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An Algorithm for the Design of Low-Power
Hardware-Efficient FIR Filters
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Abstract—A novel algorithm for designing low-power and
hardware-efficient linear-phase finite-impulse response (FIR)
filters is presented. The algorithm finds filter coefficients with
reduced number of signed-power-of-two (SPT) terms given the
filter frequency response characteristics. The algorithm is a
branch-and-bound-based algorithm that fixes a coefficient to a
certain value. The value is determined by finding the boundary
values of the coefficient using linear programming. Although the
worst case run time of the algorithm is exponential, its capability
to find appreciably good solutions in a reasonable amount of
time makes it a desirable CAD tool for designing low-power and
hardware-efficient filters. The superiority of the algorithm on ex-
isting methods in terms of SPT term count, design time, hardware
complexity, and power performance is shown with several design
examples. Up to 30% reduction in the number of SPT terms
is achieved over unoptimized Remez coefficients, which is 20%
better than compared optimization methods. The average power
saving is 20% over unoptimized coefficients, which is up to 14%
better than optimized coefficients obtained with existing methods.

Index Terms—Discrete coefficient finite-impulse-response (FIR)
filter design, FIR digital filters, linear programming, multiplierless
design, power-of-two coefficients.

I. INTRODUCTION

C ONSTANT coefficient finite-impulse-response (FIR)
digital filters can be realized in parallel using as many

multipliers as the number of coefficients in the filter. However,
since multipliers are power- and area-consuming circuits, it
is a common practice to first represent coefficients as sums
of signed-power-of-two (SPT) terms and then replace the
multipliers by shift and add circuits.

From the power perspective, the fewer the number of adders,
the less power the filter will consume. The number of adders de-
pends on the number of nonzero bits (SPT terms) of the quan-
tized coefficients. A practical way to provide reduced SPT terms
is to use canonic signed digit (CSD) representation since it offers
fewer SPT terms in the representation than two’s complement
representation.

Methods proposed in the literature in general consider the
reduction of hardware cost; however, they serve as a basis for
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the search for low power consumption. They can be grouped
into two categories. The first group makes use of the redundant
or repeated operations in multiplications of coefficients by data
and will be referred to as subexpression sharing/elimination-
based methods [1]–[6]. The second group of methods makes use
of the idea that given the filter frequency characteristics (such
as max. pass-band ripple or max. stop-band attenuation); the
set of coefficients that satisfy the characteristics is not unique.
Therefore, one can search for a coefficient set that has reduced
number of SPT terms and hence better area/power performance.
Optimal [7], [8] and suboptimal methods [9]–[13] have been
proposed. There also have been attempts to combine the two
approaches, where a set of coefficients with reduced number of
ones is found and then subexpression elimination is applied on
these coefficients [7], [13] or the search for reduced number of
SPT terms is changed to a search for reduced number of adders
[14].

Coefficient scaling is extensively used in methods that search
for reduced number of SPT term coefficients [9]–[13]. Scaling
all coefficients by the same factor changes the distribution of
SPT terms among coefficients without altering the shape of the
frequency response. This can greatly improve the search for re-
duced SPT terms by providing a good starting point for a local
search. Based on this, a method is proposed that first searches
for a scaling factor that minimizes the quantization error in the
mean square sense [9]. In the second step of the algorithm, co-
efficients are optimized to minimize the normalized maximum
ripple in the frequency response of the filter. An improved ver-
sion of this method is proposed in [10], where the selection
of the scaling factor is carried out considering the normalized
pass-band ripple (NPR) of the frequency response of the filter.
Then, a local search is performed starting from the quantized
Remez coefficients scaled by the scaling factor that resulted in
the minimum NPR. A common property of both algorithms is
that they try to improve the frequency response of the filter by re-
stricting the maximum number of SPT terms in each coefficient.

Another method that makes use of scaling is proposed in [12].
The algorithm differs from the previously mentioned methods in
that the frequency-response characteristics of the filter are taken
as a constraint rather than as an objective and, instead of trying
to get the best frequency response (minimum NPR), tries to find
a coefficient set under the restriction of maximum number of
SPT terms per coefficient with fewer SPT terms.

An optimization method extensively used in the design of
discrete coefficient filters is mixed integer linear programming
(MILP). The main reason for using MILP is that it can find
optimum discrete coefficients for which NPR is much better
than coefficients obtained by simply rounding infinite preci-
sion coefficients [15]. Given the filter length and coefficient
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word-length, MILP can find the optimum frequency response
[15]–[17]. However, the optimality criterion is NPR, not hard-
ware or power cost. An MILP formulation where the optimiza-
tion goal is to reduce the number of SPT terms, and hence hard-
ware/power cost, is given in [8].

A drawback of MILP-based methods is that solution time in-
creases exponentially with the increase of number of taps of a
filter. Therefore, it is not practical to use MILP for filters having
a large number of taps. In [13], a method that partially over-
comes this problem by limiting the optimization variables to be
the last digits of the coefficients is introduced. is taken to
be no more than 3. The remainder of the digits are initialized to
the values obtained by quantizing/rounding the Remez solution
of the filter.

The desired frequency response of an FIR filter imposes
boundaries on the values coefficients can have, thereby limiting
the coefficient search space. A linear programming (LP) for-
mulation is given in [7], by which the minimum and maximum
values are found for each coefficient. Within these boundary
values, possible coefficient values exceeding the maximum
number of SPT terms allowed per coefficient are eliminated.
Then, the feasibility of each possible combination of coefficient
values is checked. This is done using a branch-and-bound
(BAB)-based search. First checking the combination of coef-
ficient values having the minimum number of SPT terms will
eliminate the need for searching after a solution is found.

This paper presents the algorithm FIRGAM for designing
low-power/area linear-phase FIR digital filters by reducing the
number of SPT terms in the coefficients while keeping the quan-
tization wordlength as small as possible. Unlike most algorithms
present in the literature, it does not use passband scaling, but still
produces better results. A desired property for an optimization
tool is its ability to solve large problems as well as small prob-
lems. For the case of linear-phase FIR filters, the tool should be
able to handle filters with a large number of taps. FIRGAM is
able to find optimized discrete coefficient filters in a reasonable
amount of time even for very large filters.

The remainder of this paper is organized as follows. Section II
describes the proposed algorithm, FIRGAM. Section III dis-
cusses hardware implementation issues, such as parameters af-
fecting the critical path of an FIR filter. The performance of
FIRGAM is tested with several filters. The results are presented
in Section IV, where a comparison with other existing methods
is also given. Section V concludes the discussion.

II. FIRGAM ALGORITHM

Given the wordlength and the desired filter characteristics
, the FIRGAM algorithm iteratively finds the coefficients

of the resulting symmetric filter within an acceptable error
margin

(1)

Obviously, , where is half
the number of coefficients and is the trigonometric func-
tion to obtain the frequency response of the filter generated
by FIRGAM. In hardware implementation of FIR filters, sym-
metric filters are preferred for their linear-phase property to

avoid waveform distortion and reduced number of multiplica-
tions. It should be noted that multiplications are the most power-
consuming operations in an FIR filter, and symmetry halves the
number of multiplications and, hence, the power consumption.

Let denote the number of coefficients in . Since the
filter is symmetric, then the FIRGAM algorithm should deter-
mine only coefficients where

(2)

There may be a lot of coefficients satisfying (1). However,
once is fixed, then the range of all possible values for each co-
efficient can be determined by solving
the following set of linear optimization problems independently:

(3)

(4)

Coefficient is a number that appears in this range,
i.e., . Without the finite wordlength
constraint, it can take over infinitely many numbers. However,
since each coefficient is restricted to be represented with a
finite wordlength , all possible values of form a finite
set. Hence, let be such a digital value set of . This set
can be reduced further by forcing each value to contain at most

nonzero bits in the representation. This also helps
low-power implementation because the power consumption is
directly proportional to the number of SPT terms in coefficient
representations. The selected coefficients from must
satisfy (1).

Experimentally, it has been observed that is the smallest
subset of and should not be lower than a certain
value for a reasonably good search space to exist. To satisfy
this, increasing the wordlength or tap number should be
considered.

A simple BAB algorithm that runs on will obvi-
ously find the optimal solution provided that enough memory
and time are given. It is easy to observe that there exist

combinations to be searched. However, a design
automation tool should find a considerably good solution in a
reasonable time using a reasonable amount of memory. The
FIRGAM algorithm, whose pseudocode is given in Fig. 1, is
a modified BAB algorithm; hence, its worst case performance
is exponential. Yet, it reaches a reasonably good result in a
sufficiently short time since it refines the search space during
its execution. Obviously, a program that uses FIRGAM as a
subroutine can also be developed to find the optimal solution.

The operation of the FIRGAM algorithm can be summarized
as follows. Starting from the initial tap (i.e., ), the algo-
rithm iteratively selects a value from the refined value set
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Fig. 1. FIRGAM algorithm.

of tap coefficient such that is closest to the average of
maximum and minimum values for . After this value is as-
signed to , is removed from the value set and moved to
the solution set , which is an ordered set. In other words, the
first element in corresponds to and the last element in

corresponds to . At each iteration, only one tap is
fixed. After fixing each tap, the following pair of optimization
equations is solved for the next tap:

(5)

(6)

It should be noted that these equations are different from (3)
and (4) so as to refine the search space for the th tap after fixing

taps. The superscript in these equations and in the pseu-
docode stands for the refined variables. Obviously, fixing the
values of taps will move the boundary values of the th tap

towards each other and the number of possible values for this tap
will be reduced. If the refined value set of is not empty,
then the iteration goes on as usual, but midvalue might
change due to the possibility that the moving amount of each
boundary might not be equal. However, if the refined value set
of is empty, then the selected value for is removed
from and the next value in the value set of is selected
for the next iteration, and this is repeated until a nonempty value
set of is obtained.

Experimentally, it has been observed that the algorithm finds
an initial solution in less than iterations depending on the
tightness of the search space: If one can follow the aforemen-
tioned experimental rule (i.e., is set to its lowest possible
value), then the algorithm finds a solution in at most itera-
tions where is a parameter used to limit the maximum size of
the refined value sets . If is a bigger value, then a solution is
obtained in approximately iterations but the authors cannot
state which one will always yield a better solution because this
completely depends on the value sets of the coefficients. How-
ever, experimental results show that the solutions produced by
this algorithm are much better than the ones found in the litera-
ture.

A. Performance Tuning

There are three main items that determine the performance of
FIRGAM:

• prediction of the number of SPT terms for the cut-off mech-
anism;

• refined value set size ;
• value selection order.
1) Prediction of the Number of SPT Terms: An advantage

of BAB-based algorithms on enumeration-based algorithms is
that they employ a cutoff mechanism that compares the best so-
lution and best obtainable solution at any point of the search
tree and decide not to go deeper in the search tree if a better
solution cannot exist. This in turn avoids searching all possible
combinations. The cutoff mechanism in FIRGAM is as follows.
The number of SPT terms of the best solution is denoted as
(which is infinity when there is no solution). Let the number
of SPT terms of the value (used to fix coefficient ) be
denoted by . Let the number of SPT terms in the coefficients
that are already fixed be denoted by . Let the minimum pos-
sible number of SPT terms of the unfixed coefficients be . If

, there is no need to further branch to the next
coefficient since there does not exist a better solution than the
current solution. In this case, the algorithm proceeds by setting
the current coefficient to its next feasible value . The main
point here is to forecast the number of SPT terms of the unfixed
coefficients ( to ), namely .

Three SPT term prediction strategies will be mentioned here.
a) U_MIN: was defined to be the feasible value set of

coefficient . In , a value which has the minimum number
of SPT terms is found. Then, let be the number of SPT
terms of . Then, the predicted minimum number of SPT terms
for the unfixed coefficients while fixing coefficient is

(7)
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b) U_AVG: Unfortunately, (7) gives an underestimated
value to the actual number of SPT terms causing unnecessary
search effort devoted to the end of the tree, i.e., the search is
stuck at the last coefficients. Instead, another prediction value
is needed that allows the whole search space to be searched in a
reasonable amount of time. One can use the average number of
SPT terms a coefficient can have by averaging the SPT terms
of the values in the feasible value set . Then, let be
this value, which is calculated as

(8)

where is the number of SPT terms of value . Then

(9)

c) U_SUB_AVG: It is observed that the predicted number
of SPT terms in (9) is an overestimate. This causes the search
to conclude in a very short time with a highly suboptimal re-
sult. Choosing the lower integer bound of the average instead of
the average itself is the best choice in terms of search time–op-
timality tradeoff. Now the predicted number of SPT terms for

unfixed coefficients is

(10)

2) Refined Value Set Size : As mentioned previously, the
size of the refined value set is limited to a certain value

. This is when selecting the values from the feasible value set
of coefficient , values in the vicinity of are se-

lected. If is set to infinity, all values in are selected. The
purpose of limiting the size of the refined feasible value set is
to reduce search time by avoiding unnecessary search devoted
to possibly infeasible combinations. How can one predict these
infeasible combinations? Experimentally it is observed that fea-
sible solutions are the combinations of coefficient values which
are selected in the neighborhood of the middle values, .
The values close to the boundary values of either do not or
rarely produce feasible solutions. Practically setting is
enough.

3) Value Selection Order: When selecting values from
the refined value set to fix coefficient , one can
use different strategies. The strategy adopted in FIRGAM is
selecting the value closest to first, which is phrased
in the algorithm in Fig. 1 as the function VALUE_SELECT.
This strategy is called MID_VAL_FIRST. The selection order
of the values could also be done by first selecting the values
having the least number of SPT terms. This is done by first con-
structing the set by calling the function VALUE_SELECT
in Fig. 1 and then reordering the values in according to their
number of SPT terms from low to high. This strategy is called
MIN_SPT_FIRST. To our observations, MIN_SPT_FIRST
should not be used unless the coefficient wordlength is greater
than the minimum possible wordlength.

TABLE I
FILTER CHARACTERISTICS OF THE FIRGAM EXAMPLE

TABLE II
VALUE SETS OF THE COEFFICIENTS FOR THE FIRGAM EXAMPLE

B. Run-Time of FIRGAM

The exponential run-time of the algorithm is due
to the BAB nature of the algorithm. However, this is the total
search time of the algorithm. As it would be clear from the ex-
perimental results in the following section, an initial solution
or an acceptably good solution can be obtained in a reasonable
amount of time. The optimum solution could be found 100 times
faster than other optimum methods with exponential run-time
complexity.

There is always a possibility for FIRGAM to find an initial
solution in exponential time. To our observations, this might
occur when the coefficient wordlength is the minimum possible
value and the filter length is the minimum filter length that sat-
isfies this wordlength. Since there is no clear formula that gives
the minimum filter length for which we can find the minimum
wordlength filter, one has to try a range of filter lengths. In gen-
eral, FIRGAM finds a solution after iterations where is
half the filter length. One can allow FIRGAM to run for a pre-
determined number of iterations and in case FIRGAM cannot
find a solution increase the filter length. Another way is to limit
the run-time of the algorithm, that is, FIRGAM is terminated
when it cannot find any solution after a predetermined amount
of time. Again, then the filter length is increased until a solution
is found.

C. FIRGAM Example

A linear-phase low-pass FIR filter with ten taps is to be de-
signed, i.e., , . The coefficients are quantized
to 7 b . The desired filter characteristics are given
in Table I. The boundary values of the coefficients are found
using (3) and (4). The value sets formed using the
boundary values are listed in Table II.

The feasible coefficient values are given as integers for ease
of demonstration. The actual values can be found by dividing
the values with . The refined values set sizes are limited to 2,
i.e., . The SPT term prediction strategy is U_MIN. The
value selection strategy is MID_VAL_FIRST.

The algorithm starts by finding the boundary values of the
first coefficient . They are found to be
and , from which the middle value is found
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TABLE III
ITERATIVE SOLUTION OF FIRGAM EXAMPLE

as . The values in within the boundary
values are . Since the refined value set size is
limited to 2, the two values that are closest to are se-
lected, which makes . The value closest to

in is 2, so
and , and 2 is removed from the refined value
set making . The algorithm branches to the next
coefficient . The refined boundary values are found to be

and , making
. The refined value set is . is set to

3, making and . The algorithm
branches to the next coefficient . The search goes on until
all values in are tried.

The values of the variables at each iteration during the whole
search process are given in Table III. The status column in the
table tells the current status of the problem. “S” indicates that
a solution is found. “C” resembles a cutoff situation, meaning
that a better solution cannot be found going deeper in the search
tree. “I” denotes an infeasible situation where an empty refined

Fig. 2. Search tree for FIRGAM example (S: solution; I: infeasible; C: cutoff).

Fig. 3. Transposed form realization of an FIR filter.

value set is encountered for the next coefficient after fixing the
current coefficient.

The search is also demonstrated as a search tree in Fig. 2,
where the leftmost branches are the first branched values. The
values in the circles are the values to which the corresponding
coefficients are fixed.

III. HARDWARE IMPLEMENTATION ISSUES

In the hardware realization of constant coefficient FIR filters,
adders/subtractors replacing the multipliers are called multiplier
adders. The inter-tap adders are called structural adders [4]. One
may choose among different adder topologies for the multiplier
and structural adders. In terms of power and area, the ripple
carry adder seems to be a good choice. The delay elements can
be realized with D-type flip-flops.

The transposed form realization of a FIR filter, which is
shown in Fig. 3, is preferred because of its short critical path
offering high-speed operation. The worst case critical path is
one multiplier one adder long, which is independent of the
length of the filter, i.e., number of coefficients.

When a coefficient multiplier is replaced with an adder tree,
the number of adders and the depth of the adder tree depend
on the number of SPT terms in the coefficient. Then, letting the
number of SPT terms in coefficient be , the depth of the
adder tree used to replace the multiplier will be at most
adders. If the maximum number of SPT terms per coefficient is

, then the contribution of a replaced multiplier to the crit-
ical path will be at most adders. Then for the trans-
posed form realization of an FIR filter the critical path including
the structural adder consists of adders in the worst case.
Thus, by limiting the number of SPT terms per coefficient, one
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can limit the critical path length, and hence increase the per-
formance of the filter. This formulation, however, neglects the
effect of the structure of the adders. The length of the critical
path is affected by the structure of the adders.

Here, an analysis for ripple carry adders is given. Ripple carry
adders are composed of full adders. The critical path is the path
for the carry signal generated by the least significant input bits
to propagate to the most significant output sum. The contribu-
tion of an adder to the critical path can be approximated to be
equal to the adder length of full adders. For example, an 8-b
ripple carry adder will consist of eight full adders and hence will
have an eight-full-adder-long critical path for the carry signal to
travel to the most significant output sum. For an FIR filter, the
maximum size of an adder, which is at the same time the output
wordlength, can be calculated by the following formula:

(11)

where is the input data wordlength (including sign bit),
is the filter coefficients , is the number of
coefficients in the filter, and is the wordlength of the coef-
ficients (including sign bit). is the minimum adder size
that ensures that no overflow will occur. This size is a limiting
size for structural adders. The size of the multiplier adders will
always be less than .

The critical path of an FIR filter having at most SPT
terms in a coefficient will be

(12)

full adders long. This is also shown in Fig. 4. From (12), it is
clear that the critical path does not depend only on the max-
imum number of SPT terms that a coefficient can have,
but also on the wordlength of the coefficients. Therefore,
keeping the wordlength small is an alternative method for crit-
ical path-length minimization. Furthermore, when the multiplier
adder tree depth can be kept to a minimum, i.e., the depth is

adders, reducing the wordlength is even a more ef-
fective way (linear versus logarithmic dependence).

IV. EXPERIMENTAL RESULTS

Here, several example filters are designed using FIRGAM
and compared with other methods from the literature. The com-
pared methods are the Remez algorithm, the trellis algorithm
[12], Li’s algorithm [11], Lim’s algorithm [18], Samueli’s al-
gorithm [10], Yao’s algorithm [13], and the MILP-based op-
timum method of [8] and are denoted by the abbreviations RMZ,
TRE, LI, LIM, SAM, PMILP, and MILP, respectively. For the
Remez algorithm, MATLAB’s Remez function is used, and the
filter coefficients are quantized to the minimum wordlength sat-
isfying the filter characteristics. The results for LIM, SAM, and

Fig. 4. Critical path in an FIR filter.

TABLE IV
FREQUENCY-RESPONSE CHARACTERISTICS OF THE FILTERS OF EXAMPLE 1

PMILP are taken directly from the papers in which they ap-
peared. The algorithms TRE, LI, and FIRGAM are implemented
in the C programming language. FIRGAM uses the LP library of
QSOPT [18]. For the optimum MILP method, ILOG CPLEX’s
[20] optimization package is used. The frequency grid on which
the frequency response is evaluated consists of 1000 frequency
samples for all filters. This makes 2000 constraints for the LP
problem of FIRGAM. The implemented algorithms are run on
a PC with a Pentium D 2.8-GHz processor and 1-GB RAM.
The hardware realizations of the filters are done using the trans-
posed form structure. For all filters, the subexpression sharing
method in [1] is used. The input data width of the filters is taken
as 8 b. Adders are realized with ripple carry adders. Delay el-
ements are realized with D-type flip-flops. The hardware cost
of the adders and delay elements are both measured in terms
of the number of adders and bit-wise components, namely full
adders for adders and D-type flip-flops for the delay elements.
All of the adder and delay element sizes are computed so that
no overflow occurs. The reduction of the number of full adders
used in an adder due to shifted inputs is also considered [4], [6].
The filters are mapped to the AMS 0.35- technology cell li-
brary for power simulations. The simulations are done with an
event-driven gate-level simulator written in C++. The operating
voltage is 3.3 V. The input data applied to the filters is a random
sequence of 16 384 8-b samples.

Example 1: The desired frequency-response characteristics
of the filters are given in Table IV. is the passband peak-to-
peak ripple, is the stopband attenuation, is the normal-
ized passband edge frequency, and is the normalized stopband
edge frequency. L1 and L2 are the example filters 1 and 2 given
in [18]. S2 is the second example filter of [10]. The methods
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TABLE V
PROPERTIES OF DESIGNED FILTERS OF EXAMPLE 1

Fig. 5. Frequency response of FIRGAM filter L1 with� � ���,� � ��.

TABLE VI
SOLUTION TIMES FOR FIRGAM FILTERS OF EXAMPLE 1

used for comparison are the Remez algorithm (RMZ), Lim’s al-
gorithm (LIM) [18], Samueli’s algorithm (SAM) [10], and the
PMILP algorithm [5], [13].

The properties of the designed filters are given in Table V.
Here, is the number of taps, is the wordlength (including
sign bit) of the coefficients, is the effective wordlength ex-
cluding the sign bit and most significant zero bits [18], and is
the maximum number of SPT terms found in a coefficient. The
number of adders is given in terms of multiplier adders (MA)
and structural adders (SA). The number of multiplier adders
is the number after subexpression elimination is applied. The

TABLE VII
COEFFICIENTS OF FIRGAM FILTER L1 WITH � � ���,� � ��

TABLE VIII
FREQUENCY-RESPONSE CHARACTERISTICS OF THE FILTERS OF EXAMPLE 2

total hardware complexity after realizing the adders with ripple
carry adders and the delay elements with D-type flip-flops is the
sum of the number of full adders (FA) and number of D-type
flip-flops (DFF). The power performance of the filters is given as

. The SPT term and power gains are calculated taking
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TABLE IX
PROPERTIES OF DESIGNED FILTERS OF EXAMPLE 2

the Remez (RMZ) filters as reference. As an example, the fre-
quency response and coefficients of the FIRGAM filter L1 are
given in Fig. 5 and Table VII, respectively.

Looking at the results in Table V, it is clear that FIRGAM
outperforms all methods in terms of the number of SPT terms.
In terms of wordlength, FIRGAM coefficients have either
shorter or equal wordlength when compared with the other
methods. The reduced SPT term count and wordlength has
reduced the hardware cost and power consumption. Again,
looking at Table V, FIRGAM filters have the least hardware
cost in terms of full adders and D-type flip-flops. Note that
the reduction in the number of SPT terms (taking the RMZ
coefficients as reference) for the FIRGAM filters is in parallel
with the reduction in power consumption.

The time spent to find the filters for FIRGAM is given in
Table VI. The feasible value set size for FIRGAM was set
to 2. The number of SPT terms per coefficient was not lim-
ited. The SPT term prediction and value selection strategies used
were U_SUB_AVG and MID_VAL_FIRST, respectively. The
first solution is the initial solution found by FIRGAM. The best
solution is best in terms of both the total number of SPT terms
of the coefficients and maximum number of SPT terms in a co-
efficient. Since the compared algorithms were not implemented,
a direct comparison to their search time was not possible.

Example 2: In this example, FIRGAM is compared to the
Trellis algorithm (TRE) [12], Li’s algorithm (LI) [11], and
MILP formulation of [8]. The algorithms are implemented in
the C programming language. The comparison is made with
the filters listed in Table VIII. is the minimum number of
taps required to realize each filter.

The properties of the designed filters are given in Table IX.
The run-times of the algorithms are listed in Table X. For the
MILP method, passband scaling could be used, however, to
make a direct comparison with the results of FIRGAM, the
passband gain is taken to be unity, i.e., in [8]. LI and TRE
directly make use of passband scaling in their optimization.

TABLE X
TIME SPENT BY EACH ALGORITHM TO DESIGN THE FILTERS OF EXAMPLE 2

*manually stopped after 24 hours

LI searches for a range of scaling factors to find the optimum
coefficients in terms of the number of SPT terms. Although
TRE uses passband scaling, no method is given in [12] to deter-
mine a proper scaling factor. Since TRE is a polynomial time
algorithm, multiple runs of the algorithm on different scaling
factors is possible. Therefore, TRE is run for the same range of
scaling factors used by LI. The run time of the algorithm TRE
given in Table X is the result of multiple runs of the algorithm.
The algorithms are not allowed to run more than 24 h. The only
exception is made for MILP when run on filter A. The reason
is that filter A is the smallest filter and is the one that is most
likely to produce a result in a reasonable amount of time.

In terms of search time, LI seems to be the best algorithm.
However, for large filters, the gain in the number of SPT terms
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TABLE XI
PROPERTIES OF THE FIRGAM FILTERS OF EXAMPLE 3

obtained by FIRGAM compensates for the search time. Note
also that even the initial solutions obtained by FIRGAM are
much better than the best solutions obtained by LI. It is in-
teresting to note that the best solution found for filter A by
FIRGAM is the optimum solution. The complete search took
only 4 h for FIRGAM, whereas it took 15 days for the optimal
MILP method. Hence, FIRGAM is almost 100 times faster than
the optimal MILP method. For filters B and C, the MILP method
could not find any solutions in one day.

Example 3: For the same frequency-response characteristics
of the filters of example 2, filters are redesigned with different
numbers of taps using FIRGAM. The number of taps is in-
creased starting from the minimum possible to the number be-
yond which no reduction in the coefficient wordlength could
be achieved. The properties of the filters are given in Table XI.
Power gain is calculated taking the filter having the minimum
number of taps as reference.

An additional tap requires an additional structural adder and
delay element. Therefore, increasing the number of taps, at first
glance, might seem to increase the hardware cost. However, this
increase is compensated for by the reduction of the wordlength
of the coefficients, which is clearly shown in Table XI.

V. CONCLUSION

An algorithm for designing low-power/hardware-cost
linear-phase FIR filters was presented. The algorithm optimizes
SPT terms in the coefficients given the filter frequency-re-
sponse characteristics. Although the worst case run-time of the
algorithm is exponential, its capability to find appreciably good
solutions in a reasonable amount of time (at least 100 times
faster than traditional optimum MILP based formulation) makes
it a desirable CAD tool for designing low-power/hardware-cost
linear-phase FIR filters. The algorithm is compared with ex-
isting methods with several examples. The filters found by
the proposed algorithm have fewer SPT terms and are shorter
in wordlength than the filters found by the other methods.
FIRGAM filters consume 20% less power on average than
unoptimized Remez coefficients. The superiority over existing
methods has been shown to be more apparent on high-order
filters.

FIRGAM is a generic method for designing finite wordlength
filters. Besides its SPT term optimization capability, the
FIRGAM algorithm can be used as a standalone discrete coef-
ficient filter design algorithm.
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