
AN EFFICIENT ALGORITHM FOR THE MULTIPLIERLESS REALIZATION OF 2-D 
LINEAR TRANSFORMS 

Arda Yurdakul 

Boiazigi University 
Computer Engineering Department, 

Bebek 80815, ISTANBUL, TURKEY 
yurdakul@ boun.edu.tr 

ABSTRACT 

In this work, an algorithm is developed for the automatic 
generation of multiplierless architectures for two dimensional 
linear transforms. Though there are a number of algorithms 
developed for this purpose, the algorithm presented in this 
paper outperforms the previous ones: When regular CSD 
(canonic-signed-digit) representation is used for the quan- 
tization of scalars in the two dimensional coefficient ma- 
trix, architectures employing 20%-60% fewer adders than 
the origianl architectures. This is improved by an additional 
5 2 5 %  if the recently-introduced CSD-4 representation is 
used for the quantization of scalars. 

1. INTRODUCTION 

Hardware realization of DSP systems is quite common in to- 
day’s technology. Development of design automation tools 
to realize this kind of hardware from the system specifica- 
tion is an active research area. 

Most DSP algorithms are based on linear transforms. A 
linear transform can be viewed as the multiplication of a set 
of inputs with a set of coefficients to have a set of outputs. 
The coefficients can be real andor imaginary, depending on 
the properties of the transform. 

Constant coefficient multiplications have been realized 
using solely a bank of adders (and/or subtracters) with hard- 
wired-shifting operations for the last decade. The basic 
reason for introducing this solution in place of multipliers 
was the relatively immense area covered by the multipliers 
at those times. Besides, multipliers are ‘always known to 
be slow devices and adder-hank solutions have been much 
faster than the ones with multipliers. However, improve- 
ments in VLSI technology have provided the hardware de- 
signers an almost infinite area on the chip. Today it is not 
surprising to have 100,000 multipliers operating concurrently 
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on a single chip [l]. It should he noted that concurrency im- 
proves the speed performance of slow multipliers. Besides, 
coefficients can be easily updated when multipliers are used 
in a system. So, the benefits of multiplierless realizations 
can easily be questioned. However, adder-bank solutions 
are still very power-efficient. Low power is an essential is- 
sue in battery-powered devices. In addition, in near future, 
it will be quite common to program the hardwired C O M ~ C -  

tions of the adder-banks thanks to the development of recon- 
figurable systems that is expected to be another dimension 
in computing [2]. This will give the designer a flexibility to 
update the coefficients whenever it is necessary. 

Multiplierless realization of some transforms has already 
been automated. These tools are basically developed for 
one- and two-dimensional FIR transforms Some of these 
tools basically start from the system specifications and gen- 
erate SOPOT coefficients of the whole two dimensional sys- 
tem [3]-[4]. In the remaining tools, the coefficients that are 
already generated by some other systems are taken and the 
multiplierless realization of the system for the user-defined 
coefficient precision is produced 151, [6]. The algorithm 
presented in this paper is in this second category. This al- 
gorithm produces smaller architectures in CSD and CSD-4 
[7] in very short nu-times: When regular CSD (canonic- 
signed-digit) representation is used for the quantization of 
scalars in the two dimensional coefficient matrix, the archi- 
tectures produced by the new algorithm presented here em- 
ploys 20%-60% fewer adders than the original adder-based 
implementations.Quantizing coefficients using CSD-4 base 
improves the results up to 70%. 

The following section sets the theoretical background of 
the developed algorithm by pointing out that the problem of 
realizing a 2-D linear transform with minimum number of 
adders is an NP-complete problem. In Section 3, the algo- 
rithm is explained. The final section presents the experi- 
mental results and concludes the work. 



2. THEORETICAL BASE OF THE ALGORITHM 

A two-dimensional linear transform can be written as 

Y = K A 4 x ~ x  (1) 

where K is the coefficient matrix, x i s  the input vector, and 
y is the output vector. Coefficent matrix can be written as 
the combination of P linearly independent sub-matrices, i.e. 

P 

K = C a , ~ ,  
P 

where a, is the scaling constant for the sub-matrix K,. 
Each sub-matrix can be viewed as a system of row vectors, 

Here, k,_ is the m'th row of K, and 1, is the column 
vector whose m'th entry is 1 and the remaining entries are 
zero. Using the rows of all sub-matrices, a set of linearly in- 
dependent row vectors, k;, can he formed to span the space 
of row vectors. Assume that the cardinality of this set is 
R 5 P.M. Then kgrn is given by 

(4) 

The scaling coefficient p,,,," is nonzero if and only if k; 
must be present in the formation of kpm . 

Using equations 3 and 2, the coefficient matrix can be 
rewritten as 

I" D 

kr_ 

Each row of the coefficient matrix, kL, can also be written 
using the combination of S linearly independent row vec- 

(6) 

Here, bsm is a binary variable which is 1 if and only if kJ 
must he present for the final implementation of the m'th row 
of the coefficient matrix K. Hence, combining Eq. 5 with 
the equations 4 and 6, the most general form for computing 
K can be obtained: 

In the above equation, the variables are 6,,, as, &,,, and 
k;. Therefore, minimum number of adders to realize K will 
be determined by the appropriate choice of these variables. 
Eq. 7 also hints that the "minimum number of adders for 
2-D linear transforms" problem for can be modelled using a 
nonlinear mixed integer programming model. The selection 
of linearly independent k: vectors also shows that the proh- 
lem is NP-complete (the proof is detailed and omitted in this 
paper). In the following section, heuristics are proposed to 
solve this problem is in a short time for near-optimality. 

3. THE ALGORITHM 

The adder minimization algorithm mainly consists of the 
following steps: 

e Coefficient quantization 

Matrix decomposition (i.e., implementation of Eq. 2 )  

Basis vector extraction (i.e., extract k:) 

e Adder minimization 

Rowwise minimization (i.e. implementation of Eq. 
6) 

Below, there will he brief explanations for each step: 
1. Coefficient quantization: The matrix entries quan- 

tized with a given representation type for a given wordlength. 
2. Matrix Decomposition: The matrix decomposition is 

based on extracting common pattems in the quantized co- 
efficients. To achieve this aim, an algorithm that realizes 
multiplierless I-D systems efficiently in a very short run- 
time [SI is used in this study, because it is assumed that any 
algorithm that minimizes the number of adders used in the 
system should maximize the common terms between differ- 
ent coefficients. The 1-D algorithm of [8] produces a tree 
of minimum adders. Obviously, the tree has at most M.N 
leaves because there are at most M.N different and qnan- 
tized coefficients in K (Eq. 1). All paths from a leaf to 
the root will form a sub-uee. Assume that T is the forest of 
such sub-trees for all leaves. The intersection of sub-trees in 
a sub-forest of T is the common pattern between the related 
leaves of the original tree. As the aim is the minimization of 
the number of adders in the whole system, then the subfor- 
est satisfying the following two conditions simultaneously 
must be selected. 

e The cardinality of the selected sub-forest T' ZT is 
maximum. 

The number of adders on t*, the intersection of the 
sub-trees, in T* is maximum. 
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Each leaf o f t*  is the cy scalar of Eq. 2. Assume that t* 
has A 5 P leaves. Then Eq. 2 can be written as 

A 

K=Ccu,K,+K’ 
a 

Here, zero entries of K, stand for the coefficients whose 
sub-trees are not in T’. The nonzero entries of K, stand for 
the shifting and/or negation operations. K‘ is the residual 
matrix which consists of all entries that are not in t’. The 
residual matrix is regarded as the actual coefficient matrix 
K and the above process is repeated until t* is made up of 
solely the root. 

The aim of this iterative process is to realize Eq. 2.  Yet, 
since the sub-matrices must be linearly independent, it is ex- 
pected that K, must be unique. Besides, since the objective 
is minimizing the number of adders, then CY, should also be 
unique. The iterative algorithm cannot always satisfy these 
two conditions. Hence, if there are more than one a, (or 
K,) with the same value, then the related K,’s (or cyp’s) 
must be added up and the iterative process must be repeated 
until uniqueness of K, and CY, is satisfied. At the end of 
this process, there are P - 1 different CY, terms which are 
different than 1, and one CY, term which is one. The entries 
of K, terms are only shifting and/or negation operations. 

3. Basis vector extraction: Iteratively unique rows are 
extracted from all sub-matrices, i.e. K,’s. By the term 
”unique” it is meant that the rows that can be realized by 
merely scaling a row that is already a member of the basis 
vector set are ignored. It is obvious that the basis obtained 
in this manner is not always optimum because there might 
be common terms between rows and these common terms 
can be shared to reduce total number of adders. Hence, 
a slightly modified version of 1-D algorithm of [SI can be 
used. Note that each K, is not necessarily a zero-one ma- 
trix. none of the previously designed l-D algorithms except 
[SI can be used to solve this problem, because in [SI, sym- 
bols are used in place of actual digit values which are not 
necessarily one or zero. In [SI, the symbol is the ”two-term” 
which has exactly two nonzero digits separated by a num- 
ber of zero digits. A two-term is can be regarded as a mask 
sweeping over digits of a number to find matching patterns. 
The two-terms with highest number of matching patterns 
is selected. The patterns represented by the selected two- 
term is replaced with a symbol and the process continues 
until a single symbol is found to represent the number. In 
the modified version of [SI used in hasis vector extraction, 
”two-term” is modified as a mask sweeping over the rows 
of matrices to find the ”matching panern”s. If a two-term 
in a row is the shifted and/or negated version of another 
two-term in another row, then these two two-terms are re- 
garded as matching. Note that columns of matching patterns 
must be the identical. The two-term with highest number of 
matching pattems appears as a new column introduced to all 

rows. Note that the signal on the newly introduced column 
is equivalent to the addition of two inputs (i.e. columns) 
that are used to form the selected two term. The entries 
of this new column is nonzero wherever a matching pattern 
appears. The patterns represented by the selected two terms 
are simply erased. The process continues until no two-term 
with more than one matching pattern appears. The set of 
all symbols and the remaining rows with unmaching pat- 
terns constitute the set of R basis vectors, k:. The entries 
of newly added columns are the scalars 4,,,,. Hence, Eq. 
4 is realized. Note that each basis vector k: is realized with 
an adder bank. The number of adders per k: is ”symbol 
depth”, d,, which is a term defined as the number of sym- 
bols used to realize another symbol. 

4. Adder minimization: Adder minimization is done 
over  CY^./^^,,^. by applying a 1-D adder minimization algo- 
rithm such as [SI in two different directions independently, 
to obtain (cy,.&,,,kF) x where x is the input vector that is 
enriched with newly added symbols : 

Horizontal direction: Each row k: can be realized 
by a bank of adders. The inputs to the bank are the 
nonzero column entries for each row. The output of 
the final adder of the bank, k:x, is regarded as an in- 
put to the set of coefficients a,.,O,.,,, , After applying 
the I-D adder minimization algorithm, each leaf of 
the generated adder tree will he the scaled version of 
the k: by a,.&,, . 

Vertical direction: For each column, the a,.,&,,,, scalars 
are picked and grouped. The column is regarded as an 
input to the picked scalars and 1-D adder minimiza- 
tion algorithm is applied. Each leaf is the scaled ver- 
sion of the input signal on that column. Leaves of the 
trees of all columns are used to realize each row, k:. 

The number of adders obtained from two directions need 
not be identical. Besides, depending on the initial coeffi- 
cients in K, one of the two directions might produce better 
results. The direction with fewer adders is selected as the 
final implementation style. 

5. Rowwise minimizarion: To realize Eq. 1, all scaled 
K,x’s must be added up. Note that scaled version of each 
row of the sub-matrices has already been realized in previ- 
ous step. While adding up the rows, some common terms 
might be shared between different rows of the final K. At 
this stage, for each scaled input (cy,.,&,,, k;) x for each 
row in each K, is represented by a unique symbol. 1-D algo- 
rithm of [8] is applied to realize the rowwise addition with 
a minimum adder tree. Note that this procedure is identical 
to realize Eq. 6. 

After these five steps is completed, the Eq. 1 is realized 
with minimum number of adders. 
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Exp Org CSD 
w 

DCT-8 200 86 
DCT.12 264 110 
DCT.16 11 344 I 154 1 122 I 118 I 

CSD-4 CSD-4 

43 52 
64 98 

r(W + wi w + 3 ) ~ i  

PP-12 
88 102 
136 144 

PP-12 
88 102 
136 144 

4. EXPERIMENTAL RESULTS AND CONCLUSION 

The algorithm is run on some examples in the literature. 
These results are tabulated in Tables 1 and 2. The first table 
gives the actual number of adders after the algorithm is exe- 
cuted while the second table is used to demonstrate percent 
gain over the original adder count. As examples, discrete 
cosine transform (DCT) and an eight-branch polyphase fil- 
ter presented (pp) in [9] are run for four different wordlengths, 
i.e 8, 12, 16, and 24 bits. However, quantization in CSD-4 
is done in base-4, unlike the ordinary CSD. Besides, the an- 
thor of [7] states that the CSD-4 dynamic range is nearly 
4:6 dB plus 12 dB per CSD-4 digit kept as against nearly 6 
dB plus 6 dB per CSD digit kept for ordinary CSD. There- 
fore, to make a meaningful comparison between a system 
implemented in ordinary CSD and CSD-4, it seems that half 
of the wordlengths used in CSD should be used while im- 
plementing a system in CSD-4. Yet, experimental results 
have shown that the system quality of ordinary CSD in a 
CSD-4 implementation can be retained if and only if one 
uses at least one more digit than the half of the bits CSD-4 
for coefficient quantization. Superior results are obtained if 
two more digits than the half of the bits CSD-4 are used. 
Therefore different wordlengths for different representation 
schemes are shown in the tables as W for ordinary CSD 
wordlength, [(W+l)/Zl for the implementation with CSD- 
4 with quatization noise closer to ordinary CSD implemen- 
tation, and [(W+3)/2] for the implementation with CSD-4 
with quantization noise superior than ordinary CSD imple- 
mentation. 

As it can be observed from both tables, the new algo- 
rithm improves the results in ordinary CSD implementa- 
tions. The improvement is much more notable in CSD-4 
implementations. The above explanation implies that CSD- 
4 adders will be much smaller than the ordinary CSD adders 
because smaller wordlengths in CSD-4 are sufficient to ob- 
tain a similar or superior performance than ordinary CSD. In 
addition, fewer number of adders are used in CSD-4. There- 
fore actual gain in area in CSD-4 implementation will be 
much more than the ordinaty CSD implementation. 

Table 2. Experimental Results: Percent Gain 
CSD-4 

DCT-12 76 

PP-12 
32 

PP24 27 
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