
An Efficient Mapping Algorithm on 2-D Mesh
Network-on-Chip with Reconfigurable Switches

Salih Bayar
Idea Teknoloji

R&D Center

İstanbul, Turkey

salih.bayar@ideateknoloji.com.tr

Arda Yurdakul
Boğaziçi University

Computer Engineering,

İstanbul, Turkey

yurdakul@boun.edu.tr

Abstract—As Network-on-Chips (NoC) are the most scalable
architecture with growing number of processing elements in
multi-core systems, communication data between nodes tend to
travel through more routers. Hence, a good mapping algorithm
must be designed in order to locate most communicating nodes
neighbour to each other. However, this may not be sufficient
for data-intensive applications such as audio, video, telecom-
munication and etc. In such multi-core applications, processing
elements communicate to each other with heavy load statically
in most cases. Passing heavy load data through routers might
make the routers bottleneck of the system. In this paper, we
propose a custom 2-D NoC architecture with simple reconfig-
urable switches, which can be configured during both design and
runtime according to the application requirements. We designed
a mapping algorithm which tries to set paths through these simple
switches instead of complicated routers all the way. Experimental
results show that our mapping algorithm reduces routing cost up
to by 79.96% for real life embedded applications.

Index Terms—FPGA, NoC, Mapping

I. INTRODUCTION

Most of the applications on multi-core SoCs have non-
uniform communication traffic patterns and they can be pre-
dicted statically [1]. In addition to this, most of the multi-core
SoC applications do not have many different communication
flows (number of edges in task graphs) and each of these cores
mostly communicates with a few of other cores. Usually, the
traffic flow of these applications is already known beforehand
[2]. As a result, the network topology, mapping of cores
onto the target architecture and also routing have significant
impact on the overall system performance. Hence, we focus on
mapping and routing algorithms on NoC architectures, which
are mostly preferred in multi-core embedded SoCs.

Data-intensive applications which are mostly mapped on
NoC architectures, have a small number of communication
flows (related task graphs are mostly sparse) and suffer from
area-inefficient, power-hungry routers. As the heavy load data
must pass through routers, routers become the bottleneck of
the system. There are various studies that try to suppress the
drawbacks of routers used in both packet and circuit switched
networks. Some of them are PNoC [3], DyNoC [4], ReNoC
[5], Skip-links [6], Reconfig-Net [7] and RecoNoC [8]. None
of these studies exploits the particle filters for either mapping
or routing process. In order to suppress the negative perfor-

mance effect of routers, some simple switching mechanisms
can be used within the NoCs for sparse applications.

The organization of the paper is as follows; in Section II,
reconfigurable NoC architecture is given in detail. Section III
presents our mapping and routing algorithm for reconfigurable
NoC architecture. In Section IV, we present our case studies
and experimental results for various applications. Finally,
Section V presents future directions and concludes the work.

II. NOC ARCHITECTURE WITH SIMPLE SWITCHES

The target architecture, which is a mesh based 2-D re-
configurable NoC architecture is given in Figure 1. This
reconfigurable architecture is inspired from the work pro-
posed in [1]. Compared to a conventional 2-D mesh NoC
architecture, it has additional simple configuration switches.
In Figure 1, while rectangles represent processing elements
attached to routers, circles are simple configuration switches.
Switches are much simpler than conventional routers. They
have simple switching capabilities and can be configured at
design or runtime according to the communication requirement
of a given application. In Figure 1, routers are connected to
each other through the configuration switches. For example, a
connection between cores 6 and 7 is set only through simple
switches in Figure 1. On the right side, three possible switch
configurations in different directions are presented as well.

Fig. 1: 2-D reconfigurable NoC architecture with corridor
width one (i.e. CW=1) [1].

The internal structure of a configuration switch is given in
Figure 2. It has both inputs and outputs (N-bits, parametriz-
able) in each direction. Each switch is composed of 3-
to-1 multiplexers at the outputs of each direction (North-

�	
��

'���#'�%#�' $#�!��$#��%�#���$#���& �#�������#$!$�(�$���#'��%�'����(&'�"&� #���#$&��!���%��
�������

����
�	�	�	�����
����
�		�)�	
�������

�

East-South-West). Switching operations are achieved by these
MUXs. Configuration information of these switches, i.e. se-
lect inputs of each MUX in switches are stored in separate
Look-Up-Tables (LUTs) on the target device, i.e. Field Pro-
grammable Gate Array (FPGA). Additionally, there are 1-
flit-size (e.g. 8-bits) buffers at each outputs that are used to
increase clock frequency of communications for long links in
a pipelined manner. More detail about these switches can be
found in [1].

Fig. 2: Configuration switch internal structure.

In Figure 3, the reconfigurable 2-D mesh NoC architecture
with the corridor width two (i.e. CW=2) is given. Increasing
corridor width would be useful, if there is no solution for a
given application for the given corridor width. With increased
corridor width, traffic flows have more flexibility to traverse
through the configuration switches.

Fig. 3: 2-D reconfigurable NoC architecture with corridor
width two (i.e. CW=2) [1].

III. MAPPING AND ROUTING ALGORITHM

The main objectives of our mapping and routing algorithms
for the target NoC architecture are given as follows:

• Try to set connections through switches all the way.
• If sharing required, use minimum number of routers.
• Find an optimum mapping and routing by placing most

communicating nodes close to each other.

The optimal solution for our algorithms can be defined as
follows:

If the traffic flows between nodes are set only through the

configuration switches and each node only communicates to
its neighbours.

A. Main flow of mapping and routing algorithms

As described in our previous work [9], mapping process
is one to one mapping of each separate task node of an
application onto a physical core on the given architecture.
Similarly, routing process can be defined as setting or creating
physical paths through either configuration switches or routers
between communicating cores.

Main steps of our mapping and routing algorithms are given
in the order of occurrence as follows:

• Find an optimal mapping for a given task graph on the
reconfigurable NoC architecture.

• Route communications according to the application re-
quirements through switches and routers.

• Configure switches according to the routing information
at design time or runtime.

• Generate NoC topology with reconfigurable switches.
• Switch-off/Remove unused switches and routers from the

topology.
• Load sub-applications on the cores and start application

on the target device.

As aforementioned, the routing process is applied to the
final mapping found by our mapping algorithm.

B. Mapping algorithm

Definition 1: Manhattan Distance (MDist) is the mini-

mum number of hops from source node ni to destination node

nj in the target NoC topology. Cr,c is a physical core on the

target NoC topology, who is located at row r and column c.
The formula of the MDist for the nodes Pr1,c1 and Pr2,c2 is

given in Eq. 1.

MDist = |r1 − r2|+ |c1− c2| (1)

The mapping cost, MapCost, of a configuration for a
conventional 2-D mesh architectures is calculated for mapping
only by using MDist between each node pairs.

Definition 2: tCr1,c1,Cr2,c2
is the traffic amount in

10Kbytes/s from source node ni, which is mapped onto the
physical core Cr1,c1, to destination node nj , which is mapped

onto the physical core Cr2,c2 in the target NoC topology.

The calculation of MapCost for a single path (MCsp)
between processor nodes Cr1,c1 and Cr2,c2 in a configuration
is given in Eq. 2.

MCsp = tCr1,c1,Cr2,c2
∗MDist(r1, c1, r2, c2) (2)

MapCostT ot (MCtot) is the total communication cost of a
configuration for a regular 2-D mesh topology as shown in Eq.
3. Here, R and C indicate number of total rows and columns
in the target NoC topology respectively.

More detail about mapping algorithm can be found in [9].

�

�

(a) VOPD task graph with 16 nodes

(b) Routing with the work in
AppAw[1] (RoutCost=5753)

(c) Routing after the PFMAP
mapping[9] (RoutCost=5243)

Fig. 4: Routing of VOPD application with AppAw[1] and PFMAP [9] for CW=1

MCtot =
R∑

r1=0

C∑

c1=0

R∑

r2=0

C∑

c2=0

MCsp(r1, c1, r2, c2) (3)

C. Routing algorithm

Routing algorithm is very similar to the one given in [1].

Definition 3: Path is a dedicated link on the NoC topology,

connecting source and destination nodes travelling through

routers and switches.

PathCost for the source node Crs,cs and destination node
Crd,cd is given in Equation 4.

PathCost =
R+S∑

i=1

tPrs,cs ,Prd,cd
∗RSi (4)

Here, RSi is the cost of either a router or a switch on a
path. R represents the number of routers and S represents the
number of switch on a path. A simple configuration switch
consumes about five times less power than a conventional
router [1]. Total RoutCost for a given configuration can be
found in Equation 5. Here, E represents the number of edges
in the given task graph.

RoutCost =
E∑

i=1

PathCosti (5)

The main objective here is setting paths for the heaviest
communication flows at first. Mapping process has already
given an effort to locate the most communicating nodes close
to each other, i.e. with minimum hop counts. Hence, in routing
process, we firstly sort communication flows in descending
order. Besides, we check each edge in task graph, whether
corresponding physical cores neighbour to each other. If the
current communication flow, i.e. edge in the input task graph,
is between neighbour cores, then we set these paths firstly.
After setting all communication flows for neighbour cores in
the descending order of communication volumes, we set paths
for the remaining communication flows which are between
non-neighbour cores.

IV. CASE STUDIES

We developed and tested our mapping and routing algo-
rithms in C++ with OPENMP library. We performed experi-
ments with applications such as Video Object Plane Decoder
(VOPD), MMS-Suite, Multi Window Display (MWD), Depth
Map Computation (DMC) [10].

In Figure 4a, task graph of VOPD application and its
mapping with routing on a 2-D mesh topology with both
AppAw [1] (see Figure 4b) and PFMAP [9] (see Figure 4c)
are given. The resulting mapping and routing of AppAw [1]
illustrated in Figure 4b seems more complicated (most of
switches and routers are used, i.e. there are overall connection
paths between cores) than the result found by our mapping [9]
and routing algorithm as shown in Figure 4c.

In Figure 5a, task graph of a synthetic application with 16
nodes is given. Figures 5b and 5c show final mapping and
routing for AppAw and PFMAP respectively. Here, shaded
rectangles show the routers in-use, black arrows show the
direct connections through switches, blue arrows represent the
unshared connections through routers and red arrows represent
the shared connections through both switches and routers. Our
routing after PFMAP mapping reduces RoutCost 44% and the

number of routers 60%.

In Table I, MapCost results are given. Since both MWD
(with 12 cores) and VOPD (with 16 cores) are simple appli-
cations, improvements in these applications are not too much
as for DMC (with 23 cores).

TABLE I: Mapping results for MWD, VOPD and DMC
applications

Application AppAw PFMAP
PFMAP Imp.
over AppAw

MWD 1248 1216 2,56%
VOPD 4265 4125 3,28%
DMC 14203 12393 12,74%

In Table II, RoutCost results are given. PFMAP decreases
routing cost up to 48,05% compared to routing found by
AppAw. Here, it is clear that minimal improvements on
mapping result in substantial improvements on routing.

�

�

(a) Synthetic task graph with 16
nodes from TGFF

(b) Routing with AppAw (Rout-
Cost=61092, RouterCount=5)

(c) Routing after PFMAP
mapping (RoutCost=34258,
RouterCount=2)

Fig. 5: Mapping and routing of a synthetic graph with AppAw and PFMAP on the 2-D, 4x4, reconfigurable mesh NoC

TABLE II: Routing results for MWD, VOPD and DMC
applications

Application AppAw PFMAP
PFMAP Imp.
over AppAw

MWD 1632 1504 7,84%
VOPD 5753 5243 8,86%
DMC 114858 59666 48,05%

In Table III, RoutCost results are given. MMS-Suite in-
cludes applications such as H263-Decoder, H263-Encoder,
MP3-Decoder and MP3-Encoder. As these applications use
the same set of IP-cores but the traffic pattern among the
cores is different for each application, an average graph is
used for both mapping and routing process. As explained in
AppAw [1], the average graph is composed of all edges values
of four input task graphs. PFMAP [9] reduces RoutCost 30%
to 35% for H263-Decoder, H263-Encoder and MP3-Encoder.
However, for MP3-Decoder application, PFMAP [9] decreases
routing cost up to 79.96%.

TABLE III: Routing results for MMS-Suite application

Application AppAw PFMAP
PFMAP Imp.
over AppAw

H263-Dec 447721 311257 30,48%
H263-Enc 628608 409189 34,91%
MP3-Dec 212150 42520 79,96%
MP3-Enc 272893 181775 33,39%

V. CONCLUSION

In this paper, we developed task to core mapping and routing
algorithms for a reconfigurable 2-D mesh NoC architecture.
The objective of this work was using simple switches instead
of heavy load routers for setting communication paths between
task nodes on the given architecture.

We tested our mapping and routing algorithms on various
data-intensive applications such as VOPD, MMS-Suite, MWD,
DMC [10] and some of synthetic task graphs. Here we showed
that our algorithms give better results than AppAw [1] in all
these tests.

As a future work, the scalability of our mapping and routing
algorithms can be investigated in detail. In order to do this,
fully synthetic task graphs (generated by Task Graphs for
Free (TGFF) [11]) with various NoC sizes for 2-D and 3-D
mesh/torus can be used.

ACKNOWLEDGMENT

This work is fully supported by Idea Teknoloji R&D Center
and State Planning Organization of Turkey, (DPT) under the
TAM Project, Grant No. 2007K120610

REFERENCES

[1] M. Modarressi, A. Tavakkol, and H. Sarbazi-Azad, “Application-aware
topology reconfiguration for on-chip networks,” IEEE Transactions on
VLSI Systems, vol. 19, no. 11, pp. 2010–2022, 2011.

[2] ——, “Virtual point-to-point connections for nocs,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 29,
no. 6, pp. 855–868, 2010.

[3] C. Hilton and B. Nelson, “Pnoc: A flexible circuit-switched noc for fpga-
based systems,” Computers and Digital Techniques, IEE Proceedings -,
vol. 153, no. 3, pp. 181 – 188, 2006.

[4] C. Bobda, A. Ahmadinia, M. Majer, J. Teich, S. Fekete, and J. van der
Veen, “Dynoc: A dynamic infrastructure for communication in dynam-
ically reconfugurable devices,” in Int. Conf. on Field Programmable
Logic and Applications, 2005, pp. 153 – 158.

[5] M. Stensgaard and J. Sparso, “Renoc: A network-on-chip architecture
with reconfigurable topology,” in 2nd ACM/IEEE Int. Sym. on Networks-
on-Chip, 2008, pp. 55 –64.

[6] S. Hollis and C. Jackson, “Skip the analysis: Self-optimising networks-
on-chip (invited paper),” in Int. Symp. on Electronic System Design,
2010, pp. 14 –19.

[7] J. Ma, C. Wang, Y. Wen, T. Chen, W. Hu, and J. Chen, “Dynamic
reconfigurable networks in noc for i/o supported parallel applications,”
Int. Conf. on Comp. and Inf. Technology, vol. 0, pp. 2768–2775, 2010.

[8] R. Vancayseele, B. Farisi, W. Heirman, K. Bruneel, and D. Stroobandt,
“Reconoc: A reconfigurable network-on-chip,” in 6th Int. Workshop on
Reconfigurable Communication-centric Systems-on-Chip, 2011, pp. 1 –
2.

[9] S. Bayar and A. Yurdakul, “Pfmap: Exploitation of particle filters for
network-on-chip mapping,” Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. 23, no. 10, pp. 2116–2127, Oct 2015.

[10] T. Schonwald, A. Viehl, O. Bringmann, and W. Rosenstiel, “Distance-
constrained force-directed process mapping for mpsoc architectures,” in
5th Euromicro Conference on Digital Systems Design, 2012, pp. 592–
599.

[11] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: Task Graphs for Free,”
http://ziyang.eecs.umich.edu/ dickrp/tgff.

�

�

