
AN EFFICIENT ALGORITHM FOR THE MULTIPLIERLESS REALIZATION OF 2-D
LINEAR TRANSFORMS

Arda Yurdakul

Boiazigi University
Computer Engineering Department,

Bebek 80815, ISTANBUL, TURKEY
yurdakul@ boun.edu.tr

ABSTRACT

In this work, an algorithm is developed for the automatic
generation of multiplierless architectures for two dimensional
linear transforms. Though there are a number of algorithms
developed for this purpose, the algorithm presented in this
paper outperforms the previous ones: When regular CSD
(canonic-signed-digit) representation is used for the quan-
tization of scalars in the two dimensional coefficient ma-
trix, architectures employing 20%-60% fewer adders than
the origianl architectures. This is improved by an additional
5 2 5 % if the recently-introduced CSD-4 representation is
used for the quantization of scalars.

1. INTRODUCTION

Hardware realization of DSP systems is quite common in to-
day’s technology. Development of design automation tools
to realize this kind of hardware from the system specifica-
tion is an active research area.

Most DSP algorithms are based on linear transforms. A
linear transform can be viewed as the multiplication of a set
of inputs with a set of coefficients to have a set of outputs.
The coefficients can be real andor imaginary, depending on
the properties of the transform.

Constant coefficient multiplications have been realized
using solely a bank of adders (and/or subtracters) with hard-
wired-shifting operations for the last decade. The basic
reason for introducing this solution in place of multipliers
was the relatively immense area covered by the multipliers
at those times. Besides, multipliers are ‘always known to
be slow devices and adder-hank solutions have been much
faster than the ones with multipliers. However, improve-
ments in VLSI technology have provided the hardware de-
signers an almost infinite area on the chip. Today it is not
surprising to have 100,000 multipliers operating concurrently

This work was supponed throughout h e Scientific Research Projects
program of Bagazici University

0-7803-81 16-5/02/$17.00 02002 IEEE. 228

on a single chip [l]. It should he noted that concurrency im-
proves the speed performance of slow multipliers. Besides,
coefficients can be easily updated when multipliers are used
in a system. So, the benefits of multiplierless realizations
can easily be questioned. However, adder-bank solutions
are still very power-efficient. Low power is an essential is-
sue in battery-powered devices. In addition, in near future,
it will be quite common to program the hardwired C O M ~ C -

tions of the adder-banks thanks to the development of recon-
figurable systems that is expected to be another dimension
in computing [2]. This will give the designer a flexibility to
update the coefficients whenever it is necessary.

Multiplierless realization of some transforms has already
been automated. These tools are basically developed for
one- and two-dimensional FIR transforms Some of these
tools basically start from the system specifications and gen-
erate SOPOT coefficients of the whole two dimensional sys-
tem [3]-[4]. In the remaining tools, the coefficients that are
already generated by some other systems are taken and the
multiplierless realization of the system for the user-defined
coefficient precision is produced 151, [6]. The algorithm
presented in this paper is in this second category. This al-
gorithm produces smaller architectures in CSD and CSD-4
[7] in very short nu-times: When regular CSD (canonic-
signed-digit) representation is used for the quantization of
scalars in the two dimensional coefficient matrix, the archi-
tectures produced by the new algorithm presented here em-
ploys 20%-60% fewer adders than the original adder-based
implementations.Quantizing coefficients using CSD-4 base
improves the results up to 70%.

The following section sets the theoretical background of
the developed algorithm by pointing out that the problem of
realizing a 2-D linear transform with minimum number of
adders is an NP-complete problem. In Section 3, the algo-
rithm is explained. The final section presents the experi-
mental results and concludes the work.

2. THEORETICAL BASE OF THE ALGORITHM

A two-dimensional linear transform can be written as

Y = K A 4 x ~ x (1)

where K is the coefficient matrix, x i s the input vector, and
y is the output vector. Coefficent matrix can be written as
the combination of P linearly independent sub-matrices, i.e.

P

K = C a , ~ ,
P

where a, is the scaling constant for the sub-matrix K,.
Each sub-matrix can be viewed as a system of row vectors,

Here, k,_ is the m'th row of K, and 1, is the column
vector whose m'th entry is 1 and the remaining entries are
zero. Using the rows of all sub-matrices, a set of linearly in-
dependent row vectors, k;, can he formed to span the space
of row vectors. Assume that the cardinality of this set is
R 5 P.M. Then kgrn is given by

(4)

The scaling coefficient p,,,," is nonzero if and only if k;
must be present in the formation of kpm .

Using equations 3 and 2, the coefficient matrix can be
rewritten as

I" D

kr_

Each row of the coefficient matrix, kL, can also be written
using the combination of S linearly independent row vec-

(6)

Here, bsm is a binary variable which is 1 if and only if kJ
must he present for the final implementation of the m'th row
of the coefficient matrix K. Hence, combining Eq. 5 with
the equations 4 and 6, the most general form for computing
K can be obtained:

In the above equation, the variables are 6,,, as, &,,, and
k;. Therefore, minimum number of adders to realize K will
be determined by the appropriate choice of these variables.
Eq. 7 also hints that the "minimum number of adders for
2-D linear transforms" problem for can be modelled using a
nonlinear mixed integer programming model. The selection
of linearly independent k: vectors also shows that the proh-
lem is NP-complete (the proof is detailed and omitted in this
paper). In the following section, heuristics are proposed to
solve this problem is in a short time for near-optimality.

3. THE ALGORITHM

The adder minimization algorithm mainly consists of the
following steps:

e Coefficient quantization

Matrix decomposition (i.e., implementation of Eq. 2)

Basis vector extraction (i.e., extract k:)

e Adder minimization

Rowwise minimization (i.e. implementation of Eq.
6)

Below, there will he brief explanations for each step:
1. Coefficient quantization: The matrix entries quan-

tized with a given representation type for a given wordlength.
2. Matrix Decomposition: The matrix decomposition is

based on extracting common pattems in the quantized co-
efficients. To achieve this aim, an algorithm that realizes
multiplierless I-D systems efficiently in a very short run-
time [SI is used in this study, because it is assumed that any
algorithm that minimizes the number of adders used in the
system should maximize the common terms between differ-
ent coefficients. The 1-D algorithm of [8] produces a tree
of minimum adders. Obviously, the tree has at most M.N
leaves because there are at most M.N different and qnan-
tized coefficients in K (Eq. 1). All paths from a leaf to
the root will form a sub-uee. Assume that T is the forest of
such sub-trees for all leaves. The intersection of sub-trees in
a sub-forest of T is the common pattern between the related
leaves of the original tree. As the aim is the minimization of
the number of adders in the whole system, then the subfor-
est satisfying the following two conditions simultaneously
must be selected.

e The cardinality of the selected sub-forest T' ZT is
maximum.

The number of adders on t*, the intersection of the
sub-trees, in T* is maximum.

229

Each leaf o f t* is the cy scalar of Eq. 2. Assume that t*
has A 5 P leaves. Then Eq. 2 can be written as

A

K=Ccu,K,+K’
a

Here, zero entries of K, stand for the coefficients whose
sub-trees are not in T’. The nonzero entries of K, stand for
the shifting and/or negation operations. K‘ is the residual
matrix which consists of all entries that are not in t’. The
residual matrix is regarded as the actual coefficient matrix
K and the above process is repeated until t* is made up of
solely the root.

The aim of this iterative process is to realize Eq. 2. Yet,
since the sub-matrices must be linearly independent, it is ex-
pected that K, must be unique. Besides, since the objective
is minimizing the number of adders, then CY, should also be
unique. The iterative algorithm cannot always satisfy these
two conditions. Hence, if there are more than one a, (or
K,) with the same value, then the related K,’s (or cyp’s)
must be added up and the iterative process must be repeated
until uniqueness of K, and CY, is satisfied. At the end of
this process, there are P - 1 different CY, terms which are
different than 1, and one CY, term which is one. The entries
of K, terms are only shifting and/or negation operations.

3. Basis vector extraction: Iteratively unique rows are
extracted from all sub-matrices, i.e. K,’s. By the term
”unique” it is meant that the rows that can be realized by
merely scaling a row that is already a member of the basis
vector set are ignored. It is obvious that the basis obtained
in this manner is not always optimum because there might
be common terms between rows and these common terms
can be shared to reduce total number of adders. Hence,
a slightly modified version of 1-D algorithm of [SI can be
used. Note that each K, is not necessarily a zero-one ma-
trix. none of the previously designed l-D algorithms except
[SI can be used to solve this problem, because in [SI, sym-
bols are used in place of actual digit values which are not
necessarily one or zero. In [SI, the symbol is the ”two-term”
which has exactly two nonzero digits separated by a num-
ber of zero digits. A two-term is can be regarded as a mask
sweeping over digits of a number to find matching patterns.
The two-terms with highest number of matching patterns
is selected. The patterns represented by the selected two-
term is replaced with a symbol and the process continues
until a single symbol is found to represent the number. In
the modified version of [SI used in hasis vector extraction,
”two-term” is modified as a mask sweeping over the rows
of matrices to find the ”matching panern”s. If a two-term
in a row is the shifted and/or negated version of another
two-term in another row, then these two two-terms are re-
garded as matching. Note that columns of matching patterns
must be the identical. The two-term with highest number of
matching pattems appears as a new column introduced to all

rows. Note that the signal on the newly introduced column
is equivalent to the addition of two inputs (i.e. columns)
that are used to form the selected two term. The entries
of this new column is nonzero wherever a matching pattern
appears. The patterns represented by the selected two terms
are simply erased. The process continues until no two-term
with more than one matching pattern appears. The set of
all symbols and the remaining rows with unmaching pat-
terns constitute the set of R basis vectors, k:. The entries
of newly added columns are the scalars 4,,,,. Hence, Eq.
4 is realized. Note that each basis vector k: is realized with
an adder bank. The number of adders per k: is ”symbol
depth”, d,, which is a term defined as the number of sym-
bols used to realize another symbol.

4. Adder minimization: Adder minimization is done
over CY^./^^,,^. by applying a 1-D adder minimization algo-
rithm such as [SI in two different directions independently,
to obtain (cy,.&,,,kF) x where x is the input vector that is
enriched with newly added symbols :

Horizontal direction: Each row k: can be realized
by a bank of adders. The inputs to the bank are the
nonzero column entries for each row. The output of
the final adder of the bank, k:x, is regarded as an in-
put to the set of coefficients a,.,O,.,,, , After applying
the I-D adder minimization algorithm, each leaf of
the generated adder tree will he the scaled version of
the k: by a,.&,, .

Vertical direction: For each column, the a,.,&,,,, scalars
are picked and grouped. The column is regarded as an
input to the picked scalars and 1-D adder minimiza-
tion algorithm is applied. Each leaf is the scaled ver-
sion of the input signal on that column. Leaves of the
trees of all columns are used to realize each row, k:.

The number of adders obtained from two directions need
not be identical. Besides, depending on the initial coeffi-
cients in K, one of the two directions might produce better
results. The direction with fewer adders is selected as the
final implementation style.

5. Rowwise minimizarion: To realize Eq. 1, all scaled
K,x’s must be added up. Note that scaled version of each
row of the sub-matrices has already been realized in previ-
ous step. While adding up the rows, some common terms
might be shared between different rows of the final K. At
this stage, for each scaled input (cy,.,&,,, k;) x for each
row in each K, is represented by a unique symbol. 1-D algo-
rithm of [8] is applied to realize the rowwise addition with
a minimum adder tree. Note that this procedure is identical
to realize Eq. 6.

After these five steps is completed, the Eq. 1 is realized
with minimum number of adders.

230

Exp Org CSD
w

DCT-8 200 86
DCT.12 264 110
DCT.16 11 344 I 154 1 122 I 118 I

CSD-4 CSD-4

43 52
64 98

r(W + wi w + 3) ~ i

PP-12
88 102
136 144

PP-12
88 102
136 144

4. EXPERIMENTAL RESULTS AND CONCLUSION

The algorithm is run on some examples in the literature.
These results are tabulated in Tables 1 and 2. The first table
gives the actual number of adders after the algorithm is exe-
cuted while the second table is used to demonstrate percent
gain over the original adder count. As examples, discrete
cosine transform (DCT) and an eight-branch polyphase fil-
ter presented (pp) in [9] are run for four different wordlengths,
i.e 8, 12, 16, and 24 bits. However, quantization in CSD-4
is done in base-4, unlike the ordinary CSD. Besides, the an-
thor of [7] states that the CSD-4 dynamic range is nearly
4:6 dB plus 12 dB per CSD-4 digit kept as against nearly 6
dB plus 6 dB per CSD digit kept for ordinary CSD. There-
fore, to make a meaningful comparison between a system
implemented in ordinary CSD and CSD-4, it seems that half
of the wordlengths used in CSD should be used while im-
plementing a system in CSD-4. Yet, experimental results
have shown that the system quality of ordinary CSD in a
CSD-4 implementation can be retained if and only if one
uses at least one more digit than the half of the bits CSD-4
for coefficient quantization. Superior results are obtained if
two more digits than the half of the bits CSD-4 are used.
Therefore different wordlengths for different representation
schemes are shown in the tables as W for ordinary CSD
wordlength, [(W+l)/Zl for the implementation with CSD-
4 with quatization noise closer to ordinary CSD implemen-
tation, and [(W+3)/2] for the implementation with CSD-4
with quantization noise superior than ordinary CSD imple-
mentation.

As it can be observed from both tables, the new algo-
rithm improves the results in ordinary CSD implementa-
tions. The improvement is much more notable in CSD-4
implementations. The above explanation implies that CSD-
4 adders will be much smaller than the ordinary CSD adders
because smaller wordlengths in CSD-4 are sufficient to ob-
tain a similar or superior performance than ordinary CSD. In
addition, fewer number of adders are used in CSD-4. There-
fore actual gain in area in CSD-4 implementation will be
much more than the ordinaty CSD implementation.

Table 2. Experimental Results: Percent Gain
CSD-4

DCT-12 76

PP-12
32

PP24 27

5. REFERENCES

[I] R. Brodersen, ”Keynote: Why we need a cus-
tom chip- in- a- day design methodology,”
http://www.mseconference.org/confplan.html.

[2] P. Schaumont, I. Verbauwhede, K. Keutzer and M. Sar-
rafzadeh, ”A quick safari through the reconfiguration
jungle,” http://www.dac.com/39th/talkindex.btml.

[3] S. C. Pei and S. B. Jaw, Efficient design of 2-D multipli-
erless R R filters by transformation, IEEE T-CAS, vol.
34, pp. 436-438, April 1987.

[4] W. S. Lu, ”Design of 2-D filters with power-of-two co-
efficients: A semidefinite programming approach,” IS-
CAS’OI, pp. (lI-549)-(&552), Australia, May 2001.

[5] M. Potkonjak, M. B. Srivastava, and A. P. Cban-
drakasan, ”Multiple constant multiplications: Efficient
and versatile framework and algorithms for explor-
ing common subexpression elimination,” IEEE T-CAD.,
vol. 15, pp. 151-165, Feb. 1996.

[6] H. T. Nguyen and A. Chattejee, ”Number-splitting
with shift-and-add decomposition for power and hard-
ware optimizations in linear DSP synthesis”, IEEE T-
VLSZ, pp 419-423, Aug. 2000.

[7] J. 0. Coleman, ”Express coefficients in 13-ary, radix-
4 to create computationally efficient multiplierless FIR
filters”, Proc. ofECCTD’OI, Finland, Aug. 2001.

[8] A. Yurdakul ve G. Diindar, ”A fast and efficient algo-
rithm for the multiplierless realization of linear DSP
transforms,” IEE Pmc.-Circuit.s, Devices and Systems,
accepted.

[9] J. 0. Coleman, J. J. Alter, and D. P. Scholnik, ”FPGA
architecture for Gigahertz-sampling wide-band IF-to-
baseband conversion,” in Pmc. Int’l Con$ on Sig-
nal Processing Applications and Tech-nology (ICSPAT
2000), Dallas TX, Oct. 2000.

231

