
A Clustering-Based Scoring Mechanism for
Malicious Model Detection in Federated Learning

Cem Caglayan
Computer Engineering Department

Bogazici University
Istanbul, Turkey

cem.caglayan1@boun.edu.tr

Arda Yurdakul
Computer Engineering Department

Bogazici University
Istanbul, Turkey

yurdakul@boun.edu.tr

Abstract—Federated learning is a distributed machine learning
technique that aggregates every client model on a server to obtain
a global model. However, some clients may harm the system
by poisoning their model or data to make the global model
irrelevant to its objective. This paper introduces an approach
for the server to detect adversarial models by coordinate-based
statistical comparison and eliminate them from the system when
their participation rate is at most 40%. Realistic experiments
that use non-independent and identically distributed (non-iid)
datasets with different batch sizes have been carried out to show
that the proposed method can still identify the malicious nodes
successfully even if some of the clients learn slower than others
or send quantized model weights due to energy limitations.

Index Terms—Federated Learning, Distributed Learning, Clus-
tering, Anomaly Detection, Distributed system sustainability,
Coordinate-based Scoring

I. INTRODUCTION

The rise of the Internet of Things (IoT) has led to the emer-

gence and active use of billions of devices connected to the

internet. Consequently, a massive amount of data is generated

that can be used for producing actionable insights. Privacy

is a major concern when data have to travel across several

devices on the internet. The solution comes with federated

learning where each device does its training locally with its

data, then transmits its model to a server. The server aggregates

the collected client models with specific algorithms such as

federated average (FedAVG) [1] which averages the models.

However, several approaches can be replaced as aggregation

models [2]. Finally, the server transmits the aggregated model

to each client so that it can continue training the aggregated

model as its new model. This communication between the

server and the clients continues until an acceptable global

model accuracy is obtained for all participants of the learning

system.

Due to privacy issues, the server never knows the intention

of a client in federated learning. This is an opportunity for

malicious devices to harm the system by sending poisoned

models. They may poison their data to collapse the aggre-

gated model by changing their labels or spoiling the training

data. They may also send an entirely different or statistically

poisoned model instead of a trained model. Hence, current

research focuses on server-side methods to prevent model

breakdown from malicious users. There are two different

approaches to the detection of adversaries. The first one is

to find malicious devices in the network [3][4][5] where the

traffic activities of the devices are collected as training data to

detect unusual traffic. However, anomaly detection in this area

requires pretraining to discover the regular traffic flow. The

second one is to detect adversarial models among the regular

ones that train widespread deep neural networks (DNN) [6]

[7] where the malicious devices can ruin global models with

specific algorithms. The server uses filtering and classification

methods to categorize the poisoned models in the detection

system.

This paper proposes an adversarial model detection system

in deep neural networks by combining statistical methods

with clustering algorithms. Clustering algorithms are widely

used in detecting anomalies in federated learning systems.

This work differs from the existing studies in the sense that

collected client models are analyzed iteratively and statistically

to generate multidimensional data points for each client to be

used in the clustering mechanism. The data structure used in

clustering has shown to be robust in extracting malicious client

models when the adversary rate is not greater than 40%. The

performance of the method is also evaluated with slow learning

devices and devices that can send only quantized weights due

to energy constraints. Thus, the proposed detection mechanism

allows some devices to be different from the rest of the

clients, which is not analyzed deeply in the literature. The

test cases are divergent due to the heterogeneity of the clients.

A framework has also been developed for this purpose to

generate various attacks from the attack server.

The rest of the paper is organized as follows. The next

section presents related studies and compares them with this

work. It also includes the background to introduce the attack

types. In Section III, the proposed method is explained. The

framework and the experiments that are carried out on this

framework are presented in Section IV. The final section

concludes the paper.

II. RELATED WORK

Recent research for adversary detection on federated learn-

ing systems can be studied with respect to network activities

and model parameters. The former targets the detection of

malicious activities on the network. The solutions in this

category mostly employ autoencoders, where encoders com-

press the input and decoders try to reconstruct it with a

model. Autoencoders have to be trained with benign traffic

data in order to discover abnormal network activity. When

traffic is normal, reconstruction error is low. Abnormal traffic

causes a high reconstruction error. Based on this fact, various

studies exist with unique threshold techniques. In [3], the

auto-encoders are selected as the defense mechanism for the

unsupervised models where the clients can access only their

benign traffic data. The mean square error (MSE) is used for

calculating the threshold. Binary classification is carried out

with multi-layer perceptrons in the supervised model, where

the clients can access all their labeled data. In [8] and [9],

threshold is computed as the sum of the mean and weighted

standard deviation of MSE. In [10], Gated Recurrent Units

(GRUs) are used to find maliciousness in traffic flow by giving

”occurrence probability” to the structured network packets.

In the second category, the detection systems are imple-

mented to find an anomaly in the deep network itself that is

learned by the attendants of the federated learning system.

The attackers infect the network with their local models in

the federated learning mechanism. Thus, the detection system

needs to check the validity of every client model according

to its parameters/gradients/weights. In [6], the dimension of

gradients is firstly reduced with principal component analy-

sis(PCA). Then, euclidean distances between each client are

calculated to eliminate the malicious clients with a threshold.

Finally, the k-means algorithm clusters the gradients to mea-

sure cosine similarities for finding optimal gradients. Another

study that uses cosine similarity to detect adversarial weight

updates calculates the possible update direction calculated for

the bad clients to eliminate them from the system [7]. Their

solution relies on the fact that the benign clients have to

exceed malicious ones as is the case for our work. In [11],

autoencoders that uses MSE as the reconstruction error are

utilized. Their solution requires all clients to be benign during

the training phase of the autoencoder so that the decoder

will be able to identify the adversaries in the upcoming

rounds. This approach surely fails in case that malicious

clients exist during the initial training phases of the federated

learning system. There also exist several studies that use model

classification with generative adversarial networks (GAN)[12],

and k-means clustering on kernel principal component analysis

(KPCA) [13].

Clustering methods are widely used in anomaly detection.

In [13], the k-means algorithm is adopted in the adversary

detection system as an additional layer to KPCA to compare

the results. Another detection system [14] uses the same

algorithm to cluster pair-wise L2-Norm distances within two

clusters to detect malicious models. Similarly, in [15], the

authors use a mechanism to cluster the masked features of the

DNN model learned collaboratively. It also employs an error-

rate tolerance metric on clusters to distinguish the adversary.

Our work is also in the second category where adversary

model detection is aimed. Similar to existing studies in the lit-

erature, the detection mechanism is based on non-complex sta-

tistical scoring and threshold computation with the utilization

of model weights to detect the malicious models. However,

in our approach, several scoring levels are generated, feeding

the k-means clustering algorithm to reduce the number of data

points and analyze the models deeply and iteratively. Similar

to the proposal in [14], the cluster with the higher number of

attendants is considered benign as long as the distance between

the clusters exceeds the threshold. In addition, clients may

have different computation resources and power budgets. They

can be subject to non-identical data sets. Also, as explained in

Section III, there is no need to pre-train our detection system,

which must be done in auto-encoders.

A. Attacks

In the literature, model and data poisoning attacks are

targeted. In model poisoning attacks, the attacker aims to

destruct the global model by adjusting the trained parameters.

The gradient factor attack (Eq. 1) is an example [3] where

the attacker transmits an adjusted model to make the global

model’s update -1 instead of 1. The malicious clients achieve

this aim by multiplying their models by a hyperparameter α
which is calculated by the count of total clients:

1

C
.(C −M + α.M) = −1 (1)

Here, C is the number of clients and M is the malicious

client count. Model canceling [3] is another example to poison

the global model. The objective is to make the global model

parameter equal to zero instead of one:

C −M + α.M = 0 (2)

To control the hyperparameter calculation method in divergent

scenarios, there exists a specialized attack server that knows

C and organizes M of them as adversaries by informing

them. In addition to these hyperparameters, the attack has a

poisoning rate parameter Prate to decrease the rate of attacker

identification in the detection stage. The model is multiplied

with α and Prate as the poisoned model in Eq. 3.

Modelpoisoned = Model · Prate · α (3)

Data poisoning attack is realized by malicious codes running

on the clients. In label flipping attack, the malicious code flips

the labels of training data to make the local model useless [3,

7, 12, 13]. For example in [7], the attack is realized by turning

every data label to “0”. Training data can also be remotely

changed by injecting undesired patterns [6].

In this paper, label flipping and model poisoning attacks are

targeted.

B. Quantized Models and Slow Learners

Most of the IoT end devices are resource-constrained.

Especially, power consumption is a major concern for nodes

running on batteries. Since federated learning requires multiple

data transfers between the clients and the server, model quan-

tization exists as a solution for these devices. Some studies

utilize quantized parameters during training [16, 17]. Another

study realizes anomaly detection with gradient compression

[18]. Slow learners represent the variety of clients that the

federated learning structure contains. They may have smaller

batch-size or local batch training. Federated rounds can be re-

duced for some devices, which have to use their limited power

budgets effectively. Hence, they may occasionally attend in

federated rounds [16].

In this paper, a post-training quantization technique is used.

Float16 quantization transforms the variables from float32 to

float16 [19]. Moreover, maliciousness analysis is also carried

out on federated learning systems including quantized nodes,

slow learners as well as full capacity devices.

III. METHOD

Let C be the set of clients in a federated learning system.

At any time, there can be some malicious clients. Let M

represent the set of malicious clients at a specific round

of aggregation: |M | < |C|/2. The server sends the same

model to all clients. Let {w1, w2, . . . , wi, . . . , wN} denote the

parameters of the model to be trained. At a specific round

of training, the model at each client c ∈ C can be viewed

as {w1,c, w2,c, . . . , wi,c, . . . , wN,c} (Alg. 1 lines 1-5). Since

the server computes each model weight by aggregating the

parameters from all clients, wi can be regarded as a statistical

variable with a mean μi and variance σi (Alg. 1 lines 6-7).

When there are no malicious nodes in the system, the variance

will be small. The existence of malicious nodes will cause a

greater variance. Hence, the server should aggregate only the

client parameters that exist in some range [t−i , t
+
i] around the

mean (Alg. 1 lines 8-9):

t−i = μi − θ.σi (4)

t+i = μi + θ.σi (5)

Since the server is unaware of the malicious nodes at the

aggregation time, it cannot specify an exact value of θ. If it is

not correctly set, malicious nodes can enter the aggregation or

too many benign nodes can be left outside. Hence, the server

has to scan the client parameters for a set of different values

for θ = [θmin, θmax]. Empirical studies show that θmin should

be much less than σi and θmax should be at least one σi ahead

of θmin.

Let xi,c be the binary variable that is 1 if and only if wi,c

is in the range: t−i ≤ wi,c ≤ t+i (Alg. 1 lines 11-12). Then

the amount of parameters of a client that can take place in

the aggregation of a specific round can be computed as Vc =∑N
i=1 xi,c (Alg. 1 line 13). Based on this fact, a score can be

calculated for each client as follows:

Sc =
Vc

N
∗ 100 =

∑N
i=1 xi,c

N
∗ 100 (6)

Eq. 6 assigns a score in [0− 100] range to each client in the

system for every value of θ (Alg. 1 line 14). Assume that there

are L distinct values for θ. Then there will be L scores for

each client corresponding to all values of θ. The scores of a

client can be collectively represented as L-dimensional data

point with θl increasing from the first entry to the last entry

(Alg. 2 lines 1-5):

�Sc = {Sc,1, Sc,2, . . . , Sc,l, . . . , Sc,L} (7)

In this way, there will be |C| data points fed to a k-means

clustering algorithm for two clusters of uneven size so that

data points corresponding to malicious and benign clients can

be placed into two disjoint clusters (Alg. 2 line 6). Let �O1 and
�O2 be the centroids of these clusters. The proposed method

assumes that the majority of clients are benign. When some

malicious clients exist in the federated learning system, the

distance between the centroids of each cluster, |�O1 − �O2|,
will become large. If the system consists of all benign nodes,

then |�O1− �O2| will be small. To obtain a measure independent

of L, the distance between centroids of the clusters should be

normalized by L (Alg. 2 line 7):

dO1,O2 =
|�O1 − �O2|

L
(8)

The server has to check dO1,O2 against a threshold γ to

decide whether to use both clusters or only the larger one

in the aggregation. Note that dO1,O2 can have a value in

[0, 100] range due to the definition of the client score in Eq.

6. Hence, setting γ to a low value around 10 usually provides

the necessary filtering. When γ is set to a very low value

such as 5, some of the benign nodes can be left from the

aggregation if there are no malicious nodes. When γ is set to

a very high value such as 60, malicious client weights appear

in the aggregation if they exist in the system.

Clustering can be extended to handle various types of nodes

in the system. In almost every federated learning system, the

server knows the learning types of the nodes: Some nodes can

learn slower than others. Some nodes can provide quantized

weights due to their characteristics. Hence, the server may

prefer to have multiple clusters in the system. Still, in that

case, the proposed method generates the clusters. It is up to

the program running on the server to select the clusters in the

aggregation by setting up separate γ values for each case.

IV. EXPERIMENTS

A. Experimental Setup

A framework shown in Figure 1 is developed for experi-

mental demonstration of the proposed method. It can work

in real-life cases with a slight change in the communication

system. It operates unanimously with TensorFlow Keras[20]

framework on Tensorflow dataset[21]. A single batch script is

developed to start each client by different processes. Thus, they

are working with different terminals and Python processes.

All Python objects communicate with the pipe communication

system, including the weight parameter communication. Ini-

tially, the clients subscribe to the federated learning network.

The federated server controls the clients to take the local

model or transmit the global model. Thus, a single client is

not connected to the other clients directly. The attack control

server and federated server also run independently. In this

Fig. 1: The Experimental Setup

Algorithm 1 Score Calculation

Input: CModels, theta

Output: Score of each Model

1: cmLength ← CModels.length
2: ScalingParameter ← 1/cmLength
3: for i ← 0 ... cmLength do
4: tempModels[i] ← CModels[i]∗ScalingParameter
5: end for
6: meanModel ← mean(tempModels)
7: stdModel ← std(CModels)

8: tHigh ← meanModel + theta ∗ stdModel
9: tLow ← meanModel − theta ∗ stdModel

10: for i ← 0 ... cmLength do
11: lowScore ← isGreater(CModels[i], tLow)
12: highScore ← isLower(CModels[i], tHigh)
13: existScore ← inrange(lowScore, highScore)
14: Score ← count(existScore)/W ∗ 100
15: end for

setup, neither the server nor the clients can access other clients’

data.

Federated learning works better with identical and inde-

pendently distributed (IID) data [22]. However, in real-world

applications, the data is generally non-IID [23]. Since the

clients of this paper are IoT devices, non-IID datasets are

generated and used. In the experiments, data is thoroughly

shuffled to make each client unique in the structure. Every

object has its unique port number for the primary identification

of the clients. In addition to the communication, the port

number is also used as a randomness seed of a client. The

randomness mechanism uses the seed to generate a unique

and independent dataset from the selected Tensorflow dataset

for each client. This feature also enables the dataset of each

Algorithm 2 Malicous Model Detection

Input: CModels, thetaMin, thetaMax, thetaStep, threshold

Output: Benign CModels

1: for i ← thetaMin ... thetaMax do
2: tempScores ← calcScore(CModels, i)
3: Scores ← assignScore(tempScores, i)
4: i ← i+ thetaStep
5: end for

6: clusters ← calcKMeans(Scores)
7: dist ← distance(clusters)

8: if dist ≥ threshold then
9: CModels ← deleteMaliciousModels(CModels)

10: end if

test case to be the same since the seed is unique for every

client.

The federated server controls the federated learning process

between clients The server has a subscribers list that consists

of client addresses. If a client wants to connect to the system,

the server also accepts an additional parameter: the frequency

of a model’s training. Suppose a client declares a slower

communication frequency than the server’s demand. In that

case, the server identifies that client as the slow learner and

skips collecting the parameters from that client at some rounds.

The differentiation of slow learners among other clients is

detailed in the experiments. The server’s duty includes the

anomaly detection system for the collected client models via

the proposed method. In the final stage, the server aggregates

the remaining models from the detection system and transmits

the aggregated model to each client for the next round.

Clients do local training with the Stochastic Gradient De-

scent (SGD). They send their weights directly to the federated

server whenever they are triggered by the server. Slow learners

Fig. 2: Cluster Difference dO1,O2 and Accuracy during Fed-

erated Learning / |C| = 10, |M | = 0

are triggered less frequently than other clients. Some clients

may quantize their model with IEEE standard float16 format to

send the quantized model. Some clients may be problematic.

These devices do not try to harm the system; however, they

train problematically rather than the standard client.

The experimental setup also includes a particular server

to organize the attacks. The attack control server does not

directly transmit data to the federated learning model. When a

client wants to be malicious, or if malware takes the device’s

control, the client can generate a connection to this server

and is controlled by the Attack Control Server. The server

adjusts the attacking parameters and controls the attack type.

The attacking parameters depend on the number of malicious

(|M |) and total clients (|C|) to collapse the global model.

The system is setup with ten clients. Though the aggre-

gation method is programmable in the framework, feder-

ated average [1] is used in the experiments since harmful

models are eliminated from the system with the proposed

method. The scanning parameter θ is defined as follows:

θmin = 0.7, θmax = 1.6, θstep = 0.1. Hence, ten data

points constitute a score for each client at each round. The

dataset consists of hand-written numbers, which is the regular

MNIST[24] dataset, and the model is a Convolutional neural

network(CNN) model that includes 2 Convolution Layers, 2

Max-Pooling Layers, Flatten, and Softmax activation.

B. Experiment Results

Figure 2 shows the accuracy versus dO1,O2 in a federated

learning network where all clients are benign, learn at full rate,

and communicate at full word length. Learning is done in 25

rounds. In each round, each client takes four local batches(lb).

Each local batch represents four batches of data; thus, each

round means 16 batches. Batch size is 64. Dataset of clients is

not non-iid. The accuracy is generally increased in each round.

Additionally, dO1,O2 decreases while the accuracy starts to

increase. This situation can be interpreted as lower accuracy

means a higher possibility for the malicious devices to affect

the system because of non-adjacent clients.

To test our malicious client detection system, some clients

are transformed from benign to malicious. The gradient factor

attack with 100% poisoning rate is used by the malicious

clients. The scores of cluster centroids, namely O1 and O2,

for each θ are shown in Figure 3a. In this figure, dashed

lines represent the centroid of scores for the cluster with

more clients while solid lines are used for showing the same

information for the cluster with fewer clients. Recall that the

smaller size cluster may imply the set of malicious nodes if

dO1,O2 > γ. When there is one malicious client, the centroids

of two clusters are far away from each other at all values of θ
as shown by dashed and solid purple lines. When the number

of malicious clients increases to four, the centroids of two

clusters may come closer at some values of θ as seen with

blue lines. However, the departed regions cause the overall

distance to be dO1,O2 = 36.92 which is a value greater than

γ = 15. So, in both cases, the cluster of malicious clients can

be identified and erased before the aggregation. In the same

figure, green lines demonstrate a distance of 4.31 between two

clusters. Since this value is smaller than γ, the server takes

the clients of both clusters into aggregation.

The effect of different poisoning rates is shown in Figure

3b. In this scenario, four malicious clients are taken into

account with different poisoning rates. It can be seen that even

5% poisoning can be detected by the proposed method since

dO1,O2 = 31.22 is still considerably higher than the threshold.

In Figure 3c, the effect of malicious clients on dO1,O2 at

different rounds can be viewed. The test has been made with

four malicious clients, which send their poisoned model at the

end of four local batches. As can be seen, dO1,O2 is close to

the specified threshold γ at the first round with a 5% poisoning

rate. Besides, the clustering algorithm classifies a benign client

as malicious in addition to the other malicious ones at the tenth

round at this poisoning rate. Thus, the model of this benign

client will also be deleted with malicious models. This wrong

classification may be neglected since the poisoning rate is low.

This problem is not present when the attack is realized at a

round where the global model accuracy is high even though

the poisoning rate is small. For higher poisoning rates, it can

be correctly detected at all rounds.

In the next test set, different types of clients are studied.

The system is implemented with one slow learner and one

problematic device in addition to eight regular devices. The

tests are made with four malicious devices with different

poisoning rates. Since the server is aware of slow learners due

to the registration parameters, it prepares the detection system

for three clusters: regular, slow learners, and others. Note

that the server is aware of neither malicious nor problematic

devices. The results can be seen in Figure 4a. In this figure,

dotted lines represent the third cluster. The dashed and solid

lines are used as before. When the malicious clients attack

the server with 100% poisoning rate, the detection system can

put every benign client in the same cluster as expected. The

centroid score is very high. However, the other two clusters

contain only malicious clients. The distance parameters tell the

server to discard both of them. If malicious clients lower the

poisoning rate to 20%, the benign clients can be successfully

separated into two clusters for slow learners and regular nodes.

(a) 100% poisoning rate. dO1,O2 is 4.31
for |M | = 0, 92.47 for |M | = 1, 36.92
for |M | = 4

(b) various poisoning rates with |M | = 4.
dO1,O2 is 39.22 at 100%, 39.24 at 20%,
31.22 at 5% poisoning rates

(c) dO1,O2 at different rounds and poison-
ing rates when |M | = 4

Fig. 3: Comparison of Clusters’ Centroids when all nodes are regular and model poisoning attack is present

(a) |C| = 10, |M | = 4 / 1 Slow Learner,
1 Problematic Client (b) Zoomed in Figure 4a

(c) Malicious Count of the Clusters in
Figure 4a, 4b

Fig. 4: Comparison of Clusters’ Centroids; Slow and problematic learners / dO1,O2 is 39.42, dO1,O3 is 0.03, dO2,O3 is 39.38

at 20% Poison Rate / dO1,O2 is 39.17, dO1,O3 is 39.28, dO2,O3 is 0.11 at 100% Poison Rate

(a) 1 Slow learner / dO1,O2 is 7.16 for
”End”, 5.52 for ”Middle”, 5.06 for ”Be-
ginning”

(b) 2 Slow learner / dO1,O2 is 7.34 for
”End”, 6.02 for ”Middle”, 8.43 for ”Be-
ginning”

(c) 4 Slow learner /dO1,O2 is 9.93 for
”End”, 11.02 for ”Middle”, 11.54 for ”Be-
ginning”

Fig. 5: Comparison of Clusters’ Centroids; Slow and problematic learners; Beginning: Near to the beginning, Middle: middle

of the process, End: final result / 24 round with 4 LB, accuracy is around 75%-80% percent at the end of each test /

|M | = 0, |C| = 10

In this case, all malicious clients are listed in a single cluster.

The distance parameters tell the server to discard this cluster.

The zoomed figure shows the clustering in Figure 4b; and the

content of the clusters is listed in Figure 4c.

When the system does not contain any malicious nodes, the

score between the benign and slow learners is very small.

The score difference between various slow learner counts

can be seen in Figure 5a, 5b, 5c. The results are collected

from 3 different random points according to the federation

round time(near to beginning, middle, end). The slow learners

have a low impact on the scoring scheme. Slow learners can

be dispatched into different clusters. However, this is not a

problem for the federated learning system as long as the

distance between clusters is lower than the threshold γ.

The final set of experiments for model poisoning is done

with ten clients which send their model parameters after

quantizing with float16. The accuracy is between 75-80% in

every test. Malicious clients attack with 100% poisoning rate.

Ten quantized models with only one malicious model have a

slightly lower score than ten regular benign ones as shown in

(a) |M | = 1 (b) |M | = 3 (c) |M | = 4

Fig. 6: Comparison of Clusters’ Centroids with zero quantized models(No Quantized) and ten quantized models (10 Quantized

including malicious (QM))

(a) |M | = 1 / dO1,O2 is 50.84 for 4 LB,
43.22 for 8 LB, 37.40 for 12 LB

(b) |M | = 3 / dO1,O2 is 36.54 for 4 LB,
29.47 for 8 LB, 24.14 for 12 LB

(c) |M | = 4 / dO1,O2 is 18.38 for 4 LB,
11.69 for 8 LB, 8.69 for 12 LB

Fig. 7: Comparison of Clusters’ Centroids / |C| = 10 / Label flipping attack with the increasing LB = 4, 8, 12.

(a) Cluster Difference dO1,O2 and Accu-
racy during Federated Learning / |C| =
10, |M | = 0

(b) |C| = 10 / 100% poison rate / GF
Attack / dO1,O2: is 4.59 for |M | = 0,
99.69 for |M | = 1, 39.38 for |M | = 4

(c) |C| = 10 / Label Flipping Attack /
dO1,O2: is 28.38 for |M | = 1, 13.15 for
|M | = 4

Fig. 8: Comparison of Clusters’ Centroids / Fashion-MNIST

Figure 6a. When the number of malicious nodes increases in

the federated learning system, they show a performance quite

similar to regular ones (Figure 6b 6c). The same system has

been tested with various numbers of quantized clients. Their

performance is better than the ten quantized models. Hence,

quantized and regular models can be combined in a single

system and still malicious nodes can be detected.

For data poisoning experiments, the system is trained around

75% accuracy. Other training parameters are the same as

model poisoning experiments except different local batch (LB)

sizes as shown in Figure 7. The detection system clusters every

client correctly, even at 40% maliciousness rate. The score

difference between clusters decreases if the malicious rate or

local batch size increases. The effect of the malicious device

ratio is obvious since they modify the mean μ and standard

deviation σ with their population. On the other hand, increased

local batch size is an unexpected aspect of the detection system

since the gap between clusters decreases with the increase

of malicious devices. We may explain this aspect as client

models become different with larger local batch sizes since

each client’s dataset may not be similar to other devices‘

datasets.

In Figure 8, similar tests are made with the Fashion-

MNIST[25] dataset to compare the results. In each round, each

client training is done with LB=3 in two epochs. Thus, the

accuracy climbs up faster; however, the increase makes the

system more vulnerable to data poisoning attacks since each

model trains more between rounds. On the other hand, the

results are quite similar to the tests with the MNIST dataset.

V. CONCLUSION AND DISCUSSION

Multidimensional data points used in clustering and the

pair-based comparison of their centroids developed in this

work have proved efficient in various experiments. The

framework that has been developed for experimental purposes

can be used in real life with small modifications. The first

advantage of the proposed method is to diverge every label

and score them individually. The auto-encoder or total

cosine similarity solution may not be able to catch the slight

difference in small label attacks since every client may not

have the iid data-set and same compute power. On the other

hand, the follow-up studies may need to focus on various

machine learning quantization techniques such as pruning or

quantization-aware training with the real-world methods used

in the industry. Moreover, other post-training quantization

techniques may become more applicable in the future; thus,

their impact could be investigated. Furthermore, the difference

between slow/problematic learners and data poisoning attacks

should be studied deeper so that the divergent ones could be

more clear. On the other hand, we can assume that 13-15% of

threshold γ is valid for all cases. However, if we increase the

local batch size, this threshold may not meet the expectations.

Then the label flipping attack may poison the global model.

If the malicious client shows up in the system, it polarizes the

malicious and benign clusters even with a low poisoning rate.

REFERENCES

[1] B. McMahan et al., “Communication-efficient learning

of deep networks from decentralized data,” Interna-

tional Conference on Artificial Intelligence and Statistics,

PMLR, 2017, pp. 1273–1282.

[2] J. Liu, J. Huang, Y. Zhou et al., “From distributed ma-

chine learning to federated learning: A survey,” Knowl-

edge and Information Systems, 2022, pp. 1–33.

[3] V. Rey et al., “Federated learning for malware detection

in iot devices,” Computer Networks, p. 108693, 2022.

[4] Y. Meidan et al., “N-baiot—network-based detection

of iot botnet attacks using deep autoencoders,” IEEE

Pervasive Computing, vol. 17, no. 3, pp. 12–22, 2018.

[5] T. D. Nguyen et al., “Flguard: Secure and private feder-

ated learning,” 2021, arXiv:2101.02281.

[6] Y. Wang et al., “Rflbat: A robust federated learning algo-

rithm against backdoor attack,” 2022, arXiv:2201.03772.

[7] L. Muñoz-González, K. T. Co, and E. C. Lupu,

“Byzantine-robust federated machine learning through

adaptive model averaging,” 2019, arXiv:1909.05125.

[8] T. Zhang et al., “Federated learning for internet of

things,” ACM Conference on Embedded Networked Sen-

sor Systems, 2021, pp. 413–419.

[9] P. M. S. Sanchez et al., “Studying the robustness of anti-

adversarial federated learning models detecting cyberat-

tacks in iot spectrum sensors,” 2022 arXiv:2202.00137.

[10] T. D. Nguyen et al., “Dı̈ot: A federated self- learning

anomaly detection system for iot,” International Confer-

ence On Distributed Computing Systems (ICDCS), 2019,

pp. 756–767.

[11] S. Li et al., “Abnormal client behavior detection in

federated learning,” 2019, arXiv:1910.09933.

[12] Y. Zhao et al., “Pdgan: A novel poisoning defense

method in federated learning using generative adversarial

network,” International Conference on Algorithms and

Architectures for Parallel Processing (ICA3PP), 2019,

pp. 595–609.

[13] D. Li et al., “Detection and mitigation of label-flipping

attacks in federated learning systems with kpca and k-

means,” International Conference on Dependable Sys-

tems and Their Applications (DSA), 2021, pp. 551–559.

[14] T. D. Nguyen et al., “Poisoning attacks on federated

learning-based iot intrusion detection system,” Workshop

on Decentralized IoT Systems and Security (DISS),

2020, pp. 1–7.

[15] S. Shen, S. Tople, and P. Saxena, “Auror: Defending

against poisoning attacks in collaborative deep learning

systems,” Annual Conference on Computer Security Ap-

plications (ACSAC), 2016, pp. 508–519.

[16] A. Reisizadeh et al., “Fedpaq: A communication-efficient

federated learning method with periodic averaging and

quantization,” International Conference on Artificial In-

telligence and Statistics, PMLR, 2020, pp. 2021– 2031.

[17] F. Haddadpour et al., “Federated learning with compres-

sion: Unified analysis and sharp guarantees,” Interna-

tional Conference on Artificial Intelligence and Statistics,

PMLR, 2021, pp. 2350–2358.

[18] Y. Liu et al., “Communication-efficient federated learn-

ing for anomaly detection in industrial internet of

things,” Global Communications Conference (GLOBE-

COM), 2020, pp. 1–6.

[19] Post-training quantization : Tensorflow Lite.

https://www.tensorflow.org/lite/performance/post training

quantization

[20] F. Chollet et al., Keras, https://github.com/fchollet/keras

[21] TensorFlow Datasets, a collection of ready-to-use

datasets, https://www.tensorflow.org/datasets

[22] C. Briggs, Z. Fan, and P. Andras, “Federated learning

with hierarchical clustering of local updates to improve

training on non-iid data,” International Joint Conference

on Neural Networks (IJCNN), 2020, pp. 1–9.

[23] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang,

“On the convergence of fedavg on non-iid data,” 2019,

arXiv:1907.02189.

[24] Y. LeCun, C. Cortes, and C. Burges, “Mnist

hand-written digit database,” ATT Labs, vol. 2,

http://yann.lecun.com/exdb/mnist

[25] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a

novel image dataset for benchmarking machine learning

algorithms,” 2017, arXiv:1708.07747.

