higher number of instruction caches than data
caches have not provided any performance or energy
efficiency advantage.

• Rule 4: The number of cache levels in each topology
is either two or three. There does not exist any
topology with only L1 caches, because it would not
be possible to explore the effects of hybrid or bypass
topologies when there is only a single level of caches.

• Rule 5: Let αx denote the number of caches at level
x, then α3 < α2 ≤ α1. However, this rule is violated

Fig. 1: An example topology which is shown introduce our
different SMP architectures

Fig. 2: A processor core can either have shared or private
instruction and data cache (Rule 1)

when the number of L2 caches equal one and an L3
cache is generated. Nevertheless, this rule is satisfied
in all other topologies.

• Rule 6: The topologies don’t include separate data or
instruction caches in Level 3 due to their higher costs
in terms of area.

• Rule 7: Only the instruction caches are bypassed,
because experiments have showed that more data
streaming is required by software compared to the
instruction fetching provided to the processor cores.

33

Fig. 3: The template which is used to create topologies that
share instruction caches (Rule 2)

Parameter Number Type
Core 2, 4 Von Neumann/Harvard

L1 Caches 1, 2, 4, 8 Seperate/Shared Instrution and Data
L2 Caches 1, 2, 4, 8 Seperate/Shared Instruction and Data
L3 Caches 0, 1, 2, 4 Shared Instruction and Data

TABLE I: Design space for the target SMP topologies

Thus, data caches are not bypassed.

The target design space is composed of the parameters
related to the types of cores, L1, L2, L3 caches and their
connectivity. A detailed view of the parameters and their values
is shown in Table I. In particular, the type of a core determines
if the processor has dedicated instruction and data caches
(Harvard) or not (Von Neumann). Similarly, L1 and L2 caches
can be instruction and data caches separately, however at L3,
they are always shared. There are a couple exceptions that an
instruction cache is bypassed at Level 3, thus only the data
cache at Level 2 is connected to the L3 cache.

Based on the rules, 133 topologies could be generated.
Among these 133 topologies, we have selected 67 of them
for experiments. We have opted to neglect hybrid topologies
that have more than one L3 cache because our observations
have shown that multiple L3 caches have diminished the per-
formance and energy efficiency of shared instruction caches.
We have omitted bypass topologies with more than two L3
caches, because the ring topology required at the last level
has increased in size and latency. This has diminished the
advantage of having a bypass topology.

V. EXPERIMENTS

A. The Simulation Environment and Workload preparation

In this section, we present the results of our experiments.
The results are obtained by simulating topologies explained
in the previous section. The topologies are experimented with
four different workloads.

We have taken three benchmarks from MiBench [19]
and PARSEC [20] benchmark suites. We have combined the
benchmarks and created real life cases. Benchmarks consist of
Blackscholes [20], x264 [20] and Dijsktra [19]. Black-Scholes
is a partial differential equation based algorithm and it is used
in stocks trading. The x264 application is an H.264/AVC (Ad-
vanced Video Coding) video encoder. The Dijkstra benchmark
constructs a large graph in an adjacency matrix representation
and then calculates the shortest path between every pair of

nodes using repeated applications of Dijkstras algorithm. It
is used in networking applications for DNS Look-up and IP
searching.

1) Case 1: x264 + Network - Streaming video scenario
in TVs or consoles

2) Case 2: Blackscholes + Network- Stocks trading from
a handheld divide

3) Case 3: Blackscholes + Network + x264 - Multitask-
ing previous two scenarios in a smart phone

4) Case 4: Network - A wireless sensor node which is
communicating with a number of nodes

Evaluating the results of topologies from a single bench-
mark might be inadequate because the topology could be
favored by the given workload. However, in a real life scenario,
workloads tend to occur in combinations of benchmarks that
are similar to the above cases. Therefore, it is best to consider
combinations of these distinct benchmarks. The real life cases
are formed by calculating the median values of simulation
results of each workload. Thus, the workloads contribute
50% to the execution of each case. Furthermore, the ratio
of workload contributions can be changed. This technique is
also applied by the EEMBC benchmarks [21]. To simulate and
measure the performance of each topology for the four cases,
Multi2Sim [4] is utilized. In this work, we use Multi2Sim in
full system simulation mode with dynamic context switching
enabled for multithreaded workloads. The cache coherency is
handled by Multi2Sim by implementing NMOESI protocol
which is an extension to MOESI protocol [22]. In our exper-
iments, we have not applied any power saving methods such
as voltage scaling or frequency lowering in the simulator. All
the workloads are compiled with GCC 4.9 and three compiler
directives are used. These are processor architecture definition,
functional inlining and static compilation. We have observed
that processor architecture definition and functional inlining
significantly increased simulation runtime performance. Static
compiler directive has increased the simulation time. Each case
is executed with the number of threads that is equal to the
number of cores in the topology under test.

The details of processor cores, caches and memory hard-
ware that we have used in are experiments, are shown in Table
II. We have used Intel Architecture Descriptions [10] while
modeling the hardware in Multi2Sim. The processor core is
modeled to resemble Intel Atom 32 nm Saltwell architecture
and it is clocked at 1 GHz. The Intel Atom Family establishes
a substantial compatibility for embedded system; proving to be
essential processor for our purposes. In order to comply with
Atom processor cores, the cache configurations are excerpted
from the Atom product line topologies. As a whole, the system
model is created analogous to a real Atom based computer
because consistency among the processor caches and memory
is complemented accordingly.

The by-pass topologies explained in Section III requires
a ring topology which is built at the last cache level. The
nodes of the ring topology are connected to the caches and the
main memory. Thus, the memory management unit handles
the data transfer between the caches and the memory. The
data handling mechanism does not require any additional
mechanism to implement in the workloads. Multi2Sim handles
the memory management between the cache memories and the

44

Components Configurations
Core 2 or 4 Atom cores with 1 thread in each core

L1 Cache

Sets = 64
Assoc = 8
BlockSize = 64
Policy = LRU
Latency = 5 cycles
Ports = 2

L2 Cache

Sets = 512
Assoc = 8
BlockSize = 64
Policy = LRU
Latency = 12 cycles
Ports = 2

L3 Cache

Sets = 8192
Assoc = 16
BlockSize = 64
Policy = LRU
Latency = 36 cycles
Ports = 2

Memory
BlockSize = 256
Latency = 93 cycles
Ports = 2

Network
DefaultInputBufferSize = 512
DefaultOutputBufferSize = 512
DefaultBandwidth = 8 bytes/cycle

TABLE II: Details of the hardware blocks used In the experi-
ments

main memory. Apart from the input/output and the bandwidth
of the channels shown in Table II, we have kept all the
other configurations as defaults in Multi2Sim [4]. After the
workloads are simulated, the memory, network and processor
execution reports are fed into McPAT [5]. McPAT estimates the
power and area from given execution reports for a particular
topology. Generated results are stored in a database. Using
these results, we generate additional metrics such as area-delay
product, computation per watt, energy consumed per area and
energy - delay product.

B. Nomenclature of Generated Topologies

The nomenclature we have used is presented in Table
III. We define the number of core with C. When data and
instruction caches are shared, we represent these caches as L
concatenated with the level it belongs. When instruction and
data caches are separate, they are specified as IL and and DL
respectively. If there exists a bypass connection, it is shown
with BP. Thus, 2C 4L1 1L2 explains that there exists two
cores, four L1 shared caches and one L2 shared cache. The
topology 2C 2DL1 2IL1 1DL2 BP shows us that there exists
two cores with two data L1 cache, two instruction L1 caches,
one data L2 cache and there exists a bypass connection from
instruction caches to the memory. This nomenclature should be
followed to comprehend our evaluations which are explained
in the next section.

Symbol Definition
C Core Count

L<x> Shared Data/Instruction
Level 1, 2 or 3 Cache

IL<x> Instruction Level 1 or 2 Cache
DL<x> Data Level 1 or 2 Cache

BP Exists a bypass connection

TABLE III: Nomenclature of the Topology Representation

Fig. 4: Comparison of Execution Time vs Area

C. Evaluations from Simulation Results

In this section, we present our evaluations and emphasize
two aspects. At first, we will summarize the best topologies
in area, performance, energy consumption, energy-delay, area-
delay, computation per watt metrics and area. In addition, we
will present several metrics based on our evaluations that we
recommend to include while evaluating systems. Optimizing a
system for just one workload could generate poor results for
other workloads. This hurdle can be alleviated by analyzing
topologies with respect to certain design metrics in order
to understand their similarities. In addition, the designers
could have a number of requirements and these requirements
could be conflicting such as high performance and low power.
Nevertheless, identifying the suitable topologies which meet
design requirements requires considering multiple objectives
[23].

Area: Among our topologies, the topology that has the
smallest area is 2C 1L1 1L2. The L1 and L2 caches are
shared among each core for instruction and data caches.
In terms of performance 2C 1L1 1L2 has only surpassed
2C 1L1 1L2 1L3. Adding a shared L3 cache has lowered the
performance compared to 2C 1L1 1L2 for all cases. In terms
of power consumption and leakage power, 2C 1L1 1L2 is the
best topology. The main reason for low power figures is the
low capacitance due to having the smallest chip area among
our topologies.

Execution Time: In terms of execution time, topolo-
gies with four cores dominate our results. For cases
1 and 2, 4C 4DL1 1IL1 1DL2 1IL2 which is a hy-
brid topology performs the best. For cases 3 and 4,
4C 4DL1 1IL1 1DL2 1IL2 1L3 and 4C 8L1 1L2 have pro-

55

Fig. 5: Comparison of Execution Time vs Number of L1 to
L2 connections

Fig. 6: Comparison of Area * Delay vs Peak Power

vided the best performance respectively. We have observed
that the addition of L3 cache to 4C 4DL1 1IL1 1DL2 1IL2
topology has boosted the performance for case 3 which is
the most compute intensive case among our workloads. In
addition, it has surpassed all regular topologies in terms
of performance. Figure 4 shows the execution times of all
topologies for all cases and the best topologies are shown with
stars. There are two groups of topologies which have lower
execution times than the rest. When we observe these groups,
we see that one group has smaller area than the other group.
From our experimental data we have found out that there
are hybrid topologies which can provide similar performance
to regular topologies with L3 caches. Thus, exploring hybrid
topologies have provided us to find out topologies that are
smaller than regular topologies.

Based on our observation that the best execution time of
different workloads could happen with different topologies, we
have tried to identify if there are certain topologies which are
more favorable than others. Figure 5 shows the execution times
of different workload cases with respect to the Number of con-
nections between L1 and L2 caches. There are two favorable
topologies with 5 and 8 connections. Among these topolo-

Fig. 7: Comparison of Computation per Watt (CPW) vs Area

Fig. 8: Comparison of Energy per Unit Area (EPA) vs Number
of Cores and L1 Cache

gies 4C 8L1 1L2 1L3 and 4C 4DL1 1IL1 1DL2 1IL2 1L3
are the most favorable for all cases. The irregular
4C 4DL1 1IL1 1DL2 1IL2 1L3 topology has smaller area
than the conventional 4C 8L1 1L2 1L3, thus it is more prefer-
able. In addition, although 4C 8L1 1L2 1L3 topology does
not have the best execution time for a single case, it has shown
that for case 1 and case 2, both cases can run on this topology
relatively fast.

Area-Delay Product: Area-delay product is an important
metric in order to determine the best architectures under area
constraints. It allows designers to balance performance and
chip-area which directly affects the cost of the system. Our
experiments have shown that three topologies are favored in
this metric. For case 1 and case 2, 4C 4DL1 1IL1 1DL2 1IL2
hybrid topology, for case 3 4C 8L1 1L2 and for case 4
4C 4L1 1L2 regular topologies have the lowest area-delay
product. In terms of area, 4C 4DL1 1IL1 1DL2 1IL2 is
smaller than 4C 8L1 1L2. In case 3, the area-delay product
of 4C 4DL1 1IL1 1DL2 1IL2 is very close to 4C 8L1 1L2.
Thus, it could also be selected as an alternative. For case 4,
4C 4L1 1L2 excels other topologies with its relatively small
area and its four core topology decreases the execution time.

Unlike previous examples, certain design metrics could be

66

Workload Execution Time Power-Delay Product CPW

Case 1 4C 4DL1 2IL1 2DL2 1IL2 1L3 4C 4DL1 2IL1 2DL2 1IL2 1L3 4C 4DL1 2IL1 2DL2 1IL2 1DL3 BP
Case 3 4C 4DL1 2IL1 2DL2 1IL2 1DL3 BP 4C 4DL1 2IL1 2DL2 1IL2 1DL3 BP 4C 4DL1 2IL1 2DL2 1IL2 1L3

TABLE IV: An example which shows three metrics for two cases and one metric is conflicting (CPW) with the other two

Fig. 9: Comparison of Energy * Delay (ED) vs Area

less dependent on the workload such as peak power. Peak
Power is a crucial metric for electronic systems. Higher peak
power increases the cost of the chip because it requires elec-
tronic components that are durable to peak power figures. Our
simulations have shown that peak power is more dependent
on the underlying topology. Nevertheless, metrics like peak
power should not be omitted while designing architectures,
because peak power is a decisive metric for low cost embedded
systems. Thus, we have observed peak power in Figure 6 with
Area-Delay product. For each case, we have seen that each
workload favors a different type of topology for minimal peak
power. In case 1, 2C 2DL1 2IL1 1DL2 BP bypass topology
has the lowest peak power. Our simulations have found out
that, in case 2 and case 4, the regular topologies 2C 4L1 1L2
and 2C 1L1 1L2 have the lowest peak power. In case 3, the
irregularity of 4C 4DL1 1IL1 1DL2 1IL2 topology helps to
keep the peak power relatively low in this particular workload.
The aforementioned architectures are shown with stars in
Figure 6.

Computation per Watt: Computation per watt (CPW)
metric is used in embedded systems and measures how the
consumed energy is efficiently used for the actual compu-
tation. The calculation for the computation per watt met-
ric is the execution time divided by the runtime power.
Our experiments have shown that for different cases, archi-
tectures with highest CPW have different chip area, num-
ber of caches and L1 cache sizes. In more detail, for
case 1, the topology with highest Computation per Watt
is 2C 4L1 1L2. However, for case 2 and 4, the bypass
2C 2DL1 2IL1 1DL2 BP topology has the highest CPW. In
case 3, the hybrid 4C 4DL1 1IL1 1DL2 1IL2 topology has
the highest CPW. The selected points are shown with stars in
Figure 7.

Power-Delay Product: When designing low power proces-

sor, power-delay product metric is used a lot because it allows
designers to compare performance and power consumption of
different topologies. In this metric, bypass topologies provided
lower power delay products than other topologies. For case 1,
case 2 and case 4, 2C 2DL1 2IL1 1DL2 BP has the lowest
power delay value. For only case 3, 2C 4L1 4L2 which is
regular topology has dominated the other topologies. When
we investigate the 2C 2DL1 2IL1 1DL2 BP, we observe that
its chip area is within 0.2% of 2C 4L1 1L2 which is a regular
topology. However, bypassing the instruction caches from level
2 to memory has provided additional performance. Thus, this
has lowered its power-delay product.

Energy-Delay Product: Embedded systems from mobile
phones to coffee machines have similar behaviors, in which
they are idle most of the time and gets under load in short
bursts. For instance, a mobile phone wakes up from an idle
state when the user wants to stream a video. Similarly, a coffee
machine is only active when it prepares coffee, then it switches
to a state where it waits for user input and then consumes it.
Therefore, the active state is captured by the runtime dynamic
power, the idle states can be captured by the leakage power
metric. We assume 70% idle and 30% runtime case and prepare
the metric as their combinations. Energy-Delay product is
an important metric, which combines energy consumptions
of topologies at the same level of performance. In order to
reduce the energy delay product, either performance of the
processor must increase or consumed energy per instruction
must be lowered. However, in general, low power designs
generally allow to sacrifice performance in favor of energy.
In Figure 9, we have shown that for each workload case,
there is a group of architectures that have lower EDP for
all workload cases. Thus among those suitable architectures,
4C 8L1 1L2 and 4C 4DL1 1IL1 1DL2 1IL2 topologies are
the most preferable. The favorable architectures are identified
with stars in Figure 9.

Energy per Unit Area: Energy per Unit Area (EPA)
with respect to number of cores, L1 and L2 caches in
Figure 8 presents that there are several architectures which
are less energy hungry than others. We see that between
12 and 14, the architectures for all cases have lower EPA
values. Nevertheless, as in CPW, the best topologies are
quite different. For example, case 1 and case 4 have the
lowest EPA with 4C 8L1 1L2 which is a regular topology.
4C 4DL1 2IL1 2L2 and 4C 4IL1 4DL1 2DL2 BP topolo-
gies have similar EPA figures for case 2 and case 3 respec-
tively. However, three of the topologies belong to a different
group of architectures. The topology 4C 8L1 1L2 is regular,
however 4C 4DL1 2IL1 2L2 and 4C 4IL1 4DL1 2DL2 BP
are hybrid and bypass topologies respectively.

D. Design metrics with conflicting requirements

We present an example from our experimental data
where optimizing on a single objective could be mis-

77

leading. Table IV presents a comparison between two
topologies. Topologies 4C 4DL1 2IL1 2DL2 1IL2 1L3 and
4C 4DL1 2IL1 2DL2 1IL2 1DL3 BP occupy same chip
area. We compare the Execution Time, Power - Delay Product
and Computation per watt (CPW) metrics and present the
topology that outperforms. 4C 4DL1 2IL1 2DL2 1IL2 1L3
has better execution time and Power - Delay Product
in case 1 but 4C 4DL1 2IL1 2DL2 1IL2 1DL3 BP has
better CPW. For case 3 the situation is the opposite.
4C 4DL1 2IL1 2DL2 1IL2 1DL3 BP has better execution
time and Power-Delay Product but low CPW in case 3. This
example yields two important results. Firstly, the workload has
an important impact on the choice of the architecture, because
what is best for one workload is not the best for the other
workload. Secondly, if a designer optimizes his/her system
for one metric, which might be the maximum CPW in this
example, the selected topologies might not be the best in other
metrics, which are the execution time and power delay product
for this example. Hence, the solution to the design problem
for implementing an embedded application with a multicore
architecture lies in adopting a multi-objective design strategy
for meeting stringent design requirements in the embedded
systems domain.

VI. DISCUSSION AND CONCLUSION

As our results demonstrate after exploring various on-
chip architectures, we have found out unconventional topolo-
gies that have outperformed the regular topologies. Similarly,
designing for just a couple of metrics might not produce
the best system under today’s stringent design requirements.
In particular, we make two important remarks regarding the
preceding conclusions:

Shared instruction cache and bypassing cache levels:
With this work, we aim to emphasize that, although current
research has mostly dealt heavily optimizing the architectures
of hardware blocks such as cache structures, the topologies of
the systems have not been investigated thoroughly. We have
studied and shown that unconventional hybrid topologies and
bypass topologies can generate better designs than regular
topologies. Hence, we expect that the improvements of the
exploration of unconventional topologies can also be more
striking when the design space gets larger by introducing more
design parameters such as cache and processor structures.

Designing with numerous metrics: We have presented
several metrics and shown the best architectures from our
experimental results. We conclude that in order to meet today’s
stringent design requirements, designers should aim for ways
to design with numerous metrics by the virtue of designing
systems that can both provide high performance and energy
efficiency.

VII. ACKNOWLEDGEMENT

Funding from the Turkish Ministry of Development under
the TAM Project, number 2007K120610 was received.

REFERENCES

[1] C. Silvano et al., “Multicube: Multi-objective design space explo-
ration of multi-core architectures,” in VLSI 2010 Annual Symposium.
Springer, 2011, pp. 47–63.

[2] D. Tarjan, S. Thoziyoor, and N. Jouppi, “Cacti 4.0: An integrated cache
timing, power and area model,” HP Laboratories, Palo Alto, CA, 2006.

[3] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle
accurate memory system simulator,” Computer Architecture Letters,
vol. 10, no. 1, pp. 16–19, 2011.

[4] R. Ubal et al., “Multi2sim: a simulation framework for cpu-gpu
computing,” in Proceedings of the 21st international conference on
Parallel architectures and compilation techniques. ACM, 2012, pp.
335–344.

[5] S. Li et al., “The mcpat framework for multicore and manycore
architectures: Simultaneously modeling power, area, and timing,” ACM
(TACO), vol. 10, no. 1, 2013.

[6] M. Monchiero, R. Canal, and A. González, “Design space exploration
for multicore architectures: A power/performance/thermal view,” in
Proceedings of the 20th Annual International Conference on Supercom-
puting, ser. ICS ’06. New York, NY, USA: ACM, 2006, pp. 177–186.

[7] Z. Wang and A. Herkersdorf, “Software performance simulation strate-
gies for high-level embedded system design,” Performance Evaluation,
vol. 67, no. 8, pp. 717–739, 2010.

[8] M. A. Laurenzano et al., “Characterizing the performance-energy trade-
off of small arm cores in hpc computation,” in Euro-Par 2014 Parallel
Processing. Springer, 2014, pp. 124–137.

[9] R. Cohen and T. Wang, “Intel embedded hardware platform,” in Android
Application Development for the Intel Platform. Apress, 2014, pp. 19–
46.

[10] “Intel ark product information,” http://ark.intel.com/, accessed: 2015-
05-30.

[11] H. Agrou et al., “A design approach for predictable and efficient multi-
core processor for avionics,” in Digital Avionics Systems Conference
(DASC), 2011 IEEE/AIAA 30th, Oct 2011, pp. 7D3–1–7D3–11.

[12] G. Mariani et al., “Design-space exploration and runtime resource man-
agement for multicores,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 13, no. 2, p. 20, 2013.

[13] M. Monchiero, R. Canal, and A. González, “Design space exploration
for multicore architectures: a power/performance/thermal view,” in
Proceedings of the 20th annual international conference on Supercom-
puting. ACM, 2006, pp. 177–186.

[14] Y. Zhang, N. Guan, and W. Yi, “Understanding the dynamic caches on
intel processors: Methods and applications,” in Embedded and Ubiqui-
tous Computing (EUC), 2014 12th IEEE International Conference on.
IEEE, 2014, pp. 58–64.

[15] O. Ozturk et al., “Multi-level on-chip memory hierarchy design for
embedded chip multiprocessors,” in Parallel and Distributed Systems,
2006. ICPADS 2006. 12th International Conference on, vol. 1, 2006,
pp. 8 pp.–.

[16] I. Loi et al., “Exploring multi-banked shared-l1 program cache on ultra-
low power, tightly coupled processor clusters,” in Proceedings of the
12th ACM International Conference on Computing Frontiers, ser. CF
’15. New York, NY, USA: ACM, 2015, pp. 64:1–64:8.

[17] D. Bortolotti et al., “Exploring instruction caching strategies for tightly-
coupled shared-memory clusters,” in System on Chip (SoC), 2011
International Symposium on, Oct 2011, pp. 34–41.

[18] “Arm embedded processors product information,”
http://www.arm.com/products/processors/, accessed: 2015-05-30.

[19] M. R. Guthaus, et al., “Mibench: A free, commercially representative
embedded benchmark suite,” in IEEE International Workshop on Work-
load Characterization, 2001. IEEE, 2001, pp. 3–14.

[20] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark
suite: Characterization and architectural implications,” in Proceedings
of the 17th international conference on Parallel architectures and
compilation techniques. ACM, 2008, pp. 72–81.

[21] “Eembc, industry-standard benchmarks for embedded systems,”
http://www.eembc.org, accessed: 2015-06-15.

[22] P. Sweazey and A. J. Smith, “A class of compatible cache consistency
protocols and their support by the ieee futurebus,” in ACM SIGARCH
Computer Architecture News, vol. 14, no. 2, 1986, pp. 414–423.

[23] J. Panerati and G. Beltrame, “A comparative evaluation of multi-
objective exploration algorithms for high-level design,” ACM Trans.
Des. Autom. Electron. Syst., vol. 19, no. 2, pp. 15:1–15:22, Mar. 2014.

88

