This is the initial version submitted to ITCVT-NOMS 2020. Final version will be available at ieeexplore.ieee.org

Model-based Design of a Roadside Unit for
Emergency and Disaster Management

Nur Hilal
Computer Engineering Department
Bogazici University
Istanbul, Turkey
nour.hilal@yahoo.com

Abstract—Every year, a massive number of deaths happen
because of traffic accidents. In order to increase the traffic
victim’s survival rates, it is important to reduce the arrival time
of medical and trauma intervention teams to accidents’ sites.
Automatic incident detection provides faster incident reporting
to decrease the delay of arrival time of first responders. In this
paper, we propose a roadside unit (RSU) that automatically
detects traffic incidents using multiple detection mechanisms,
verifies to reduce false alarms and reports to the intelligent
traffic management system. The proposed RSU is modeled in
Architecture Analysis and Design Language (AADL). Simulation
results show that our RSU model is schedulable with low
processor utilization factors, and provides incident detection and
reporting in under three minutes.

Index Terms—Roadside Units, Incident Detection, Intelli-
gent Transportation System, VANET, Model-Based Engineering,
AADL, OSATE.

I. INTRODUCTION

Road traffic accidents are one of the leading causes of death
around the world. According to global status report on road
safety of World Health Organization (WHO) in 2018, 1.35
million deaths happen each year because of road accidents
[1]. To increase the survival rates of trauma victims in road
accidents, they need to get rescued, transferred and undergo
the appropriate medical procedures within an hour, which is
known as the Golden Hour [2]. The first fifteen minutes of
Golden Hour is extremely important [3]: the accident detection
and reporting should not take more than 5 minutes, and the
arrival of medical teams should be satisfied within 15 minutes.

For faster detection of traffic accidents, a new emerging
concept known as Intelligent Transportation System (ITS)
provides promising studies for incident detection [4]. One of
the studies proposes a multi-layer reconfigurable disaster and
emergency management architecture [5]. Their architecture
consists of three layers: Sensor Processing layer, Intelligent
Data Processing layer, and Cloud Processing layer. The In-
telligent Data Processing layer consists of small yet computa-
tionally powerful units, also known as Roadside Units (RSUs),
that are responsible for processing the incoming data from
the sensors and provides multiple services such as traffic flow
control, local routing, and incident management.

978-1-7281-4973-8/20/$31.00 © 2020 IEEE

Arda Yurdakul
Computer Engineering Department
Bogazici University
Istanbul, Turkey
yurdakul @boun.edu.tr

Automatic Incident Detection (AID) is one of the leading
research topics in Intelligent Transportation Systems (ITS) [6].
Some of these studies depend on traffic sensors [7]. In [8], inci-
dent detection is done by using data from ultrasonic sensors.
In [9] [10], inductive loops that exist on the road are used.
There are also existing studies that utilize cameras [11]. Since
ILDs are already implanted in the roads for traffic engineering
and management purposes, they are more preferable over other
road sensors because they cost less and tolerate most weather
conditions. Cameras, on the other hand, are very expensive to
associate with each RSU for incident detection. To the best of
our knowledge, none of these studies uses multiple incident
detection techniques and different communications protocols
to provide traffic incident detection and reporting services. In
this work, we propose a model based engineering method to
enhance RSUs for the real-time detection and verification of
incidents by fusing multiple detection methods and services
that already exist in the literature.

Creating such complex systems takes a significant amount
of time and effort so that it can be extensively tested and
simulated before it can be implemented. Model-Based Engi-
neering (MBE) provides early identification of requirements’
issues, higher system design integrity and early detection of
system design errors. Hence, in this paper, we provide the
RSU components and internal architecture using a modelling
language known as AADL [12]. We provide testing and
simulations experiments, such as schedulability and latency
of the RSU model and its tasks using different tools.

In this paper, we combine four methods for incident de-
tection. Two of them are incident detection algorithms that
enables on-RSU incident detection from incoming data: the
first algorithm is developed on Inductive Loop Detectors
(ILDs) [9], and the second one makes use of the collected
data through Vehicle Ad-hoc Networks (VANET) [13]. For the
other two methods, our RSU takes the role of the server side
of two different accident detection mechanisms to listen for
incidents detected by other components in the ITS: eCall [14]
and WreckWatch [15]. We use these four different sources
to verify and confirm detected incidents so as to minimize
false alarms. To achieve this, we designed a verification and
confirmation process that runs in our RSU. Our proposed
system is shown in Fig. 1.

This is the initial version submitted to ITCVT-NOMS 2020. Final version will be available at ieeexplore.ieee.org

Cloud

o i —

> =
- .$ ok ol

Fig. 1. The proposed system

In this paper, we start with section II by providing a sum-
mary about the incident detection methods that we are using
in our system. In section III, we explain our methodology
and system proposal with insightful details about the internal
architecture and components of our RSU. We walk through
the experimental work and simulation tests in section IV. In
the final section, we conclude our study and talk about future
work.

II. RELATED WORK

One of the research papers on AID is based on Inductive
Loop Detectors (ILDs) [9]. They proposed an approach of
two Fuzzy Inference Systems (FIS) which study traffic data
collected by two loop detector stations. The two FIS are
assumed to be at the upstream and downstream of the incident
location. The proposed system compares normal traffic condi-
tions with current traffic conditions of the same time of the day
to find differences. When these differences between normal
and observed traffic conditions are “low”, then the system is
in “normal state”, otherwise, it is in “abnormal state”. If the
abnormal state is detected for a certain amount of time (i.e.
two minutes), the algorithm prompts an incident alarm.

Vehicular communication technologies can also help in
AID. A study, which provides a solution based on Vehicular
Ad-hoc Network (VANET) [13], proposes two AID algorithms
that take collected traffic data from passing vehicles to analyze
traffic flow and find anomalies related with traffic incidents.
These algorithms depend on lane changing information that the
passing vehicles share with the RSU, such as vehicles’ speed
and travelled distance. When changing lanes, these values are
significantly impacted in the case of accident existence. The
idea behind their algorithms is to aggregate all traffic data
related with passing vehicles changing lanes, and constantly
monitor the average values of these traffic variables to establish
belief measurements of the existence of a traffic incident. An
incident alarm will be issued if these belief measurements
exceed a pre-established threshold.

In a different approach, there are some other incident
detection solutions propose the detection of a traffic accident
based on the direct connection to Vehicles’ and Smartphones’
sensors. One of these solutions is eCall [16]. eCall is an emer-
gency system that provides an automatic incident detection

of road accidents and initiates a telecommunication service
with the related Public Safety Answering Point (PSAP). eCall
system consists of two parts, an In-Vehicle System (IVS) and
an eCall data modem installed at all PSAPs. In the event
of a traffic accident, the IVS unit detects the accident using
some built-in crash sensors within the vehicle, and establish
a 112-voice call automatically (or manually by the driver), to
the nearest PSAP center through cellular networks. Even if
the driver is unable to talk, the IVS will send a Minimum
Set of Data (MSD) to the PSAP center to notify authorities
with the accident information such as the vehicle location,
vehicle identification, number of passengers and other related
information [14].

Another study discusses detecting traffic accidents using
smartphones [15]. The availability and low cost of smart-
phones against other means of incident detection and reporting
mechanisms makes them a favorable alternative solution. In
addition to their wide-spread usage among users, smartphones
travel with their owners which provides incident detection
whether or not the vehicle is equipped with an IVS unit. In
[15], the authors propose a smartphone-based prototype of a
client/server application called “WreckWatch”. The Wreck-
Watch client is an application installed on the user’s smart-
phone, where it exploits the built-in devices such as GPS,
microphone and accelerometer to detect a traffic accident
when it happens. The client relays the accident information
to the WreckWatch server, which provides data gathering
and communication services for first responders, family and
friends.

III. AADL MOoODEL OF RSU FOR INCIDENT DETECTION
AND VERIFICATION

In this study we compose incident detection part of our RSU
by using some of the methods that are described in Section
II. Since our system is complex and has to function in real-
time, we chose AADL as the modelling language to present
the RSU architecture and study different deployment options.

Our first method utilizes ILD based incident detection
algorithm [9]. We consider a 1 km road of two lanes and
divided into 10 sections with an ILD at each section per lane.
These ILDs will be connected to our RSU through RS485
cables, where they send their traffic variables every one minute
time interval. After receiving these data, the RSU will execute
the algorithm to detect if there was an incident or not. The
second method uses a detection algorithm that collects data
from passing vehicles through VANET and process them to
find anomalies in the observed traffic variables [13]. The other
two detection mechanisms are eCall [14] and WreckWatch
[15]. Our RSU will play the server side that listens to accident
signal coming from these channels. For eCall, we propose that
the PSAP data modem is integrated in the RSU where the IVS
will send the eCall MSD directly to the RSU and the RSU
will handle the data and pass it automatically to the cloud.
We believe that with adding this technique, we provide faster
response through automatic reporting and communication.
Similary, the server side of the WreckWatch application will

be in our RSU, where it listens to and handles the incoming
WreckWatch data, from the client side, processes and passes
them automatically to the cloud.

After an incident is detected on the RSU, we propose
a verification method to screen false alarms. This method
depends on confirming the detected incident by receiving a
second incident alarm from a different detection mechanism
that matches the same information.

The AADL model of our RSU is decomposed into four
units (processes): Input, Detection, Processing, and Output
units. The Input unit receives the incoming data and sends
it to its related parties, while the Detection unit is responsible
for incident detection depending on current traffic variables.
The Processing unit takes all the incoming incident alarms
and apply the verification technique to confirm them. In the
meantime, the Output conveys messages to EVs and passing
vehicles in addition to sending confirmed incident information
to the cloud for classification and routing plans.

1) Input unit: Our RSU has to process inputs from four dif-
ferent channels that are expressed with four threads shown in
Fig 2: ild_Listener, VanetFilter, WirelessFilter, and eCallPoll.

input_process.i*
implement coss ild_data_records*

ild_data
Ng

pvdSharing
»

pvd_data_records*

Clearing_Data
Ny

=,

Cloud_Data

e

Wireless_input Wreckwatch_Data

eCall_input eCall_MSD
5

N

Fig. 2. Input Unit’s AADL architecture

The ild_Listener is a periodic thread that listens to the ILD
devices connected to our RSU. Since the loop detector devices
need a whole minute to produce meaningful data, the period of
this task should also be one minute, to avoid unnecessary task
switching delay. The ild_Listener aggregates all the incoming
data into one data component, ild_data_records. Then, it issues
an event and send the aggregated data, through ild_data port,
to start its detection algorithm.

The VanetFilter is a periodic thread that receives and filters
incoming cloud data messages and probe vehicles data (PVD)
messages through VANET’s connection. The thread first has to
differentiate between a cloud message and a vehicle message
by its header. The cloud message is either a routing message or
a cleared incident notification. An event is issued to dispatch
the routing thread or the verification thread, respectively,
and passes it the message. If the incoming data is a PVD
message from a connected vehicle, it will be recorded into a
circular queue in the data component pvd_data_records until it
accumulates 24 records. When new data comes, it replaces the

oldest data in the data component.The eCallPoll thread is also
a periodic thread. It listens to incoming eCall signals. Once
an eCall signal arrives, the thread issues an event and sends
the data to the eCall handler task in the processing unit. The
WirelessFilter is also a periodic thread that listens to incoming
WreckWatch data coming through the wireless connection.
When a WreckWatch message is received, the wirelessFilter
issues an event to dispatch the WreckWatch handler, in the
processing unit, and passes the message to it. The period of
VanetFilter, WirelessFilter and eCallPoll are set as 100 ms.

2) Detection Unit: The Detection unit is responsible for
detecting an incident by studying the data coming from
ild_Listener and VanetFilter as shown in Fig 3.

Detection_process.i*
Implements Detection_process

I cal_data*

ILD_th*

Dispatch_Protocol: Sporadic
ta ab,

:." Lab_recurds’ J

Incident_th*
spatch_Protocol: Sporadic |

inlLD_Data

From_ildAlg ! IncidentAlarm

elief Van_th*

Dispatch_Protocol: Periodic

—

inPVD_Data

i:\—

Fig. 3. Detection Unit’s AADL architecture

The Van_th applies the incident detection algorithm on
VANET’s traffic parameters [13]. It accesses pvd_data_records
through inPVD_Data port. Once the Van_th thread is dis-
patched, it reads the accumulated data in the pvd_data_records
to execute the detection algorithm that increases an incident
belief variable, inc_belief, in case that it detects an anomaly. If
the incident belief exceeds a predefined threshold, the thread
issues an event and sends the incident data to incident_th.

The ILD_th thread is sporadic, and it is dispatched once
an event comes on the in/LD_data connection. It receives the
aggregated data coming from the ild_Listener in the input unit
also through the inILD_data connection. This thread applies
the incident detection algorithm based on ILD [9]. It uses two
data components ab_records, and cal_data. The latter is the
calibration data that was initially defined for specific times
in a day of the week when no incident was present. The
algorithm uses calibration data to compare with the current
traffic variables to detect anomalies. Once an anomaly is
detected, the lane and road section data are recorded in the
ab_records, which contains a list of all the road sections and
lanes that had presented an anomaly in the previous execution
only. So, if an anomaly presented itself in the current execution
and matched a previous one, it means there is an incident to
report. Then, the thread issues an incident alarm event and
passes the incident data to the incident_th task.

The Incident_th thread is basically the collector of incident
alarm information from the preceding two threads. It records
the information in a unified representation and passes it with
an event to the verification task in the processing unit. The
Incident_th thread is also sporadic.

3) Processing Unit: Fig. 4 shows the processing unit that
wakes up when an incident alarm is issued. It handles all the
incident detection inputs to verify the detected incidents.

mainprocess.i*

Clearingevent i Th_Verification*
1 H

i Dispatch_Protocol: Sporadic
ClearingAlarm
>t
incdnt_Alarm
! Th_eCallHandler* ! 3

H Dispatch_Protocol: Sporadic
eCallevent Gcaiisignal
e .

=t
incdntAlarm
N

: ! i
incidentAlarmy eCallAlarm incdnt_info. TOCloud
L 5 :

{ Th_WreckWatchServer* |
H Dispatch_Protocol: Sporadic {

WreckWatchAlarm
L

WWatchevent wopiteincsignal incidentAlarm
L s =
{Checkstate
1 incidents_records
|

Fig. 4. Processing Unit’s AADL architecture

Th_eCallHandler thread is dispatched when the eCallPoll in
the input unit issues an event. It handles the MSD data coming
from the input unit and transfers it in a unified form to the
Th_verification. Th_WreckWatchServer [15] handles the com-
ing data from the WirelessFilter and sends the data in a unified
form to the Th_verification thread. Th_WreckWatchServer and
Th_eCallHandler are sporadic since they only works when
WreckWatch or eCall signal, respectively, arrives.

Th_Verification task is sporadic and is dispatched every
time an incident alarm event is issued by either Incident_th,
Th_eCallHandler, Th_WrechWatchHandler, or by a clearing
event issued by the VanetFilter in the Input unit. Algorithm 1
shows the verification task execution steps. It is used for con-
firming a possible traffic incident by receiving another incident
alarm from another detection technology that matched the
possible incident. This thread depends on recording incoming
incident data and change the system state according to current
situation. When no incidents are detected, the system is in
normal state. When an incident alarm is issued, the system
switches to investigation state if the incident alarm is coming
from the Detection unit. When all recorded incidents are con-
firmed, the system state switches to clearing and awaits for a
confirmation from the cloud that the incidents has been cleared
to return to the normal state. The system state is recorded
in the data component Dr_currentState which contains the
current state and the number of incidents. It is safe to say that
both eCall and WreckWatch are considered confirmed traffic
incidents already, since they depend on direct sensors to detect
a crash. But, when a detection algorithm depends on traffic
variables that are error prone and have some ambiguity, it is
important to provide a verification step to insure not to exhaust
the authorities with frequent false alarms. So, when an eCall
or WreckWatch signal arrives, they are considered confirmed,
they are recorded in the data component Dt _incidentArr, and
then reported to the cloud. However, when one of the incident
detection algorithms in the Detection unit sends a possible
incident alarm, the verification thread first check if there is a
match in the previously recorded incidents, if there is a match

and it was detected by another detection technology, then the
incident is confirmed and reported. If not, then the incident
will be added to the list and awaits confirmation.

Algorithm 1 Incident verification

1: read currentstate, numberofincidents, existing incidents list.
2: check input.

3: if inputsource = cloud then

4 check existing incidents list

5: if matched = true then

6: remove incident from existing incidents list

7 numberofincident - 1

8 if numberofincidents = 0 then

9 state +— normal

10: else > input is a new incident
11: if currentstate = normal then

12: add new incident to existing incidents list

13: numberofincidents + 1

14: if new_incident_con firmed = true then
15: state «— clearing

16: send incident data to cloud

17: else state <— investigating

18: else if currentstate = clearing then

19: check existing incidents list

20: if incident_matched = false then

21: add new incident to existing incidents list

22: numberofincidents + 1

23: if new_incident_con firmed = true then
24: send incident data to cloud

25: else state < investigating

26: else if currentstate = investigating then
27: check existing incidents list

28: if incident_matched = true then

29: if same_detection_source = false then
30: confirm existing incident

31: add detection source to incident data

32: send incident data to cloud

33: else

34: add new incident to existing incidents list

35: number of incidents + 1

36: if new_incident_con firmed = true then
37: send incident data to cloud

38: if state <> normal then

39: if con firmed_incidents = numbero fincidents then
40: state <— clearing

41: write currentstate, numberofincidents

4) Output Unit: Output unit consists of two tasks: Rout-
ing_ Th and ToCloud_Th. The Routing_Th thread receives
instructions from the cloud to either broadcast a message for
the passing vehicles to evacuate a certain lane for a coming EV,
or to relay the routing messages to the EV passing through the
RSU communication range. ToCloud_Th thread is responsible
for reporting the confirmed incident data to the cloud for
incident classification.

Output_Unit.i*

EVRouting 1

F'romcloud

broadcast
»

broadcast

H ToCloud_Th*

IncidentNotif

/
/

ToCloud ToCloud
>

r =

Fig. 5. Output Unit’s AADL architecture

5) Devices: In order to get the data we need to pro-
cess, the RSU depends on multiple communication devices.
Since our RSU uses the ILDs connected over RS485, the
connection will be established through UART which will be
connected to PCle 3.0 system bus through UART-to-PCle

bridge. VANET transceiver, Vanet_modem, is responsible for
sending and receiving VANET messages from/to the passing
vehicles and the cloud through V2I and I2I communication
standards [17] [18]. Wireless modem (Wi-Fi), which also exist
as a hotspot for smartphones in today’s commercial RSUs
[19], is responsible for getting the WreckWatch signal and data
when a smartphone owner, whose smartphone is successfully
connected to our RSU, is involved in an incident.

IV. EXPERIMANTAL RESULTS

We chose AADL as the modelling language to present the
RSU architectures. We used OSATE [20] to model our RSU
and produce two analysis tests: schedulability and flow latency
analysis. In addition, we used AADL Inspector [21] to provide
static and dynamic schedluing simulations on our RSU model.

For all of these tests and simulations, we have to specify
each task’s execution time and deadline. We imitated the
algorithms and applications, to the best of our capabilities,
depending on the explanation provided in their papers. We
coded each task (thread) using C++ language. We confirmed
correctness of each code with synthetic input test data. To
find each task’s execution time, we used gem5 simulator [22].
Inspired by commercial RSUs [19] [23], we proposed five dif-
ferent execution platforms based on CPU micro-architecture,
CPU speed, and memory options. The first option [23], in-
cludes an out-of-order ARM processor at 1 GHz speed, with
1 GB DDR4 memory, a 64 KB iCache and a 32 KB dCache,
in addition to 1 MB L2 cache. The second option Siemens
[19] includes 4 different variations with both in-order and
out-of-order ARM and X86 Processors at 800 MHz, with
with 1 GB DDR4 memory, a 64 KB iCache and a 32 KB
dCache. All options are simulated as one core single thread
CPU. We applied se.py configuration script under the proposed
configuration options. For each task, we found that the X86
environment provided the longest execution times between 1
- 5 msec, while the ARM environment, gave results between
60 - 356 usec. We make use of these execution times in three
types of analyses:

(1) RSU Model’s schedulability analysis in OSATE.

(2) RSU Model’s flow latency analysis in OSATE.

(3) Scheduling simulations in AADL Inspector

A. RSU Model’s schedulability analysis in OSATE

In addition to systems’ modeling, OSATE provides multiple
analyses, tests and reports at each level of abstraction. In
the system model of our RSU, we defined the components
and specified scheduling properties along with flow compo-
nents. For the schedulability tests, we used Rate Monotonic
Scheduling (RMS) as the scheduling protocol. We carried
out the schedulability test on the selected platform options.
Results show that the threads can be safely scheduled in all of
the selected platforms. Testing results show that the highest
utilization factors are for the X86 environment in-order and
out-of-order processors at 68% and 27.1% respectively. The
processor utilizations in the ARM environment are at 3.8% and
1.7% for in-order and out-of-order CPUs respectively. These

results show that our incident detection model can be included
as an added functionality to an existing RSU.

B. RSU Model’s flow latency analysis in OSATE

The latency analysis depends on the timing properties of
the tasks and hardware components but also on the scheduling
policy as well. Latency analysis accumulates all latency con-
tributors starting from the flow source, going through the buses
and to where the data are finally transferred. For each end-to-
end flow, there is a minimum and a maximum actual latency.
The minimum actual latency is the best case where OSATE
assumes that all data are ready, and each thread is dispatched
immediately without delay. The maximum actual latency is
the worst case where OSATE assumes that each thread has
to wait for the data to be ready and will be dispatched at
the end of the period. As shown in top table of Table I, we
notice that the difference between each end-to-end flow of each
deployment variation is marginal, because the only difference
among the latency contributors are the tasks’ execution times
and task periods are ignored. However, bottom table in Table I,
shows a big difference in the latency of each flow, where the
periodic behavior of the tasks affect system response. We see
that the ILD flow has the longest latency due to the one minute
period of the ild_Listener. ILD algorithm has to run at least
twice to detect an incident. Hence, we can easily show that
our system response time -in case of an accident- is less than
three minutes.

TABLE I
ACTUAL LATENCY OF ALL END-TO-END FLOWS UNDER ALL PLATFORM
VARIATIONS- TOP: MINIMUM, BOTTOM: MAXIMUM

Deployment ILD flow Vanet flow | eCall flow Wreckwatch
Variations latency latency latency flow latency
X86 opt.2.1 34.3 ms 20.5 ms 16 ms 15.9 ms
X86 opt.2.2 21.8 ms 8.17 ms 6.4 ms 6.37 ms
ARM opt.1 14.2 ms 0.748 ms 0.535 ms 0.518 ms
ARM opt.2.1 15.3 ms 1.59 ms 1.06 ms 1.02 ms
ARM opt.2.2 14.3 ms 0.735 ms 0.515 ms 0.500 ms
Deployment ILD flow Vanet flow eCall flow | Wreckwatch
Variations latency latency latency flow latency
X86 opt.2.1 60134 ms 20320.5 ms 216 ms 215.9 ms
X86 opt.2.2 60121.8 ms | 20308.2 ms 206.4 ms 206.4 ms
ARM opt.1 601142 ms | 20300.8 ms 200.6 ms 200.5 ms
ARM opt.2.1 60115.3 ms 20301.6 ms 201.1 ms 201.1 ms
ARM opt.2.2 | 601143 ms | 20300.8 ms 200.8 ms 200.5 ms

C. Scheduling simulations in AADL Inspector

In this section, we provide the real-time simulation results
to verify that the system meets all deadlines using AADL
Inspector. We carried real time static testing with Cheddar
simulator on X86 opt 2.1 platform that has the longest execu-
tion times and a processor utilization of 68%. Figure 6 shows
that all threads are scheduled according to their periods, and
all threads finish before their deadlines. Dynamic scheduling
simulations are done with Marzhin simulator. Figure 7 shows
that when a thread is finished, it dispatches the corresponding
next thread according to each thread’s scheduling properties.

E{J cpu
/7 input_unit
? wirelessfilter
vanetfilter
‘ ecallpoll

ild_listener
+—{Jild_data_records
] pvd_data_records
/7 detection_unit
37 van_th
;7 ld_th
2" incident_th
(—Jinc_belief
—{Jab_records
] cal_data
/7 processing_unit
;" th_ecallhandler
-/ th_wreckwatchserver
;" th_verification » » *
] dt_currentstate
] dt_incidentsarr

/7 output_unit
477 tocloud_th
routing_th

TITT

Fig. 6. Static scheduling simulation by AADL Inspector

For example, once WirelessFilter thread finishes its execu-
tion, th_wreckwatchserver is dispatched. After it finishes,
th_verification thread is dispatched and when it finsihes,
toCloud is dispatched.

> o m[E 6 10 20 30 40 50 60 70 8 9 100 110 120 130

Ex{J cpu

/37 input_unit L o

b I i

84—+ vanetfilter 3 | 3

b ecallpoll ' '

8- ild_listener

[HJild_data_records

L] pvd_data_records

27/57 detection_unit {

&+ van_th

b ild_th ‘F
|

A7/ incident_th
—{Jinc_belief
] ab_records
" cal_data N
3127 processing_unit ot
v th_ecallhandler
v th_wreckwatchserver 1
v th_verification ¥
(] dt_currentstate
T dt_incidentsarr
{27 output_unit
‘ tocloud_th

% routing_th — ¥

Fig. 7. Dynamic scheduling simulation by AADL Inspector

V. CONCLUSION & FUTURE WORK

In this paper, we proposed a system that consists of a
cloud layer and a Roadside Unit (RSU). The RSU provides
incident detection using multiple algorithms and solutions,
while the cloud layer is responsible for incident classification
and creating routing plans. The internal architecture of the
proposed RSU is modelled with AADL by describing its
software, hardware and execution platform components. In
addition, we applied scheduling and flow latency analysis that
showed that all response times of our RSU is under the five
minutes limit of the Golden Hour. Results also showed that the
proposed RSU is schedulable with low processor utilization
factors. From that, we come to the conclusion that the system
can be added as a functionality to an existing RSU to provide
emergency management along its existing functionalities.

In the future, we plan to refine the model where we add
behavior and error model extensions, add machine learning
techniques, apply safety analysis and produce better simulation
results.

[1]

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]
(23]

REFERENCES

(2018) Global status report on road safety 2018. [Online].
Available: https://www.who.int/violence-injury-prevention/road-safety-
status /2018/en/

E. B. Lerner and R. M. Moscati, “The golden hour: scientific fact or
medical “urban legend”?” Academic Emergency Medicine, vol. 8, no. 7,
pp. 758-760, 2001.

F. J. Martinez, C.-K. Toh, J.-C. Cano, C. T. Calafate, and P. Manzoni,
“Emergency services in future intelligent transportation systems based
on vehicular communication networks,” IEEE Intelligent Transportation
Systems Magazine, vol. 2, no. 2, pp. 620, 2010.
Intelligent transportation systems. [Online].
https://www.isbak.istanbul/intelligent-transportation-systems/
S. Niar, A. Yurdakul, O. Unsal, T. Tugcu, and A. Yuceturk, “A dynami-
cally reconfigurable architecture for emergency and disaster management
in its,” in 2014 International Conference on Connected Vehicles and
Expo (ICCVE). 1EEE, 2014, pp. 479-484.

E. Parkany and C. Xie, “A complete review of incident detection algo-
rithms and their deployment: what works and what doesn’t. transporta-
tion center, university of massachusetts,” Technical Report, NETCR3 7,
Tech. Rep., 2005.

R. Weil, J. Wootton, and A. Garcia-Ortiz, “Traffic incident detection:
Sensors and algorithms,” Mathematical and computer modelling, vol. 27,
no. 9-11, pp. 257-291, 1998.

U. Khalil, A. Nasir, S. M. Khan, T. Javid, S. A. Raza, and A. Siddiqui,
“Automatic road accident detection using ultrasonic sensor,” in 2018
IEEE 21st International Multi-Topic Conference (INMIC), 2018.

R. Rossi, M. Gastaldi, G. Gecchele, and V. Barbaro, “Fuzzy logic-based
incident detection system using loop detectors data,” Transportation
Research Procedia, vol. 10, pp. 266-275, 2015.

T. Cherrett, B. Waterson, and M. Mcdonald, “Remote automatic incident
detection using inductive loops,” Proceedings of The Institution of Civil
Engineers-transport - PROC INST CIVIL ENG-TRANSPORT, vol. 158,
pp. 149-155, 01 2005.

P. Chakraborty, A. Sharma, and C. Hegde, “Freeway traffic incident
detection from cameras: A semi-supervised learning approach,” in 2018
21st International Conference on Intelligent Transportation Systems
(ITSC), Nov 2018.

P. H. Feiler and D. P. Gluch, Model-based engineering with AADL:
an introduction to the SAE architecture analysis & design language.
Addison-Wesley, 2012.

O. Popescu, S. Sha-Mohammad, H. Abdel-Wahab, D. C. Popescu, and
S. El-Tawab, “Automatic incident detection in intelligent transportation
systems using aggregation of traffic parameters collected through v2i
communications,” IEEE Intelligent Transportation Systems Magazine,
vol. 9, no. 2, pp. 64-75, 2017.

R. Oorni and A. Goulart, “In-vehicle emergency call services: ecall and
beyond,” IEEE Communications Magazine, vol. 55, no. 1, pp. 159-165,
2017.

J. White, C. Thompson, H. Turner, B. Dougherty, and D. C. Schmidt,
“Wreckwatch: Automatic traffic accident detection and notification with
smartphones,” Mobile Networks and Applications, vol. 16, no. 3, pp.
285-303, 2011.

R. Filjar, K. Vidovi¢, P. Britvi¢, and M. Rimac, “ecall: Automatic
notification of a road traffic accident,” in 2011 Proceedings of the 34th
International Convention MIPRO. 1EEE, 2011, pp. 600-605.

V. Jindal and P. Bedi, “Vehicular ad-hoc networks: introduction, stan-
dards, routing protocols and challenges,” International Journal of Com-
puter Science Issues (IJCSI), vol. 13, no. 2, p. 44, 2016.

C. Campolo and A. Molinaro, “On vehicle-to-roadside communications
in 802.11 p/wave vanets,” in 2011 IEEE wireless communications and
networking conference. 1EEE, 2011, pp. 1010-1015.

Siemens connected vehicle roadside unit (rsu). [Online]. Avail-
able: https://www.mobotrex.com/product/siemens-connected-vehicle-
roadside- unit/

Osate. [Online]. Available: https://osate.org/
Aadl inspector. [Online].
https://www.ellidiss.com/products/aadl-inspector/
GemS5 simulator. [Online]. Available: http://gemS5.org/Main_Page

Nxp, intelligent roadside unit. [Online]. Available:
https://www.nxp.com/applications/solutions/automotive/connectivity/
intelligent-roadside-unit:INTELLIGENTRSU

Available:

Available:

