From SQL to Database Processors: A Retargetable
Query Planner

Arda Yurdakul
Computer Engineering
Bogazici University
Istanbul, Turkey
Email: yurdakul@boun.edu.tr

Abstract—TIn the literature, there are various types of hardware
accelerators for managing in-memory databases. Deriving an
efficient query planner for a hardware accelerator is not easy,
because the architecture of each accelerator is different. SQL
is a domain-specific language for describing database queries.
In traditional query planning, SQL descriptions are converted
to a high-level language like C, then the compiler generates the
machine code. In this paper, we propose a method for obtaining
query plans directly from SQL descriptions for programmable in-
memory database accelerators. Given an SQL query, our method
firstly converts it to a synchronous data-flow graph (SDF). Then,
a set of scheduling algorithms are applied on the SDF by
considering architectural specifications of the target accelerator.
We also present automatically generated query plans.

I. INTRODUCTION

With the rise of big data analytics, fast and energy efficient
processing of data residing in databases have become more
important than ever. It has been proved that column-store
databases are more efficient than traditional row-store architec-
ture when huge amount of data has to be queried in an ad-hoc
manner, as it is the case in data warehouses [1]. Reducing the
feature size of electronic systems have enabled entire database
tables to exist in the main memory [2]. Computing platforms
have equally benefitted from this feature reduction as we now
see System-on-Chips that couple a few cores with dynamically
reconfigurable Field Programmable Gate Arrays (FPGAs).
Besides, software tools have also improved to make design on
these platforms much easier than ever. As a result, there are
hardware accelerators for column-store database management
systems [2][3][4][5][7]1[10].

While hardware accelerators speed up the query processing,
planning the queries for an accelerator has turned out to be
another design problem, because each accelerator has its own
architecture. Considering the way in which the query plan is
utilized, we see two types of database architectures in the
literature: In Query-specific Database Processors (Q-DPU),
an intermediate representation is generated from the query
plan. Then, the hardware accelerator is designed or generated
according to this query plan [6][7][8][9]. In Programmable
Database Processors (P-DPU), an accelerator is designed by
using operation kernels of the query language. Then, the query
plan is developed for each query [2][3][4][5].

In this paper, we propose a query planning approach that
can be used with column-store in-memory relational database

accelerators. Our tool acts as a front-end compiler which takes
a query at the input and generates a schedule that needs to be
further processed to generate the instruction set of a P-DPU
or the accelerator itself as a Q-DPU. It processes the SQL
queries by using the given hardware abstraction of a P-DPU
to generate the accelerator-optimized plan of a given query. If
no abstraction is provided, it generates a generic plan column-
store database processors. This plan can be used by the Q-DPU
generating software. Within our knowledge, this is the first
retargetable planner for column-store database processors.

Paper organization is as follows: A query plan is the ordered
set of steps to retrieve and process data stored in a database.
Traditionally, it is represented by a tree structure. In this paper,
we enhance this tree representation by an acyclic synchronous
data-flow graph (SDF) to model the streaming behaviour of
the columns. Hence, next section defines SDF node types for
SQL keywords. Then setting up the SDF representation of a
query is described. In Section III, the hardware abstraction of
the accelerator is mentioned. In Section IV, we explain our
query planner. The final section concludes the work. In this
paper, all columns that will be processed by the SQL query
are assumed to be present in the memory.

II. SDF VERTEX TYPES FOR SQL OPERATIONS

In a synchronous data-flow graph (SDF), vertices represent
operations on the data, and edges represent queued or direct
movement of data between operations. If there is no path
between two vertices, then those operations can be executed
in parallel. There can be different types of nodes with respect
to their input and output tokens. The term “Input tokens”
describes amount of data instances at the FIFO queues to fire
a node (i.e., to execute an operation). At each execution of the
node, a number of data instances, known as “output tokens”
are generated. Let DI and DO denote the input and output
tokens of a vertex, respectively. A node have multiple inputs
and outputs. Let there be K inputs and L outputs of a node.
Then we can define the following SDF node types for SQL
expressions:

o Combinational: DI, = DO; =1 forall k < K, < L:
A combinational node produces one set of output data for
one set of input data. Logic operations and basic arithmetic
operations are regarded as combinational nodes.

o Semi-combinational: DI, > 1 for some k < K, DO; =1,
for all [< L: Multiple instances of input data are required to
produce a single data set at its output. Aggregate operations
fall into this domain.

o Synchronous: DI, > 1 for some k < K, DO; > 1, for
some [< L: Multiple instances of input data are required
to produce multiple instances of data output. Data ordering
and multiple table operations are synchronous operations.
Materialization is a concept to describe the stage when

columns need to be retrieved from the memory. The types
of the SDF nodes help us to roughly estimate the operation
order of the nodes in the plan. For example, column filtering
operations should be done as early as possible as long as 1/0
bandwidth, on-chip communication bandwidth, and on-chip
resources of the accelerator are sufficient, because filtering
(logic) operations are the fastest operations. In other words,
early materialization should be supported in filtering opera-
tions if hardware architecture allows. For joins, our query
planner should prefer late materialization because join is a
computationally expensive operation. Hence, it should work
on as small data as possible. Data ordering operations do not
change amount of data. If they take place after joins, then
sort time might be shorter because joins also reduce data. If
they take place before joins, then the join time can get shorter
because it is easier to join ordered tables. Hence, sort can
take place before or after the joins. The place of arithmetic
operations depends on the clause, which they appear in.

In SQL, a database table is created with CREATE TABLE
that contains information about the data type of the columns.
Data type provides the bandwidth information about a column.
Hence, it is very useful during query planning for the hardware
accelerator.

We form the SDF of an SQL query as follows: Columns
from the tables appear as edges. Since all columns are coming
from the tables, the START node holds the tables. For the
START node, there is no input, i.e., DI = 0, but there are
as many edges as the columns appearing in the SQL Query.
Assuming that each column is read entry-by-entry, DO is 1
for each edge. Operations like filtering, order-by, join or group-
by require one or more columns as keys. These operations
affect all columns of the related table in the query. Hence all
these columns are connected to the same node. In addition,
the related SDF node has as many key ports as the key
columns. Each key port is denoted with E on the node. Filter
node of each table is separate. Columns are modified during
query processing and represented with similar edge names.
Columns that do not appear as outputs at the SELECT clause
are discarded as soon as they are processed. While connecting
an edge to a node, we use input and output tokens of the
vertex. Data rates for the SDF vertices following a filtering
operation are unknown because filtering operation will yield
different results for different tables. For unknown amount
of tokens, we use N. For example, DI = N, DO = N
for ORDER BY operation. This ambiguity simplifies design
of the automated query planner as explained in Section IV.
Based on the discussion on materialization, we propose SDF

s_sd 4
1 DT: BOOL

S_81

DT: CHAR(4) | SELECT s_season,
L sum(s_quantity) as sum_gty
BY> FROM sales
s 8 WHERE s_shipdate <= '1998-12-01"
DT: CHAR(4) GROUP BY s_season;

ABBREVIATIONS
S_s:s_season
s_sd: s_shipdate
S_Q: s_quantity
a_qty: sum_qty
1998: '1998-12-01"

aqty 1 T sss
DT.INT 1 1| DT:CHAR()

Fig. 1: An SQL query and its equivalent SDF

implementation order as FROM — WHERE — SELECT. If
JOIN, GROUP BY and ORDER BY exist, then the process
order is FROM — WHERE — JOIN — GROUP BY —
SELECT — ORDER BY. In WHERE clause, SDF node for
an equ-join (=) operation follows the filtering operations of
the related columns. All outputs of the query are connected to
an END node. Since, each output is produced entry-by-entry,
DIy of END is 1 for each column edge.

A simple query is shown in Figure 1. FROM clause contains
only sales table. Hence, at the START node, the sales table
is observed. In the query, s_s, s_qgty and s_sd columns are
used. Their data types are extracted from the sales CREATE
TABLE. The constant values of the query appears in con-
stants repository. Since WHERE clause has a comparison, a
combinational node is placed for s_sd and *1998’. Its output is
boolean which filters the remaining columns in the query. The
FILTER node has an E port with s_sd; as a key. Similarly,
both GROUP BY and SUM nodes contain an E port. Finally
SELECT clause gives out the filtered version of s_s, namely,
s_sg and aggregated agty outputs. The SDF ends with the END
node. Data types of all edges are specified by DT acronym in
this figure.

III. ABSTRACTION OF A HARDWARE ACCELERATOR

For designing a retargetable query planner, we need a
hardware abstraction so that the query planner will be able
to generate a valid plan for the related accelerator.

Our query planner requires the following information to be
present in its execution environment: (1) Number of I/O and
I/0 bandwidth of the accelerator. (2) Communication network
and bandwidth between modules. (3) Resource Allocation
Table (RAT) for mapping each SQL statement to the correct
hardware module. (4) Module Properties Table (MPT) which
gives information about the type, amount, X (number of data
inputs), L (number of data outputs), E' (number of key inputs)
D1 for each input, DO for each output, latency and throughput

TABLE I: Resource Allocation Table (RAT) for AxleDB [5]

[SQL statement [[AxleDB Module]

Arithmetic Expressions {ARITH_32, ARITH_64}
(Logic Expressions, WHERE) || FILTER

Equ-join (HASH_BUILD,HASH_PROBE)
SUM AGGREGATE

JOIN (HASH_BUILD,HASH_PROBE)
GROUP BY HASH_BUILD

ORDER BY SORT

of each module on the accelerator. If not present, unlimited
number of modules is assumed. (5) Data-type table (DTT)
for identifying bit-length of each data type at the CREATE
TABLE in the accelerator, because traditionally, bit-lengths
of data types vary with respect to processing units. If not
present, default values are used. (6) Connection matrix which
shows the connection map between modules. If not present,
full connectivity between modules is assumed.

For demonstrative purposes, we will use AxleDB Database
Processor [5], which is a compile-time configurable processor
targeting FPGAs. We picked a 32-bit configuration of the
processor utilizing sixteen 32-bit input and sixteen 32-bit
outputs simultaneously. A ring-network is used between the
modules. 12 * 32-bit lines are reserved for data inputs and
outputs, 4 * 32-bit lines are reserved for keys. Communication
within the accelerator takes one unit cycle per one unit data
transfer. Communication of the accelerator with the external
memory or host also takes one unit cycle per I/O if sufficient
bandwidth is provided. RAT and MPT tables shown in Table
I and II can be extended for other SQL keywords. In RAT,
we see that for Arithmetic Expressions, there are two ARITH
units. The number after ”_"" shows that there are 32- and 64-bit
versions that can be used with these expressions. The query
planner selects the most suitable one according to the data type
of the columns. If wordlength is not specified, it assumes 32-
bits for this configuraton of AxleDB. The ”()” shows the order
of operations. For example, Logic Expressions are executed
before WHERE in the F unit. In MPT, the terms DI and DO
show the input and output data rates of the hardware module.
For example, HASH BUILD (HB) and HASH PROBE (HP)
modules work as soon as there is a single set of data at
their inputs. This is different than AGGREGATE (AGG) unit
because it has to wait until eight elements are ready at its
inputs. Latency and throughput is given in terms of unit cycle.
The term (1-16) means an operation may take 1 to 16 cycles.
The term N shows that all columns need to be completely
processed until valid results are obtained.

IV. RETARGETABLE QUERY PLANNER

Query planning on SDF is a resource-constrained schedul-
ing problem. While scheduling nodes with unknown data
rates, the next step has to wait until the current step is
finished. Let {u, v} represent any two nodes in an SDF. Then
”DO, = DI, = 1 for all edges between w and v” means
direct data movement from one module to another module. In

TABLE II: Module Properties Table (MPT) for AxleDB [5]

HASH HASH
[[e oo [[Tson]
AMOUNT 16 16 16 1 1 1
K 12 12 12 12 12 12
L 12 12 12 12 12 12
E 4 4 4 4 4 4
DIy 1 1 8 1 1 1
DO, 1 1 1 1 1 128
Latency 1 1 3N (I-16)N | (1-16)N N
Throughput 1 1 (1-3)N | (I-16)N | (I-16)N N

all other cases, a queue has to appear on each edge. This means
that physical memory like FIFO or look-up table is required. If
on-chip storage is not sufficient, then off-chip memory needs
to be accessed.

To simplify the scheduling process, we revisit the techniques
that were devised for known data rates. Since SDF of a query
may contain nodes with nonuniform input and output tokens,
we will partition the graph into Convex Connected Subgraphs
of Uniform Frequency(CCSUF), which extends the Connected
Subgraphs of Uniform Frequency (CSUF) terminology [12]
with the convexity of a graph to provide the schedulability of
the SDF:

Definition 4.1: Consider an SDF G = {V, A}, where V and
A denote the set of vertices and edges of SDF respectively. Let
H = {Vy, Ag} denote the subgraph associated with Vg C V.
Then H is a Connected Subgraph of Uniform Frequency
(CSUF) if and only if H is a connected graph and for each
edge (u,v) € Ay, DO, = DI,,.

Definition 4.2: Consider H = {Vy, Ay}, which is a CSUF
of G ={V,A}. H is a Convex CSUF (CCSUF) if and only
if there exists no path from a node v € Vi to another node
v € Vp that involves a node w ¢ V.

CCSUFs are formed starting from the END node because
computationally expensive nodes are closer to the END. If an
edge with DI # DO is encountered, then CCSUF boundary
of the current node is set, all nodes and edges of CCSUF are
removed from the SDF. Then the process starts from the last
node existing in the remaining SDF. Obviously, the resultant
SDF might be disconnected. By applying the defined rules
to Figure 1, two CCSUFs are obtained. Let them be named
as CCSUF_1 and CCSUF_2. CCSUF_1 covers START, <=,
FILTER nodes. CCSUF_2 covers the rest.

For each CCSUF, we apply bandwidth and resource-
constrained scheduling algorithm by assuming that all hard-
ware resources are available. In this paper, we extended the
resource-constrained list scheduling algorithm to check for
bandwidth requirements at each scheduling step. If internal
bandwidth of the CCSUF exceeds I/0 bandwidth, then maxi-
mum internal bandwidth is also reported as M. Then we apply
ASAP scheduling algorithm to the reduced SDF by taking into
account latency, resource utilization and I/O/M bandwidth of
each CCSUF. If no resource/bandwidth violation occurs, we
accept it as the query plan. Otherwise mobility-based schedul-
ing applied with the latency of the ASAP scheduling. If still

resource violation continues, we firstly check mobility of each
CCSUF. For the modules with nonzero mobility, we reduce the
number of available resources and reschedule the graph of the
CCSUF. The complete scheduling process is repeated until a
query plan is generated with no resource/bandwidth violations.
Then on each edge (u, v) where DO,, > 1 or DI, > 1, queues
are placed. In this paper, we used push-pop mechanism for
its self-explanatory nature. For all the other edges, we use a
”move” mechanism.

The query plan of our demonstrative example of Figure 1
is shown in Figure 2. We firstly schedule CCSUF_1. Since all
edges in CCSUF_1 have DO = DI = 1, there are only move
operations on these edges. Since AxleDB supports sixteen 32-
bit inputs, then one “row” of all related columns can be moved
in to the accelerator at the same control step (c_step 1). Here,
“row” means one row of entry from s_gty, s_s, s_sd columns
from sales table. At the same time, they can be fed to the
FILTER block. Table II shows that there are sixteen filter
modules in AxleDB. Since DO =1, DI = N from CCSUF_1
to CCSUF_2, FILTER output has to be pushed to queue QF
whenever there is data on both s_gty;, s_si. Then, scheduling
of CCSUF_2 starts. Whenever there is data in QF, HB module
pops and processes those columns. Note that it need not wait
for the queue to be full, because MPT table shows that one set
of inputs is sufficient to start. The output of this module has
to be queued (QHB) since the edges in SDF between GROUP
BY and SUM have DO = N,DI = N. In c_step 3, SUM
operation starts on AGG module when QHB is not empty.
Since AGG module of AxleDB takes eight inputs at a time,
popping from QHB is done in chunks of eight, by using s_sa
key. AGG unit produces two columns, which are aqty, s_ss.
In the last control step, these columns are moved to the output
at each cycle. AGG does not wait all results to be completed
to move the data to the accelerator output as DO of SUM
in SDF and DO of AGG in MPT is 1. This means that the
last values of aqty for each s_s3 are the correct values. In
this planner, ”c_step” is the control step where all sub-steps
can occur in a pipelined manner, “row-by-row” of the stitched
columns. c_steps can also be pipelined, because the related
sub-step is taken only if the “condition” is satisfied.

To demonstrate query planning for limited bandwidth and
resources, we can assume that there are only two 32-bit inputs
and one FILTER . This splits the first control step into two
control steps which filters and feeds s_gzy and s_s into two
queues. Note that this queue pair is actually QF of Figure 2.
Yet, HB operation cannot start until there exists data in both
queues. The rest of the query plan is the same with Figure 2
starting from c_step 3.

Some columns in a query may be wide enough to cover
multiple inputs. In this case, a multicolumn appears in the
query plan if and only if there is a supporting module in
the hardware. When internal bandwidth is not sufficient, we
regard it as the number of internal FIFOs is not sufficient,
or vice versa. A similar case may also occur if two hardware
modules are not directly connected in the accelerator but there
exists a data transfer between the corresponding nodes at the

[c_step] CONDITION | uw [w [(u,v) [KEY | IN [OUT |

1 always HOST | A; | move sales s_qty
S_s
s_sd
’1998°
Ar F move | {s_sd < | s_qty | s_gty1
’1998°} S_s S_S1
when s_sd; F QF push s_qtyr
= TRUE S5_81
2 when QF # () QF HB pop S_s1 s_qty1 | s_qty2
s_S1 S_S9
HB QHB | push S_So s_qtyz
S_S9
3 when QHB # 0 | QHB [AGG | pop(8) | s_s2 s_qtys | agqty
S_S9 s_S3
4 always AGG | Ap | move aqty
S_S3

F:FILTER, QF: Queue for F, HB: HASH BUILD, QHB: Queue for
HB,AGG: AGGREGATE, Aj: Accelerator Input, Ap: Accelerator Output

Fig. 2: Query Plan of Figure 1 for AxleDB [5]

SDF. In both cases, the query plan transfers the output of the
first module to HOST via Ap and then reads-back by the
accelerator via A; whenever it is necessary.

V. CONCLUSION

In this paper, we propose an SDF representation for column
store databases. A tool that generates the SDF from the SQL
query is designed. This tool currently handles all types non-
hierarchical query plans. By using SDF representation with
hardware abstraction tables, we have demonstrated generating
a query plan specific to the accelerator.

ACKNOWLEDGMENT

The author thanks her former students, Kaan Bulut Teke-
lioglu and Can Giiler for the development of the software tool.

REFERENCES

[1] M. Stonebraker et. al., ”C-store: A column-oriented DBMS,” 31st VLDB
Conference, 2005.

[2] J. Casper and K. Olukotun, "Hardware acceleration of database oper-
ations,” ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA’14), pp.151-160, 2014.

[3] L. Wu et. al., "The Q100: Database Processing Unit,” IEEE Micro, pp.
34-46, May-June 2015.

[4] S. L. Xi et. al., "Beyond the Wall: Near-Data Processing for Databases,”
DaMoN’15, pp. 2:1-2:10.

[5] B. Salami et. al., "AxleDB: A novel programmable query processing
platform on FPGA,” Microprocessors and Microsystems, pp. 142-164,
June 2017.

[6] R. Mueller et. al., “Glacier: A Query-to-Hardware Compiler,” SIG-
MOD’10, pp. 1159-1162.

[71 A. Becher et. al., "Energy-Aware SQL Query Acceleration through
FPGA-Based Dynamic Partial Reconfiguration,” FPL’14, pp. 1-8.

[8] V. G. Castellana et. al., "High Level Synthesis of RDF Queries for Graph
Analytics,”ICCAD’15,pp.323-330.

[9] Z. Wang et. al., "Relational query processing on OpenCL-based FPGAs,”
FPL’16, pp. 1-10.

[10] B. Sukhwani et. al., "Database analytics: a reconfigurable-computing
approach”, IEEE Micro, pp. 19-29, Jan.-Feb 2014.

[11] C. Pilato and F. Ferrandi, "Bambu: A Free Framework for the High-
Level Synthesis of Complex Applications,” DATE’]2.

[12] S. S. Bhattacharyya and E. A. Lee, ”Scheduling Synchronous Dataflow
Graphs for Efficient Looping”, Journal of VLSI Signal Processing, pp.
271-288, Dec. 1993.

