
2116 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 10, OCTOBER 2015

PFMAP: Exploitation of Particle Filters
for Network-on-Chip Mapping

Salih Bayar and Arda Yurdakul, Member, IEEE

Abstract— In this paper, we propose a mapping algorithm
called particle filter mapping (PFMAP); PFMAP is able to map
task nodes onto the cores of tile-based network-on-chip (NoC)
architectures, such as regular, irregular, and custom 2-D or 3-D
topologies. PFMAP is inspired from systematic resampling
algorithm for particle filters, in which all particles can run
parallel and independently from each other. Based upon the
experimental results from applying PFMAP for various real
life and synthetic applications onto the different topologies and
architectures, the performance of the 2-D mesh architectures
in terms of communication cost increased by up to 51% for
irregular topologies, and by up to 31% for custom architec-
tures. Similarly, total travel distance obtained by PFMAP is
reduced by up to 45% for custom 2-D mesh architectures.
In addition to these, average clock cycles per flit and total
network power are reduced by up to 17% and 15% for regular
2-D mesh architectures, respectively. Finally, communication cost
is diminished by up to 34% for 3-D regular NoC architectures.

Index Terms— Communication system traffic, digital signal
processing, greedy algorithms, multithreading, network-on-chip,
parallel algorithms, routing, system-on-chip.

I. INTRODUCTION

COMMUNICATION architectures, such as point-to-point
and shared bus are poorly scalable as the number of

cores and the communication volume increase [1]. In the last
decade, networks-on-chip (NoC) have been proposed to reduce
power consumption and have been widely adopted by the
System-on-Chip community. Because of its scalability, NoC
is a promising solution for the communication in a multicore
architecture.

There are various parameters that affect the performance of
NoC communication architecture directly or indirectly. Most
important ones are mapping and routing algorithms, network
topology, switching method, router architecture, and link
bandwidth. If the mapping process is not carried out prop-
erly, then improving other parameters will not improve the
performance of NoC significantly. Static mapping is done
at compile time. Dynamic mapping runs on the fly and
requires more complex components, such as observer and
reconfiguration engine. Yet, dynamic mapping also requires an
initial mapping. Our objective is the static mapping of cores on
a regular, irregular, and custom 2-D or 3-D mesh architecture

Manuscript received August 22, 2013; revised January 7, 2014, April 23,
2014, and July 28, 2014; accepted September 15, 2014. Date of publication
October 22, 2014; date of current version September 23, 2015. This work was
supported by the State Planning Organization of Turkey through the
TAM Project under Grant 2007K120610.

The authors are with the Department of Computer Engineering,
Boǧaziçi University, Istanbul 34470, Turkey (e-mail: salih.bayar@boun.edu.tr;
yurdakul@boun.edu.tr).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2014.2360791

by minimizing the communication cost. This is the first step
to minimize overall packet latency and network power [2]–[4].
Hence, instead of static mapping, we will use mapping in the
rest of this paper.

In the literature, there are various studies in the field of
node to core mapping of regular NoCs. However, none of these
studies utilize particle filtering algorithm to solve the mapping
problem for NoCs, which is a nondeterministic polynomial
time-hard problem [5]. Yet, particle filters are widely used
in applications, such as positioning, localization, tracking,
and navigation in robotic automotive industry [6]–[8]. Particle
filtering is a sequential Monte Carlo technique for the solution
of the state estimation problem [9]. The original particle
filtering algorithm is called sequential importance resampling
and used frequently [10]. The main point in particle filtering is
representing the required posterior density function by a set of
random sample particles with corresponding weights, and to
compute the estimates based on these samples and weights. As
the number of samples and resampling iterations to generate
new samples become very large, the solution approaches the
optimal Bayesian estimate. There are various resampling meth-
ods for particle filtering algorithm [11]. Systematic resam-
pling algorithm [12] is widely used because it is easy to
implement and it outperforms other resampling approaches
in most scenarios. Moreover, in terms of resampling quality,
systematic resampling has the minimal variance [13]. Hence,
we have preferred to use systematic resampling in particle
filter mapping (PFMAP).

PFMAP is very suitable for solving mapping problem for
the following reasons.

1) A configuration on any type of regular, irregular, and
custom 2-D or 3-D NoC topology can be represented
by particles.

2) Particles do not require a fixed computation time;
instead, accuracy increases with the available compu-
tational resources [7].

3) Implementation of particle filters is extremely easy,
especially systematic resampling algorithm.

4) Particles give much better results than their counterparts
in the solution of mapping problem in most of the time.

5) Particles in PFMAP are totally independent from each
other and therefore they all can run in parallel. Hence, it
is easy to implement PFMAP on parallel computational
platforms, such as multithread, graphics processing unit
(GPU), and video processing unit (VPU).

The organization of this paper is as follows. Section II
presents a short survey of related works on mapping of task
nodes onto the cores of a tile based NoC. In Section III, our
PFMAP algorithm is given in detail. In Section IV, we present

1063-8210 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

BAYAR AND YURDAKUL: PFMAP: EXPLOITATION OF PARTICLE FILTERS 2117

Fig. 1. VOPD application with 16 cores [26]. (a) Block diagram. (b) TTG. (c) CTG. (d) Mapping with NMAP [2].

our case studies and experimental results on various NoC
topologies. Section V concludes this paper.

II. RELATED WORKS ON MAPPING

A vast amount of methods has been proposed to solve map-
ping problem. In Physical Mapping Algorithm (PMAP) [14],
two-phase mapping algorithm for placing clusters onto proces-
sors is used. In NMAP [2], Dijkstra’s shortest path on quadrant
graph is applied to solve mapping problem. Both NMAP and
PMAP are fast heuristic methods based on the approach of
placing the most communicating nodes neighbor to each other
by mapping heavy weight nodes at first. In [15] is a greedy
algorithm, which uses n-ary search tree. The final configura-
tions are given in the leaf nodes of their search tree. Although
this algorithm uses branch and bound, space complexity of this
paper is in the factorial range. SUNMAP [16] extends NMAP
to support new NoC topologies, such as torus and hypercube.
In chaos-genetic-based algorithm [17], a genetic algorithm
using chaotic systems is presented. In Onyx [18] and Crinkle
[19], priority lists are utilized. In [20], an optimized simu-
lated annealing approach is proposed and tested on various
task graphs. Two different algorithms, named A3MAP-genetic
algorithm (A3MAP-GA) and A3MAP-successive relaxation
(A3MAP-SR), have been presented in architecture-aware ana-
lytic mapping [3], [4]. A3MAP-GA is a genetic algorithm,
while A3MAP-SR is a successive relaxation algorithm. There
is an intensive survey on application mapping strategies for
NoC design [5]. In this paper, besides giving classification of
mapping algorithms, communication cost of some benchmark
applications is compared for various known algorithms. There
are also studies trying to find optimum solution of the mapping
problem using integer linear programming (ILP) [21]. Since
the mapping problem is intractable, it is not possible to find
a solution for medium and large size problems using ILP.
In Kernighan–Lin partitioning and mesh topology mapping
algorithm (LMAP) [22], Kernighan–Lin-based partitioning is
used to solve the mapping problem for regular architectures.
In particle swarm mapping (PSMAP), Sahu et al. [23] propose
particle swarm optimization. Similar to [22], the scalability
of this algorithm is also ambiguous, since it gives only a
few sample applications mapped on a 2-D regular mesh
architecture.

In most of these previous studies, video applications, such
as video object plane decoder (VOPD), MPEG4, and high-end
video applications, such as picture in picture, multiwindow
application (MWA), MWA with graphics, dual screen
display, multimedia system (MMS) including H263 Dec. and

Enc., MP3 Dec. and Enc. are used. In addition to them,
embedded system synthesis benchmarks suite (E3S) [24] and
for synthetic task graphs for free (TGFF) [25] are used in most
of these studies.

Most studies are heuristic due to complexity. In most
of these algorithms, for a fixed problem size, the running time
of the algorithms are fixed. However, in PFMAP, running time
of the algorithm depends on the user. User can set a desired
time to finish the algorithm. In PFMAP, as the number of
samples and resampling iterations to generate new samples
become larger, the solution approaches the optimal Bayesian
estimate. In addition, in PFMAP, particles representing a
configuration can run fully in parallel. Thus, PFMAP is very
suitable for current and next generation multithreaded or real
parallel platforms, such as multicore, GPU, and VPU.

III. PROPOSED ALGORITHM

Two graphs are the inputs to PFMAP. The first one is
task traffic graph (TTG), where the task nodes and the
communication flows between them are defined. The second
graph is core traffic graph (CTG) in which processor or
computational cores and their communication relationships
are given. Another input is the topology of the NoC, which
is called router configuration topology (RCT). We define
configuration as the placement of cores on tile-based NoC
architecture. As an example, the block diagram of VOPD
application is given in Fig. 1(a). Each block in this application
can be considered as a task node. In Fig. 1(b), task graph
of VOPD application is given. This task graph is generated
according to the block diagram in Fig. 1(a). Here, weighted
directed edges represent the average communication volume
in MB/s from one node to another node. The task graphs used
in this paper characterize the partitioning, task assignment,
scheduling, communication patterns, and task execution time
of a given application [15]. Similarly, Fig. 1(c) shows the
core graph of target application. In Fig. 1(d), a solution
is found for mapping problem of VOPD application to a
2-D regular mesh NoC architecture using NMAP algorithm.
Here, rectangular shapes represent routers, and circular shapes
represent processor cores attached to routers.

Mathematical formulation of the mapping problem can be
given as follows.

Definition 1: TTG is a directed graph, TTG(N, T) with
each vertex ni ∈ N representing a task node, and the directed
edge between ni and n j indicated by fi, j ∈ T, i �= j
represents the traffic flow. The weight of fi, j ∈ T is the
traffic amount from ni to n j and denoted by ti, j . In TTG, |N |

2118 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 10, OCTOBER 2015

represents the number of task nodes, while |T | is the number
of nonzero directed edges between ni and n j , s.t. i �= j .
|T | ≤ |N | × |N − 1|.

Definition 2: CTG is a directed graph, CTG(C, T) with
each vertex ci ∈ C representing a processor or a computational
core. The directed edge between ci and c j indicated by li, j ∈ T
represents the link between source and destination nodes. The
weight of each link li, j ∈ T is denoted by ti, j representing the
traffic amount on the current link.

One-to-one mapping of the TTG onto the CTG can be
defined by

map : N �→ C,� map(ni) = ci ∀ni ∈ N, ∃ ci ∈ C. (1)

We assume that, each single task node ni ∈ N is mapped
onto a single processor or computational core ci ∈ C ,
on which there is no any other task node n j ∈ N is mapped
yet. Hence, TTG and CTG are identical, i.e., |N | = |C|.
In some applications, however, more than one task node can
be mapped to a processor core or in the similar way, one task
can be partitioned into subtasks, and these subtasks can be
mapped onto multiple processor cores. We assume that these
operations are carried out prior to PFMAP.

Definition 3: RCT(R, C) is a 2-D mesh NoC topology
with each ordered pair Pr,c ∈ RCT(R, C) representing the
physical location of a processor core attached to a router
on the target architecture. R and C indicate the number of
rows and columns in the topology, respectively (i.e., R × C is
NoC size). In Pr,c, r and c are the respective horizontal and
vertical indices.

One-to-one mapping of the CTG onto the RCT can be
defined by

map : C �→ RCT, � map(ci) = Pr,c

∀ci ∈ C, ∃Pr,c ∈ RCT(R, C). (2)

Note that the mapping is valid if the number of cores to be
placed (|N |) is less than or equal to the number of nodes on
the target architecture (|R × C|), |N | ≤ |R × C|.

RCT is composed of only routers, and there are some
limitations for routers in terms of their number of inputs
and outputs: they have only n-bit single input and single
output in one side (North–East–South–West). Each processor
or computational core is attached to a router. Apart from the
processor interface, both the maximum number of inputs and
outputs for a router is four.

Definition 4: Manhattan distance (MDist) is the minimum
number of hops from source node ni to destination
node n j in RCT. The formula of the MDist for the
nodes Pr1,c1 and Pr2,c2 in RCT is given by

MDist = |r1 − r2| + |c1 − c2|. (3)

The communication cost of a configuration for regular
2-D mesh architectures is calculated using MDist between
each node pairs. Communication cost for a single edge
(CCse) between Pr1,c1 and Pr2,c2 in a configuration is
given by

CCse = tPr1,c1,Pr2,c2 ∗ MDist(r1, c1, r2, c2). (4)

Fig. 2. Irregular processor communication topology and its distance matrix.
(a) Irregular processor topology. (b) Distance matrix.

CommCostReg is the total communication cost of a configu-
ration for a regular 2-D mesh topology

CommCostReg=
R∑

r1=0

C∑

c1=0

R∑

r2=0

C∑

c2=0

CCse(r1, c1, r2, c2) (5)

where R and C indicate the number of rows and columns
in the RCT, respectively. Instead of using MDist, distance
value of each computation core pairs for irregular, custom, and
3-D architectures is obtained by utilizing Dijkstra’s shortest
path algorithm [27] in the preprocessing step, where a distance
matrix is generated. Then, this matrix is used as an input
to PFMAP. In Fig. 2, a random processor communication
topology and its corresponding distance matrix are given.
Source and destination processor cores are given in the rows
and columns of the distance matrix. For example, the distance
from source node P6 (in row P6) to destination node P5
(in column P5) is given as 13. The path from P6 to P5 is as
follows: P6− > P2− > P3− > P7− > P11− > P15− >
P14− > P13− > P12− > P8− > P4− > P0− >
P1− > P5.

In (6), CommCostIrreg is the total communication cost of
a configuration for an irregular custom 2-D mesh or regular,
irregular, and custom 3-D mesh topologies

CommCost Irreg =
E∑

i=0

E∑

j=0

ti, j ∗ disti, j (6)

where disti, j is Dijkstra’s shortest path.
Definition 5: CostLowerBound is the minimum communi-

cation cost that can be achieved in a given configuration.
CostLowerBound calculation is given by

Cost Lower Bound =
E∑

i=0

E∑

j=0

ti, j . (7)

BAYAR AND YURDAKUL: PFMAP: EXPLOITATION OF PARTICLE FILTERS 2119

Algorithm 1 Main Part of Configuration Mapping Algorithm

The main part of our PFMAP mapping algorithm is given
in Algorithm 1. In this algorithm, each particle represents a
mapping configuration. The algorithm generates PN random
configurations in the first iteration (lines 4–6). The related
function (randomConf (particles j)) is an implementation
of Fisher–Yates shuffle [28], which is used for the sake
of performance. With this function, we randomly place the
processor or computational cores on mesh NoC architecture
initially for each configuration. Here, PN is the number of
particles, and IT is the number of iterations, which we define
before the beginning of running our algorithm. It should be
noted that the running time of our algorithm is proportional
to the PN and IT.

In the first iteration, we calculate the fitness for each
randomly generated configuration (lines 9 and 10). The cal-
culation of fitness function for mapping is given in (8). Here,
CommCost is identical to CommCostReg if the architecture is
regular 2-D mesh; otherwise, (i.e., architecture is irregular and
custom 2-D mesh or regular, irregular, and custom 3-D mesh
topologies) it is equal to CommCostIrreg

Fitnessmapping = 1/CommCost . (8)

According to initial configurations, we calculate the fitness
value for each configuration. Among these configurations,
the largest fitness value is set as the minimum Best Fi tness
(lines 11–15).

After generating initial configurations and finding the Best-
Fitness, we resample these configurations in each iteration
(lines 17 and 18). Sampling from the distribution and checking
those samples with largest fitness values can be utilized for a
low-cost configuration selection algorithm. In the remaining
IT−1 iterations, we apply pairwise swap among randomly

Algorithm 2 Resample Particles Systematically

selected nodes (line 7). At the initial steps, the algorithm
might not represent the fitness function. However, after a
burn-in period, it starts to converge to the distribution. The
burn-in period is directly proportional to the application and
NoC architecture size.

For all random function generations (lines 5 and 7),
we used thread-safe single instruction multiple data-oriented
fast Mersenne twister (MT) pseudorandom number generator
[29] because of the following reasons.

1) It has larger period (up to 2216 091 − 1) than the original
MT (219 937 − 1) [29].

2) It is roughly twice faster than the original MT and has
a better equidistribution property as well as a quicker
recovery from zero-excess initial state [29].

3) It is faster than other statistically reasonable generators
(very useful when huge quantities of random numbers
are required) [30].

4) Original MT is proven to be equidistributed
(up to 623-D) for 32-bit values. It passes many
stringent statistical tests, including the diehard test
of Marsaglia and the load test of Hellekalek and
Wegenkittl [31].

5) It is very common; it has strong support from the people
knowledgeable in the same field.

In Algorithm 2, method for resampling of particles
is given. Here, configurations can be considered as a
probability distribution where each configuration’s probability
is given by (8). Therefore, as the communication cost of
a configuration increases, the probability of its selection
decreases for the next iteration.

In systematic resampling, new configurations (i.e.,
particles) are derived from the previous ones. A number of

2120 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 10, OCTOBER 2015

Fig. 3. Residing of three configurations on an array for resampling step
using comb.

configurations at the input and output are the same. While
the configurations with high CommCost values are mostly
discarded, each configuration with lower CommCost value
is reproduced a few times. Thus, at the end of resampling,
probably there will not be only a single instance of a
configuration with low CommCost.

For resampling step, fitness of each configuration is
calculated. Then, the fitness values are located in a 1-D array.
The total size of this array is the sum of fitness values
(fitnessSum in line 6 of Algorithm 2) of P configurations.
Here, the size of occupied area of each configuration is pro-
portional to its size. Assume that we have three configurations
C1–C3 and they have CommCost values as 1, 0.2, and 0.5,
respectively. Therefore, the corresponding fitness values are
1, 5, and 2, respectively, according to (8). Residing of these
configurations in the array is shown in Fig. 3.

In our resampling scheme, we define a comb with P teeth,
which selects (i.e., resamples) the new configurations from the
array. For our example, our comb has three teeth as shown
in Fig. 3. Teeth of comb select the appropriate configurations.
Here, the length of comb is shorter than the length of array,
and the interval between teeth is equal. For P configurations,
the length of comb can be given as

CombLength =
∑|P|

i=1 pconfigurationi

P
× (P − 1). (9)

For our example, the length of comb, CombLength =
[(1 + 5 + 2)/3] ∗ 2 = 16/3 and array length is eight. To
locate the comb over the array, we generate a number from
the uniform distribution on the interval [0, ArrayLength −
CombLength]. This number, uni, is the leftmost tooth of the
comb (line 8). For our example, this interval is [0, 8/3] and
assume that uni is 1.32. The process of locating the comb over
the array and selecting new candidates are done in lines 10–17
and shown in Fig. 3. In lines 11–14, decision about the
current configuration is given. If the sum of cumulative sum
of fitness values (curFitnessSum) and fitness of the current
configuration (particleFitnessesk) is less than current value of
uni (i.e., k ∗ (f i tnessSum/P)), k is incremented. Thus, the
kth particle is not resampled; instead, (k − 1)th particle is
reproduced.

Our resampling method generates only a single real number.
Hence, in the next iteration, the probability of having better
configurations is increased while still keeping some of the
configurations with higher costs as well.

IV. CASE STUDIES

We implement our PFMAP algorithm in C++ with Open
Multi-Processing (OPENMP) library [32]. All tests have
been carried out on a 32-bit Windows-7 PC with a i5
CPU-750@2.67 GHz and 3-GB RAM. We performed our

experiments with various video applications, such as VOPD,
MPEG4-decoder, MWD, MMS-suite (H263-decoder, H263-
encoder, MP3-decoder, MP3-encoder), and E3S benchmark
suite [24] [Auto-Industry (AI), Consumer, Telecom]. In addi-
tion, we have generated various synthetic task graphs using
TGFF [25]. These applications are mapped onto regular,
irregular, and custom 2-D and 3-D NoC architectures.

For the simulation purposes, we have used NIRGAM NoC
simulator [33]. NIRGAM is a SystemC-based cycle-accurate
NoC simulator for 2-D regular NoC architectures. Yet, it does
not support multicasting. Moreover, user cannot give the
mapping as an input to the system. Hence, we modified
NIRGAM to support these features. In NIRGAM, we selected
the simulation frequency as 1 GHz and set simulation time
to 1 ms. All other settings are left at their default values.
It is enough to use hop count (CommCost) to evaluate quality
of a mapping in terms of consumed energy [34] for regular
architectures. The average energy consumption of sending one
bit of data from one node (ti) to another one (t j) is determined
by the MDist for regular architectures

Eti ,ti
bit = nhops × ESbit + (nhops − 1) × ELbit . (10)

In (10), nhops is the number of routers the bit traverses
from tile ti to t j . ESbit and ELbit are the energy consumed
by the switches and links between tiles, respectively. Since
ESbit and ELbit are dependent on NoC architecture, nhops
determines the energy consumption for regular architectures,
and it is directly related to mapping process.

A. 2-D Regular Mesh Architectures

In Table I, various applications are mapped with PFMAP
onto regular 2-D mesh architectures. The results show both
running time of our PFMAP algorithm and the communica-
tion cost of each scenario for different number of iterations
(IT) and particles (PN). In Table I and in the following
illustrations, while V represents the number of task nodes,
and E shows the number of edges. For each application, the
lower bound communication cost (LB) is the CostLowerBound
in (7). However, sometimes it is impossible to reside all
communicating task nodes as neighbor to each other. Hence,
optimum solutions (OPs) need not be equal to lower bound
cost values.

The halting methodology of our algorithm is as follows:
if the resulting communication costs in the best case and worst
case are close to the value of average case, we terminate the
execution. In Table I, running time (Run T .) of our PFMAP
algorithm is given in milliseconds. The best (Best C.), worst
(W. C.), and average case (Avg. C.) communication costs
are also presented. We tested each benchmark 100 times for
given IT and PN values. In general, as IT and PN increase, we
find better solutions. However, for some applications (i.e., for
small and simple applications), it does not make any sense
to run it for large values of IT and PN. For example, for the
H263 encoder application, we found the solution for IT = 100
and PN = 100 in 1.42 ms. Hence, there is no need to
run this application for larger IT and PN values anymore.
For the medium-size problems (e.g., VOPD with 16 cores

BAYAR AND YURDAKUL: PFMAP: EXPLOITATION OF PARTICLE FILTERS 2121

TABLE I

ALGORITHM RUNNING TIME AND COMMUNICATION COST RESULTS OF PFMAP ON DIFFERENT APPLICATIONS

TABLE II

ALGORITHM RUNNING TIME AND COMMUNICATION

COST RESULTS OF VARIOUS STUDIES

on 4 × 4 2-D mesh NoC), it is not easy to apply our halting
methodology. For that reason, after some burn-in period (if the
resulting worst case solution is near to the best solution),
we stop the running of our PFMAP algorithm. In such a
situation, a designer can set a threshold value (e.g., 105% of
the best communication cost) and check the average and worst
values. If they are less than the threshold value, the algorithm
might be halted.

We also compared the communication cost and running
time of PFMAP algorithm with NMAP, LMAP, PSMAP,
and ILP studies in Table II. In this table, ILP shows the
optimum communication cost values, and it is remarkable
that PFMAP also finds optimum results for given applications
in a short period of time. Although NMAP and LMAP are
fast algorithms, they do not find optimum results for given
medium-size applications. In average, PFMAP seems to be
the best algorithm among the other ones in terms of both
communication cost and algorithm running time.

We have tested the performance of PFMAP on a fixed,
4 × 4 2-D regular mesh network with increasing

Fig. 4. Communication cost comparison of PFMAP and NMAP on a 2-D
NoC with fixed size (4 × 4) with increasing communication demand.

communication demand between cores. To implement
this, we have generated five task graphs with fixed number
of vertices but different number of communication demands
using TGFF. In Fig. 4, we see that PFMAP outperforms
NMAP when communication demand increases.

Running times of NMAP and PFMAP algorithms for the
networks in Fig. 4 are given in Fig. 5. Except the simplest
one (i.e., graph with 14 edges), PFMAP finds a better result
than NMAP with a little time overhead.

B. 2-D Irregular and Custom Mesh Architectures

We have compared PFMAP with other studies, such as
NMAP, CMAP, A3MAP-SR [4], and A3MAP-GA [4] for
VOPD application on some irregular 2-D mesh architectures
given in Fig. 6. Here, solid lines represent links with full
bandwidth, while dashed lines show the links width

2122 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 10, OCTOBER 2015

TABLE III

COMMUNICATION COST OF VOPD APPLICATION ON SIX DIFFERENT IRREGULAR MESH ARCHITECTURES (4 × 4)

Fig. 5. Algorithm running time of NMAP and PFMAP on a 2-D NoC with
fixed size (4×4) with increasing communication demand (IT = 10, PN = 10
for PFMAP).

Fig. 6. Irregular mesh architectures [4]: (a) only bidirectional links, (b)
both bidirectional and unidirectional links, (c) only unidirectional links, (d)
both directions having the same bandwidth, (e) each direction of links with
different bandwidth, and (f) links with all irregularities.

half bandwidth. PFMAP tries to place heavy weight commu-
nications onto the links with full bandwidth and the remaining
smaller weight edges onto the links with half bandwidth
irregular 2-D mesh topologies. As it is observed in Table III,
although PFMAP finds a worse communication cost in a few
scenarios (rows 7 and 8), it gives much better results than
all its counterparts in average for each scenario. Even though
the PFMAPs resampling algorithm works very well, it might
give good results only for large number of IT and PN values
for a given application. We fixed both IT and PN values
to 1000 for this set of experiments. If we increase these values,
the PFMAP algorithm will probably find better results with the
time.

We have also compared PFMAP with other studies for
VOPD application on some custom architectures given
in Fig. 7. Comparison results are given in Tables IV and V.

Fig. 7. Custom mesh architectures [4]: (a) three PEs having four times larger
area than others, (b) PEs with three different sizes, (c) both bidirectional and
unidirectional links, and (d) links with different bandwidth.

Communication cost of PFMAP is much better than other
algorithms in average in all scenarios. Total travel distance
of PFMAP might be worse than the other algorithms for
a few scenarios (row 4 in Table V) due to fixed IT and
PN values.

Hop count may not be sufficient to qualify the mapping
quality of irregular and custom architectures [35]. Mapping
quality also depends on the communication energy and latency
for such architectures. To examine this issue, an irregular
3 × 3 mesh architecture and a custom 11-core architecture
are given in Fig. 8. Number pairs on the edges denote relative
communication energy and latency of each link, respectively.
The communication latency from Core i to Core j is denoted
by li, j and obtained by the sum of relative communication
latencies on the shortest path from Core i to Core j . The total
communication latency (LComm) for an application mapping
is given by

LComm =
E∑

i=0

E∑

j=0

ti, j ∗ li, j . (11)

Similarly, the communication energy from Core i to Core j
is denoted by ei, j and obtained by the sum of relative commu-
nication energies on the shortest path from Core i to Core j .

BAYAR AND YURDAKUL: PFMAP: EXPLOITATION OF PARTICLE FILTERS 2123

TABLE IV

COMMUNICATION COST OF VOPD APPLICATION ON FOUR DIFFERENT CUSTOM MESH ARCHITECTURES (4 × 4)

TABLE V

TOTAL TRAVEL DISTANCE (WIRELENGTH) BY ALL PACKETS

Fig. 8. Energy and latency representations of irregular and custom
architectures. (a) Irregular mesh 3 × 3. (b) Custom with 11 cores.

The total communication energy (EComm) for an application
mapping can be calculated by

EComm =
E∑

i=0

E∑

j=0

ti, j ∗ ei, j . (12)

In this set of experiment, various benchmarks with different
sizes generated by TGFF are mapped onto miscellaneous
irregular and custom NoC architectures similar to Fig. 8 but
with different dimensions. Table VI shows the communica-
tion energy and communication latency. Here, PFMAP gives
always much better results than NMAP in terms of both
communication latency and energy with a small running time
overhead.

C. Three-Dimensional NoCs

A 3-D NoC interconnection architecture is composed of
2-D layers connected to each other through vertical links.
In Fig. 9, a 3-D NoC architecture with dimensions X = 4,
Y = 4, and Z = 3 is given. Most attractive way to
connect these layers is utilizing through silicon vias (TSVs).
However, TSV pads between layers occupy significant chip

Fig. 9. 3-D NoC architecture with the size of 4 × 4 × 3.

area and lead to congestion delays [36]. Hence, finding a good
mapping algorithm, which decreases the number of TSVs,
may increase the system performance by saving chip area
and reducing communication delay. From this point of view,
we applied PFMAP algorithm to applications, such as AI,
Telecom, DMC, MMS with 25 cores (MMS25), and MMS
with 40 cores (MMS40) onto different sizes of 3-D NoCs.

Initially, we determine the 3-D NoC network dimensions
according to the number of application task nodes. Given N as
the number of task nodes for an application. The calculation
of 3-D NoC dimensions is given in Algorithm 3.

After determining dimensions of target 3-D NoC,
we assume all mutual tiles in neighbor layers are connected
TSVs. Since TSVs are more costly than 2-D links, we set
the cost of a TSV as five times of a 2-D link’s cost. As the
resampling iterations increase, we prune unused TSVs. After
a burn-in period, the algorithm ends with a smallest number
of TSVs of the target 3-D NoC.

2124 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 10, OCTOBER 2015

TABLE VI

COMMUNICATION ENERGY AND LATENCY COMPARISON OF NMAP AND PFMAP ON BOTH IRREGULAR AND CUSTOM ARCHITECTURES

Algorithm 3 Determine X, Y, and Z Dimensions for 3-D NoC

Fig. 10. Communication cost of PFMAP and NMAP on a 3-D NoC.

The communication cost of an application onto regular,
irregular, or custom 3-D NoC is represented as in (6). We con-
sider any type of a 3-D NoC as an irregular or custom
2-D NoC; we extract the distance matrix of the target 3-D NoC
as explained in Fig. 2. Then, we calculate the communication
cost of a current configuration using (6).

Fig. 10 shows the communication costs of PFMAP and
NMAP algorithms on different sizes of 3-D NoCs for various
real life applications. Here, each application is independent
from each other. However, it is remarkable that PFMAP tends

TABLE VII

COMMUNICATION ENERGY COMPARISON

OF NMAP AND PFMAP ON 3-D NOCS

to give much better results than NMAP when the density of
the corresponding task graph is high.

Mapping on 3-D NoCs is also done according to commu-
nication energy consumption. For this purpose, energy model
given in [37] is used. Here, the average energy consumption
of sending one bit of data from ti le ti to ti le t j is represented
as follows:

E
ti ,t j
bit = nERbit + nH EL Hbit + nV ELV bit (13)

where n is the number of routers, nH number of horizontal
links, and nV number of vertical links, all passed by packets.
n, nH , and nV change with the mapping. ERbit is the energy
consumed by a router, and EL Hbit and ELV bit are the energy
consumed on the horizontal and vertical links. All ERbit,
EL Hbit, and ELV bit values are technology dependent; they can
be used as constants as in [37]. We define Ecomm3-D as the
sum of all communicating node pairs with the communication
energy consumption of Eti ,t j in a benchmark.

In Table VII, we compared NMAP and PFMAP for four
3-D NoCs with different sizes. Even with a small number of
IT and PN values, PFMAP outperforms NMAP algorithm.

D. Large-Scale NoCs

For large-scale NoCs, we have observed that creating initial
configurations randomly (line 5 in Algorithm 1) causes to
increase in IT and PN values to find a good solution. Instead
of using pure random initial configurations for both large-scale
2-D and 3-D NoCs, we apply an initialisation step as in
NMAP. The pseudocode for our initialize method is given
in Algorithm 4.

BAYAR AND YURDAKUL: PFMAP: EXPLOITATION OF PARTICLE FILTERS 2125

Fig. 11. PFMAP initialization steps for large-scale NoCs.

Algorithm 4 Initialization Function

The main difference between NMAPs initialization method
and ours is that in each step we select the placement of
a node randomly among best candidates with equal costs.
In NMAP, the selection operation always finds the same best
location. As we find different best candidates with equal cost,
we run Initialization Function as the number of particles times.
Thus, we are able to create cost efficient initial configurations.
In Fig. 11, the initialization steps of a configuration for
VOPD application are represented. Yet, we apply initialization
only for large-scale NoCs. According to Algorithm 4: in the
first step (line 2), we select the task node with maximum
communication demand (node 7 in Fig. 11). Then for the
placement, one of the best candidate locations is selected
randomly (line 3). The best candidate locations for node 7
are shown as shaded circles in step-0 in Fig. 11. For each
initial configuration (i.e., particle), we select one of these best
candidate locations randomly. In each step of the initialization
phase, there might multiple choices, which results in different
configurations. For example, in step-3, while for one config-
uration the best location for node 8 is selected as the bottom
neighbor of the node 9, for a different configuration it can
be selected as right/left neighbor of the node 9. By selecting
best candidates randomly in this way, we might come up with
different configurations. These configurations form our initial
configuration set. After obtaining initial configuration set for
the given number of particles (first iteration in Algorithm 1),
we can apply systematic resampling on this set for the given
number of iterations.

Fig. 12. Average network latency comparison of NMAP and PFMAP for
different sizes of synthetic task graphs.

Fig. 13. Total network power comparison of NMAP and PFMAP for different
sizes of synthetic task graphs.

We have evaluated the scalability of our PFMAP algorithm
on fully synthetic task graphs (generated by TGFF) with
various NoC sizes from 3 × 3 to 9 × 9 for 2-D regular
mesh networks. In Figs. 12 and 13, timing and power results
of seven different synthetic task graphs are presented. These
synthetic task graphs are mapped onto regular 2-D mesh archi-
tectures using NMAP and our PFMAP algorithm. As already
mentioned, we have used NIRGAM NoC simulator for the
simulation of each mapping.

As is evident from Figs. 12 and 13, PFMAP gives lower
average packet latency and total power than NMAP indepen-
dent from the network size. As the network size increases,

2126 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 10, OCTOBER 2015

Fig. 14. Communication cost of PFMAP and NMAP algorithms on 3-D
NoC for different sizes of TGFF applications.

Fig. 15. Running time of NMAP and PFMAP algorithms with different sizes
of IT and PN for different sizes of TGFF applications.

the number of generated packets will increase proportionally.
Hence, the gap between network delays of NMAP and PFMAP
will rise up significantly. As a result of this, the gap between
energy consumptions of NMAP and PFMAP will also increase
as the network is getting larger. Finally, we may come up with
the result that PFMAP is more scalable than NMAP, since it
gives much better results in terms of both total latency and
energy consumption as the network getting larger.

In our final set of experiments, we have examined the
scalability factor of our PFMAP algorithm on 3-D NoCs.
In this set of experiments, we have also used fully synthetic
task graphs (generated by TGFF) with different number of
task nodes (i.e., 27–343) and edge weights (i.e., 34–521),
as we did for 2-D NoCs. In Fig. 14, communication costs
of both PFMAP and NMAP algorithms on 3-D NoC for
different sizes of TGFF applications are available. Here, we
also compare PFMAP with itself by setting different ITs and
PNs. For example, PFMAP 10 × 100, given in Fig. 14, means
corresponding PFMAP solution is found with 10 iterations (IT)
and 100 particles (PN). As it is obvious from Fig. 14, all
PFMAP solutions give much better results than NMAP in
any network size. It is also clear that communication cost of
PFMAP decreases with increasing IT and PN for any network
size. The main point here is that PFMAP outweighs NMAP
even with a very low IT and PN values in all network sizes.

The corresponding solution finding times of applications
in Fig. 14, are shown in Fig. 15. It is definite that running

times of both NMAP and PFMAP algorithms increase as
the problem size getting larger. Similarly, running time of
PFMAP algorithm increases for larger IT and PN values in
any network size. Although NMAP is a very fast heuristic
algorithm, PFMAP10 × 10 runs faster than NMAP while
giving better results than it in all network sizes. We cannot
deny that NMAP is a very fast algorithm, but the running
time of PFMAP algorithm actually depends on the designer.
PFMAP finds a solution in 500 s for a huge application with
343 nodes and 541 edges, which gives a better result than
NMAP by 20%.

In addition to these, either running time of PFMAP can be
reduced or IT and PN values can be increased to find a better
mapping solution using parallel platforms such as GPU.

V. CONCLUSION

In this paper, we have discussed mapping of task cores onto
the nodes of regular, irregular, and custom tile-based 2-D and
3-D NoC architectures. To solve mapping problem on
tile-based NoCs, we have utilized systematic resampling algo-
rithm for particle filters. To the best of our knowledge, we are
the first, who apply this algorithm to solve mapping problem
on NoC architectures.

According to the various experimental results, our proposed
algorithm, PFMAP, gives better results than aforementioned
studies. We have also given the mathematical representations
and definitions for the developed algorithm.

Timing results show that PFMAP is able to find an optimum
or near optimum solution in a few milliseconds for medium
size commercial applications. We also show that PFMAP is
a suitable algorithm for mapping on any type tile-based NoC
architectures such as regular, irregular, and custom 2-D or 3-D
topologies. We have proven that PFMAP is scalable enough
to solve mapping problem on huge networks.

Since there is no data dependency between the particles,
we applied multithread approach to the parallel running par-
ticles. By exploiting C++ OPENMP library, we inserted
thread-level parallelism to our mapping algorithm. We have
already pointed out that the quality of mapping accu-
racy increases with the available computational resources.
Moreover, particles can run in parallel and are very suitable
for parallel computation platforms, such as GPU and VPU.
As a result of these, the heuristic PFMAP algorithm can run
much faster on fully parallel platforms and therefore gives
better results in shorter times.

ACKNOWLEDGMENT

The authors would like to express our very great
appreciations to D. Dinç for his valuable help in the devel-
opment of systematic resampling algorithm. Advice given by
Dr. C. Çelik and Dr. S. Tosun have been a great help in
modifying the NIRGAM NoC simulator.

REFERENCES

[1] H. G. Lee, N. Chang, Ü. Y. Ogras, and R. Marculescu, “On-chip com-
munication architecture exploration: A quantitative evaluation of point-
to-point, bus, and network-on-chip approaches,” ACM Trans. Design
Autom. Electron. Syst., vol. 12, no. 3, pp. 1–23, Aug. 2007.

[2] S. Murali and G. De Micheli, “Bandwidth-constrained mapping of cores
onto NoC architectures,” in Proc. Design Autom. Test Eur. Conf. Exhibit.,
vol. 2. Feb. 2004, pp. 896–901.

BAYAR AND YURDAKUL: PFMAP: EXPLOITATION OF PARTICLE FILTERS 2127

[3] W. Jang and D. Z. Pan, “A3MAP: Architecture-aware analytic mapping
for networks-on-chip,” in Proc. 15th ASP-DAC, Jan. 2010, pp. 523–528.

[4] W. Jang and D. Z. Pan, “A3MAP: Architecture-aware analytic mapping
for networks-on-chip,” ACM Trans. Design Autom. Electron. Syst.,
vol. 17, no. 3, pp. 1–26, Jun. 2012.

[5] P. K. Sahu and S. Chattopadhyay, “A survey on application mapping
strategies for network-on-chip design,” J. Syst. Archit., vol. 59, no. 1,
pp. 60–76, Jan. 2013.

[6] F. Gustafsson et al., “Particle filters for positioning, navigation, and
tracking,” IEEE Trans. Signal Process., vol. 50, no. 2, pp. 425–437,
Feb. 2002.

[7] S. Thrun, “Particle filters in robotics,” in Proc. 18th Conf. Uncertainty
Artif. Intell., 2002, pp. 511–518.

[8] I. M. Rekleitis, “A particle filter tutorial for mobile robot localiza-
tion,” Centre Intell. Mach., McGill Univ., Montréal, QC, Canada,
Tech. Rep. TR-CIM-04-02, 2004.

[9] A. Doucet, N. De Freitas, and N. Gordon, Sequential Monte Carlo
Methods in Practice. New York, NY, USA: Springer-Verlag, 2001.

[10] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach to
nonlinear/non-Gaussian Bayesian state estimation,” IEE Proc. F, Radar
Signal Process., vol. 140, no. 2, pp. 107–113, Apr. 1993.

[11] R. Douc and O. Cappé, “Comparison of resampling schemes for particle
filtering,” in Proc. 4th Int. Symp. Image Signal Process. Anal. (ISPA),
Sep. 2005, pp. 64–69.

[12] G. Kitagawa, “Monte Carlo filter and smoother for non-Gaussian non-
linear state space models,” J. Comput. Graph. Statist., vol. 5, no. 1,
pp. 1–25, Mar. 1996.

[13] J. D. Hol, T. B. Schon, and F. Gustafsson, “On resampling algorithms
for particle filters,” in Proc. IEEE Nonlinear Statist. Signal Process.
Workshop, Sep. 2006, pp. 79–82.

[14] N. Koziris, M. Romesis, P. Tsanakas, and G. Papakonstantinou, “An effi-
cient algorithm for the physical mapping of clustered task graphs onto
multiprocessor architectures,” in Proc. 8th Euromicro Workshop Parallel
Distrib. Process., Jan. 2000, pp. 406–413.

[15] J. Hu and R. Marculescu, “Energy-aware mapping for tile-based
NoC architectures under performance constraints,” in Proc. ASP-DAC,
Jan. 2003, pp. 233–239.

[16] S. Murali and G. De Micheli, “SUNMAP: A tool for automatic topology
selection and generation for NoCs,” in Proc. 41st Design Autom. Conf.,
Jul. 2004, pp. 914–919.

[17] F. Moein-Darbari, A. Khademzade, and G. Gharooni-Fard, “CGMAP:
A new approach to network-on-chip mapping problem,” IEICE Electron.
Exp., vol. 6, no. 1, pp. 27–34, 2009.

[18] M. Janidarmian, A. Khademzadeh, and M. Tavanpour, “Onyx: A new
heuristic bandwidth-constrained mapping of cores onto tile-based net-
work on chip,” IEICE Electron. Exp., vol. 6, no. 1, pp. 1–7, 2009.

[19] S. Saeidi, A. Khademzadeh, and F. Vardi, “Crinkle: A heuristic mapping
algorithm for network on chip,” IEICE Electron. Exp., vol. 6, no. 24,
pp. 1737–1744, 2009.

[20] L. Zhong, J. Sheng, M. Jing, Z. Yu, X. Zeng, and D. Zhou, “An opti-
mized mapping algorithm based on simulated annealing for regular NoC
architecture,” in Proc. IEEE 9th Int. Conf. ASIC (ASICON), Oct. 2011,
pp. 389–392.

[21] S. Tosun, O. Ozturk, and M. Ozen, “An ILP formulation for application
mapping onto network-on-chips,” in Proc. Appl. Inf. Commun. Tech-
nol. (AICT), Oct. 2009, pp. 1–5.

[22] P. K. Sahu, N. Shah, K. Manna, and S. Chattopadhyay, “A new
application mapping algorithm for mesh based network-on-chip design,”
in Proc. Annu. IEEE India Conf. (INDICON), Dec. 2010, pp. 1–4.

[23] P. K. Sahu, P. Venkatesh, S. Gollapalli, and S. Chattopadhyay, “Appli-
cation mapping onto mesh structured network-on-chip using parti-
cle swarm optimization,” in Proc. IEEE Comput. Soc. Annu. Symp.
VLSI (ISVLSI), Jul. 2011, pp. 335–336.

[24] R. P. Dick. (2013). Embedded System Synthesis Benchmarks
Suites (E3S). [Online]. Available: http://ziyang.eecs.umich.edu/
~dickrp/e3s

[25] R. P. Dick, D. L. Rhodes, and W. Wolf. (1998). TGFF: Task Graphs for
Free. [Online]. Available: http://ziyang.eecs.umich.edu/~dickrp/tgff

[26] E. B. van der Tol and E. G. T. Jaspers, “Mapping of MPEG-4
decoding on a flexible architecture platform,” Proc. SPIE, vol. 4674,
pp. 362–363, Dec. 2002.

[27] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numer. Math., vol. 1, no. 1, pp. 269–271, 1959.

[28] R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural
and Medical Research, 3rd ed. London, U.K.: Oliver & Boyd, 1948.

[29] M. Saito and M. Matsumoto, “SIMD-oriented fast Mersenne twister:
A 128-bit pseudorandom number generator,” in Monte Carlo and Quasi-
Monte Carlo Methods, A. Keller, S. Heinrich, and H. Niederreiter, Eds.
Berlin, Germany: Springer-Verlag, 2008, ch. 36, pp. 607–622.

[30] X. Tian and K. Benkrid, “Mersenne twister random number generation
on FPGA, CPU and GPU,” in Proc. NASA/ESA Conf. Adapt. Hardw.
Syst. (AHS), Jul./Aug. 2009, pp. 460–464.

[31] M. Matsumoto and T. Nishimura, “Mersenne twister:
A 623-dimensionally equidistributed uniform pseudo-random number
generator,” ACM Trans. Model. Comput. Simul., vol. 8, no. 1, pp. 3–30,
1998.

[32] OpenMP Architecture Review Board. (May 2008). OpenMP
Application Program Interface Version 3.0. [Online]. Available:
http://www.openmp.org/mp-documents/spec30.pdf

[33] Nirgam (V2.0). [Online]. Available: http://www.nirgam.ecs.soton.ac.uk,
accessed Dec. 20, 2013.

[34] J. Hu and R. Marculescu, “Energy- and performance-aware mapping for
regular NoC architectures,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 24, no. 4, pp. 551–562, Apr. 2005.

[35] O. He, S. Dong, W. Jang, J. Bian, and D. Z. Pan, “UNISM: Unified
scheduling and mapping for general networks on chip,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 8, pp. 1496–1509,
Aug. 2012.

[36] C. Liu, L. Zhang, Y. Han, and X. Li, “Vertical interconnects squeezing in
symmetric 3D mesh network-on-chip,” in Proc. 16th Asia South Pacific
Design Auto. Conf., Jan. 2011, pp. 357–362.

[37] X.-H. Wang, P. Liu, M. Yang, M. Palesi, Y.-T. Jiang, and M. C. Huang,
“Energy efficient run-time incremental mapping for 3-D networks-on-
chip,” J. Comput. Sci. Technol., vol. 28, no. 1, pp. 54–71, Jan. 2013.

Salih Bayar received the B.S. degree in electronics
and communication engineering from Yıldız Tech-
nical University, Istanbul, Turkey, in 2003 and the
M.S. degree in electrical engineering from the Karl-
sruhe Institute of Technology, Karlsruhe, Germany,
in 2007. He is currently pursuing the Ph.D. degree
with Boǧaziçi University, Istanbul.

He was a Research Assistant with Boǧaziçi Uni-
versity from 2007 to 2013. His current research
interests include reconfigurable computing, multi-
processor and embedded multicore architectures,

system-on-chip, and network-on-chip.

Arda Yurdakul (S’91–M’99) received the B.S.,
M.S., and Ph.D. degrees in electrical and electronics
engineering from Bogazici University, Istanbul,
Turkey, in 1992, 1994, and 1999, respectively.

She is currently an Associate Professor with the
Department of Computer Engineering, Bogazici
University. Her current research interests include
design of novel architectures and accelerators,
embedded systems, reconfigurable computing,
system-level and high-level design automation, and
Internet-of-Things.

Dr. Yurdakul served as an IEEE Turkey Section Chair from 2010 to 2011.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

