

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

CONTENTS INCLUDE:

n	 Java Keywords
n	 Standard Java Packages
n	 Character Escape Sequences
n	 Collections and Common Algorithms
n	 Regular Expressions
n	 JAR Files

This refcard gives you an overview of key aspects of the Java
language and cheat sheets on the core library (formatted
output, collections, regular expressions, logging, properties)
as well as the most commonly used tools (javac, java, jar).

Java Keywords, continued
ABOUT CORE JAVA

JAVA KEYWORDS

C
o

re
 J

av
a

 w
w

w
.d

zo
ne

.c
o

m

 G

et
 M

o
re

 R
ef

ca
rd

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

n Authoritative content
n Designed for developers
n Written by top experts
n Latest tools & technologies
n Hot tips & examples
n Bonus content online
n New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

Core Java
By Cay S. Horstmann

→

Keyword Description Example

abstract an abstract class or
method

abstract class Writable {

 public abstract void write(Writer out);
 public void save(String filename) { ... }

}

assert with assertions enabled,
throws an error if
condition not fulfilled

assert param != null;

Note: Run with -ea to enable assertions

boolean the Boolean type with
values true and false

boolean more = false;

break breaks out of a switch
or loop

while ((ch = in.next()) != -1) {
 if (ch == '\n') break;
 process(ch);
}

Note: Also see switch

byte the 8-bit integer type byte b = -1; // Not the same as 0xFF

Note: Be careful with bytes < 0

case a case of a switch see switch

catch the clause of a try block
catching an exception

see try

char the Unicode character
type

char input = 'Q';

class defines a class type class Person {

 private String name;
 public Person(String aName) {
 name = aName;
 }
 public void print() {
 System.out.println(name);
 }

}

const not used

continue continues at the end of
a loop

while ((ch = in.next()) != -1) {
 if (ch == ' ') continue;
 process(ch);
}

default the default clause of a
switch

see switch

do the top of a do/while
loop

do {
 ch = in.next();
} while (ch == ' ');

double the double-precision
floating-number type

double oneHalf = 0.5;

else the else clause of an if
statement

see if

enum an enumerated type enum Mood { SAD, HAPPY };

extends defines the parent class
of a class

class Student extends Person {
 private int id;
 public Student(String name, int anId) { ... }
 public void print() { ... }

}

final a constant, or a class or
method that cannot be
overridden

public static final int DEFAULT_ID = 0;

Keyword Description Example

finally the part of a try block
that is always executed

see try

float the single-precision
floating-point type

float oneHalf = 0.5F;

for a loop type for (int i = 10; i >= 0; i--)
 System.out.println(i);
for (String s : line.split("\\s+"))
 System.out.println(s);

Note: In the “generalized” for loop, the expression
after the : must be an array or an Iterable

goto not used

if a conditional statement if (input == 'Q')
 System.exit(0);
else
 more = true;

implements defines the interface(s)
that a class implements

class Student
 implements Printable {
 ...
}

import imports a package import java.util.ArrayList;
import com.dzone.refcardz.*;

instanceof tests if an object is an
instance of a class

if (fred instanceof Student)
 value = ((Student) fred).getId();

Note: null instanceof T is always false

int the 32-bit integer type int value = 0;

interface an abstract type with
methods that a class can
implement

interface Printable {
 void print();
}

long the 64-bit long integer
type

long worldPopulation = 6710044745L;

native a method implemented
by the host system

new allocates a new object
or array

Person fred = new Person("Fred");

null a null reference Person optional = null;

package a package of classes package com.dzone.refcardz;

private a feature that is
accessible only by
methods of this class

see class

protected a feature that is accessible
only by methods of this
class, its children, and
other classes in the same
package

class Student {
 protected int id;
 ...
}

#24

 Core Java
2

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

Java Keywords, continued
Keyword Description Example

public a feature that is
accessible by methods
of all classes

see class

return returns from a method int getId() { return id; }

short the 16-bit integer type short skirtLength = 24;

static a feature that is
unique to its class, not
to objects of its class

public class WriteUtil {
 public static void write(Writable[] ws,
 String filename);
 public static final String DEFAULT_EXT = ".dat";
}

strictfp Use strict rules
for floating-point
computations

super invoke a superclass
constructor or method

public Student(String name, int anId) {
 super(name); id = anId;
}

public void print() {
 super.print();
 System.out.println(id);
}

switch a selection statement switch (ch) {
 case 'Q':
 case 'q':
 more = false; break;
 case ' ';
 break;
 default:
 process(ch); break;
}

Note: If you omit a break, processing continues
with the next case.

synchronized a method or code
block that is atomic to
a thread

public synchronized void addGrade(String gr) {

 grades.add(gr);

}

this the implicit argument
of a method, or a
constructor of this class

public Student(String id) {this.id = id;}
public Student() { this(""); }

throw throws an exception if (param == null)
 throw new IllegalArgumentException();

throws the exceptions that a
method can throw

public void print()
 throws PrinterException, IOException

transient marks data that should
not be persistent

class Student {
 private transient Data cachedData;
 ...
}

try a block of code that
traps exceptions

try {
 try {
 fred.print(out);
 } catch (PrinterException ex) {
 ex.printStackTrace();
 }
} finally {
 out.close();
}

void denotes a method
that returns no value

public void print() { ... }

volatile ensures that a field is
coherently accessed
by multiple threads

class Student {
private volatile int nextId;
...
}

while a loop while (in.hasNext())

 process(in.next());

OPERATOR PRECEDENCE

Operators with the
same precedence

Notes

[] . () (method call) Left to right

! ~ ++ -- + (unary) –
(unary) () (cast) new

Right to left ~ flips each bit of a number

* / % Left to right Be careful when using % with negative
numbers. -a % b == -(a % b), but a
% -b == a % b. For example, -7 % 4
== -3, 7 % -4 == 3.

+ - Left to right

<< >> >>> Left to right >> is arithmetic shift (n >> 1 == n / 2 for
positive and negative numbers), >>> is logical
shift (adding 0 to the highest bits). The right
hand side is reduced modulo 32 if the left hand
side is an int or modulo 64 if the left hand side
is a long. For example, 1 << 35 == 1 << 3.

< <= > >= instanceof Left to right null instanceof T is always false

== != Left to right Checks for identity. Use equals to check for
structural equality.

& Left to right Bitwise AND; no lazy evaluation with bool
arguments

^ Left to right Bitwise XOR

| Left to right Bitwise OR; no lazy evaluation with bool
arguments

&& Left to right

|| Left to right

?: Right to left

= += -= *= /= %= &=
|= ^= <<= >>= >>>=

Right to left

Type Size Range Notes

int 4 bytes –2,147,483,648 to 2,147,483, 647
(just over 2 billion)

The wrapper type is Integer.
Use BigInteger for arbitrary
precision integers.

short 2 bytes –32,768 to 32,767

long 8 bytes –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

Literals end with L (e.g. 1L).

byte 1 byte –128 to 127 Note that the range is not
0 ... 255.

float 4 bytes approximately
±3.40282347E+38F (6–7
significant decimal digits)

Literals end with F (e.g. 0.5F)

double 8 bytes approximately
±1.79769313486231570E+308
(15 significant decimal digits)

Use BigDecimal for arbitrary
precision floating-point
numbers.

char 2 bytes \u0000 to \uFFFF The wrapper type is
Character. Unicode
characters > U+FFFF require
two char values.

boolean true or false

STANDARD JAVA PACKAGES

java.applet Applets (Java programs that run inside a web page)

java.awt Graphics and graphical user interfaces

java.beans Support for JavaBeans components (classes with properties and
event listeners)

java.io Input and output

java.lang Language support

java.math Arbitrary-precision numbers

java.net Networking

java.nio “New” (memory-mapped) I/O

java.rmi Remote method invocations

java.security Security support

java.sql Database support

java.text Internationalized formatting of text and numbers

java.util Utilities (including data structures, concurrency, regular expressions,
and logging)

Legal conversions between primitive types
Dotted arrows denote conversions that may lose precision.

PRIMITIVE TYPES

3

DZone, Inc. | www.dzone.com

 Core Java
 tech facts at your fingertips

→

Typical usage:
String msg = MessageFormat.format("On {1, date,
 long}, a {0} caused {2,number,currency} of damage.",
 "hurricane", new GregorianCalendar(2009, 0, 15).
 getTime(), 1.0E8);

Yields "On January 1, 1999, a hurricane caused
$100,000,000 of damage"

	 n The nth item is denoted by {n,format,subformat} with
 optional formats and subformats shown below
	 n {0} is the first item
	 n The following table shows the available formats
	 n Use single quotes for quoting, for example '{' for a literal
 left curly brace
	 n Use '' for a literal single quote

FORMATTED OUTPUT WITH MessageFormat

Flag Description Example

+ Prints sign for positive and negative numbers +3333.33

space Adds a space before positive numbers | 3333.33|

0 Adds leading zeroes 003333.33

- Left-justifies field |3333.33 |

(Encloses negative number in parentheses (3333.33)

, Adds group separators 3,333.33

(for f format) Always includes a decimal point 3,333.

(for x or o
format)

Adds 0x or 0 prefix 0xcafe

$ Specifies the index of the argument to be formatted;
for example, %1$d %1$x prints the first argument in
decimal and hexadecimal

159 9F

< Formats the same value as the previous specification;
for example, %d %<x prints the same number in decimal
and hexadecimal

159 9F

Conversion
Character

Description Example

d Decimal integer 159

x Hexadecimal integer 9f

o Octal integer 237

f Fixed-point floating-point 15.9

e Exponential floating-point 1.59e+01

g General floating-point (the shorter of e and f)

a Hexadecimal floating-point 0x1.fccdp3

s String Hello

c Character H

b boolean true

h Hash code 42628b2

tx Date and time See the next table

% The percent symbol %

n The platform-dependent line separator

Typical usage
System.out.printf("%4d %8.2f", quantity, price);

String str = String.format("%4d %8.2f", quantity, price);

Each format specifier has the following form. See the tables for
flags and conversion characters.

Flags

Conversion characters

FORMATTED OUTPUT WITH printf

CHARACTER ESCAPE SEQUENCES

\b backspace \u0008
\t tab \u0009
\n newline \u000A
\f form feed \u000C
\r carriage return \u000D
\" double quote
\' single quote
\\ backslash

\uhhhh (hhhh is a hex number between 0000 and FFFF) The UTF-16 code point with value hhhh

\ooo (ooo is an octal number between 0 and 377) The character with octal value ooo

Note: Unlike in C/C++, \xhh is not allowed

Common Tasks

COLLECTIONS AND COMMON ALGORITHMS

ArrayList An indexed sequence that grows and shrinks dynamically

LinkedList An ordered sequence that allows efficient insertions and removal at
any location

ArrayDeque A double-ended queue that is implemented as a circular array

HashSet An unordered collection that rejects duplicates

TreeSet A sorted set

EnumSet A set of enumerated type values

LinkedHashSet A set that remembers the order in which elements were inserted

PriorityQueue A collection that allows efficient removal of the smallest element

HashMap A data structure that stores key/value associations

TreeMap A map in which the keys are sorted

EnumMap A map in which the keys belong to an enumerated type

LinkedHashMap A map that remembers the order in which entries were added

WeakHashMap A map with values that can be reclaimed by the garbage collector if
they are not used elsewhere

IdentityHashMap A map with keys that are compared by ==, not equals

List<String> strs = new ArrayList<String>(); Collect strings

strs.add("Hello"); strs.add("World!"); Add strings

for (String str : strs) System.out.println(str); Do something with all elements
in the collection

Iterator<String> iter = strs.iterator();
while (iter.hasNext()) {
 String str = iter.next();
 if (someCondition(str)) iter.remove();
}

Remove elements that match a
condition. The remove method
removes the element returned by
the preceding call to next.

strs.addAll(strColl); Add all strings from another
collection of strings

strs.addAll(Arrays.asList(args)) Add all strings from an array of
strings. Arrays.asList makes a
List wrapper for an array

strs.removeAll(coll); Remove all elements of another
collection. Uses equals for
comparison

if (0 <= i && i < strs.size()) {
 str = strs.get(i);
 strs.set(i, "Hello");
}

Get or set an element at a
specified index

strs.insert(i, "Hello");
str = strs.remove(i);

Insert or remove an element at
a specified index, shifting the
elements with higher index values

String[] arr = new String[strs.size()];
strs.toArray(arr);

Convert from collection to array

String[] arr = ...;
List<String> lst = Arrays.asList(arr);
lst = Arrays.asList("foo", "bar", "baz");

Convert from array to list. Use
the varargs form to make a small
collection.

List<String> lst = ...;
lst.sort();
lst.sort(new Comparator<String>() {
 public int compare(String a, String b) {
 return a.length() - b.length();
 }
}

Sort a list by the natural order of
the elements, or with a custom
comparator.

Map<String, Person> map = new
 LinkedHashMap<String, Person>();

Make a map that is traversed in
insertion order (requires hashCode
for key type). Use a TreeMap to
traverse in sort order (requires that
key type is comparable).

for (Map.Entry<String, Person> entry :
 map.entrySet()) {
 String key = entry.getKey();
 Person value = entry.getValue();
 ...
}

Iterate through all entries of the
map

Person key = map.get(str); // null if not found
map.put(key, value);

Get or set a value for a given key

4

DZone, Inc. | www.dzone.com

 Core Java
 tech facts at your fingertips

Predefined Character Class Names

Flags for matching
The pattern matching can be adjusted with flags, for example:
Pattern pattern = Pattern.compile(patternString,
 Pattern.CASE_INSENSITIVE + Pattern.UNICODE_CASE)

Characters

c The character c

\unnnn, \xnn,
\0n, \0nn,
\0nnn

The code unit with the given hex or octal value

\t, \n, \r,
\f, \a, \e

The control characters tab, newline, return, form feed, alert, and escape

\cc The control character corresponding to the character c

Character Classes

[C1C2 . . .] Union: Any of the characters represented by C1C2 , . . .
The Ci are characters, character ranges c1-c2, or character classes.
Example: [a-zA-Z0-9_]

[^C1C2 . . .] Complement: Characters not represented by any of C1C2 , . . .
Example: [^0-9]

[C1&&C2 && . . .] Intersection: Characters represented by all of C1C2 , . . .
Example: [A-f&&[^G-`]]

Predefined Character Classes

. Any character except line terminators (or any character if the DOTALL
flag is set)

\d A digit [0-9]

\D A nondigit [^0-9]

\s A whitespace character [\t\n\r\f\x0B]

\S A nonwhitespace character

\w A word character [a-zA-Z0-9_]

\W A nonword character

\p{name} A named character class—see table below

\P{name} The complement of a named character class

Boundary Matchers

^ $ Beginning, end of input (or beginning, end of line in multiline mode)

\b A word boundary

\B A nonword boundary

\A Beginning of input

\z End of input

\Z End of input except final line terminator

\G End of previous match

Quantifiers

X? Optional X

X* X, 0 or more times

X+ X, 1 or more times

X{n} X{n,} X{n,m} X n times, at least n times, between n and m times

Quantifier Suffixes

? Turn default (greedy) match into reluctant match

+ Turn default (greedy) match into reluctant match

Set Operations

XY Any string from X, followed by any string from Y

X |Y Any string from X or Y

Grouping

(X) Capture the string matching X as a group

\g The match of the gth group

Escapes

\c The character c (must not be an alphabetic character)

\Q . . . \E Quote . . . verbatim

(? . . .) Special construct—see API notes of Pattern class

Lower ASCII lower case [a-z]

Upper ASCII upper case [A-Z]

Alpha ASCII alphabetic [A-Za-z]

Digit ASCII digits [0-9]

Alnum ASCII alphabetic or digit [A-Za-z0-9]

XDigit Hex digits [0-9A-Fa-f]

Print or Graph Printable ASCII character [\x21-\x7E]

Punct ASCII nonalpha or digit [\p{Print}&&\P{Alnum}]

ASCII All ASCII [\x00-\x7F]

Cntrl ASCII Control character [\x00-\x1F]

Blank Space or tab [\t]

Space Whitespace [\t\n\r\f\0x0B]

javaLowerCase Lower case, as determined by Character.isLowerCase()

javaUpperCase Upper case, as determined by Character.isUpperCase()

javaWhitespace White space, as determined by Character.isWhiteSpace()

javaMirrored Mirrored, as determined by Character.isMirrored()

InBlock Block is the name of a Unicode character block, with spaces
removed, such as BasicLatin or Mongolian.

Category or InCategory Category is the name of a Unicode character category such
as L (letter) or Sc (currency symbol).

Flag Description

CASE_INSENSITIVE Match characters independently of the letter case. By default,
this flag takes only US ASCII characters into account.

UNICODE_CASE When used in combination with CASE_INSENSITIVE, use Unicode
letter case for matching.

MULTILINE ^ and $ match the beginning and end of a line, not the entire input.

UNIX_LINES Only '\n' is recognized as a line terminator when matching ^
and $ in multiline mode.

DOTALL When using this flag, the . symbol matches all characters,
including line terminators.

CANON_EQ Takes canonical equivalence of Unicode characters into account.
For example, u followed by ¨ (diaeresis) matches ü.

LITERAL The input string that specifies the pattern is treated as a sequence
of literal characters, without special meanings for . [] etc.

Common Tasks

Regular Expression Syntax

Regular Expression Syntax, continuedFormatted Output with MessageFormat, continued

REGULAR EXPRESSIONS

Format Subformat Example

number none 1,234.567

integer 1,235

currency $1,234.57

percent 123,457%

date none or medium Jan 15, 2009

short 1/15/09

long January 15, 2009

full Thursday, January 15, 2009

time none or medium 3:45:00 PM

short 3:45 PM

long 3:45:00 PM PST

full 3:45:00 PM PST

choice List of choices, separated by |. Each choice has
									n a lower bound (use -\u221E for -∞)
 n		a relational operator: < for “less than”, # or
 \u2264 for ≤
 n a message format string
For example, {1,choice,0#no houses|1#one
house|2#{1} houses}

no house

one house

5 houses

String[] words = str.split("\\s+"); Split a string along white
space boundaries

Pattern pattern = Pattern.compile("[0-9]+");

Matcher matcher = pattern.matcher(str);

String result = matcher.replaceAll("#");

Replace all matches.
Here we replace all digit
sequences with a #.

Pattern pattern = Pattern.compile("[0-9]+");

Matcher matcher = pattern.matcher(str);

while (matcher.find()) {

 process(str.substring(matcher.start(), matcher.end()));

}

Find all matches.

Pattern pattern = Pattern.compile(

 "(1?[0-9]):([0-5][0-9])[ap]m");

Matcher matcher = pattern.matcher(str);

for (int i = 1; i <= matcher.groupCount(); i++) {

 process(matcher.group(i));

}

Find all groups (indicated
by parentheses in the
pattern). Here we find
the hours and minutes
in a date.

5

DZone, Inc. | www.dzone.com

 Core Java
 tech facts at your fingertips

	 n Contain name/value pairs, separated by =, :, or whitespace
	 n Whitespace around the name or before the start of the
 value is ignored
	 n Lines can be continued by placing an \ as the last character;
 leading whitespace on the continuation line is ignored

 button1.tooltip = This is a long \
 tooltip text.

 n \t \n \f \r \\ \uxxxx escapes are recognized (but not \b
 or octal escapes)
	 n Files are assumed to be encoded in ISO 8859-1; use
 native2ascii to encode non-ASCII characters into
 Unicode escapes
	 n Blank lines and lines starting with # or ! are ignored

Typical usage:

Properties props = new Properties();
props.load(new FileInputStream("prog.properties"));
String value = props.getProperty("button1.tooltip");
// null if not present

Also used for resource bundles:

ResourceBundle bundle = ResourceBundle.getBundle("prog");
 // Searches for prog_en_US.properties,
 // prog_en.properties, etc.
String value = bundle.getString("button1.tooltip");

	 n Used for storing applications, code libraries
	 n By default, class files and other resources are stored in
 ZIP file format
	 n META-INF/MANIFEST.MF contains JAR metadata
 n META-INF/services can contain service provider
 configuration
	 n Use the jar utility to make JAR files

jar Utility Options

PROPERTY FILES

JAR FILES

Option Description

c Creates a new or empty archive and adds files to it. If any of the specified file
names are directories, the jar program processes them recursively.

C Temporarily changes the directory. For example,
jar cvfC myprog.jar classes *.class

changes to the classes subdirectory to add class files.

e Creates a Main-Class entry in the manifest
jar cvfe myprog.jar com.mycom.mypkg.MainClass files

f Specifies the JAR file name as the second command-line argument. If this
parameter is missing, jar will write the result to standard output (when creating a
JAR file) or read it from standard input (when extracting or tabulating a JAR file).

i Creates an index file (for speeding up lookups in a large archive)

m Adds a manifest to the JAR file.
jar cvfm myprog.jar mymanifest.mf files

M Does not create a manifest file for the entries.

t Displays the table of contents.
jar tvf myprog.jar

u Updates an existing JAR file
jar uf myprog.jar com/mycom/mypkg/SomeClass.class

v Generates verbose output.

x Extracts files. If you supply one or more file names, only those files are
extracted. Otherwise, all files are extracted.
jar xf myprog.jar

O Stores without ZIP compression

Common Tasks

Logging Configuration Files
The logging configuration can be configured through a logging
configuration file, by default jre/lib/logging.properties.
Another file can be specified with the system property java.
util.logging.config.file when starting the virtual machine.
(Note that the LogManager runs before main.)

LOGGING

Logger logger =
Logger.getLogger("com.mycompany.myprog.mycategory");

Get a logger for a category

logger.info("Connection successful."); Logs a message of level FINE.
Available levels are SEVERE,
WARNING,INFO,CONFIG,FINE,
FINER, FINEST, with
corresponding methods severe,
warning, and so on.

logger.log(Level.SEVERE, "Unexpected exception",

 throwable);

Logs the stack trace of a
Throwable

logger.setLevel(Level.FINE); Sets the logging level to FINE.
By default, the logging level is
INFO, and less severe logging
messages are not logged.

Handler handler = new FileHandler("%h/myapp.log",
 SIZE_LIMIT, LOG_ROTATION_COUNT);
handler.setFormatter(new SimpleFormatter());
logger.addHandler(handler);

Adds a file handler for saving the
log records in a file. See the table
below for the naming pattern. This
handler uses a simple formatter
instead of the XML formatter that
is the default for file handlers.

Configuration Property Description Default

loggerName.level The logging level of the logger by the
given name

None; the logger
inherits the handler
from its parent

handlers A whitespace or comma-separated list
of class names for the root logger. An
instance is created for each class name,
using the default constructor.

java.util.logging.
ConsoleHandler

loggerName.handlers A whitespace or comma-separated list
of class names for the given logger

None

loggerName.
useParenthandlers

false if the parent logger's handlers
(and ultimately the root logger's
handlers) should not be used

true

config A whitespace or comma-separated list
of class names for initialization.

None

java.util.logging.
FileHandler.level

java.util.logging.
ConsoleHandler.level

The default handler level Level.ALL for
FileHandler,
Level.INFO for
ConsoleHandler

java.util.logging.
FileHandler.formatter

java.util.logging.
ConsoleHandler.formatter

The class name of the default filter None

java.util.logging.
FileHandler.formatter

java.util.logging.
ConsoleHandler.formatter

The class name of the default formatter java.util.logging.
XMLFormatter for
FileHandler,
java.util.logging.
SimpleFormatter for
ConsoleHandler

java.util.logging.
FileHandler.encoding

java.util.logging.
ConsoleHandler.encoding

The default encoding default platform
encoding

java.util.logging.
FileHandler.limit

The default limit for rotating log files,
in bytes

0 (No limit), but set
to 50000 in jre/lib/
logging.properties

java.util.logging.
FileHandler.count

The default number of rotated log files 1

java.util.logging.
FileHandler.pattern

The default naming pattern for log files.
The following tokens are replaced when
the file is created:

%h/java%u.log

java.util.logging.
FileHandler.append

The default append mode for file loggers;
true to append to an existing log file

false

Token Description

/ Path separator

%t System temporary directory

%h Value of user.home system property

%g The generation number of rotated logs

%u A unique number for resolving
naming conflicts

%% The % character

 Core Java
6

 tech facts at your fingertips

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2008 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying,
or otherwise, without prior written permission of the publisher. Reference: Core Java, Volume I and Core Java, Volume II, Cay S. Horstmann and Gary Cornell, Sun Microsystems Press, 1996-2007.

Version 1.0

$7
.9

5

ISBN-13: 978-1-934238-26-4
ISBN-10: 1-934238-26-0

9 781934 238264

5 0 7 9 5

ABOUT THE AUTHOR

Core Java, now in

its 8th edition, is a

no-nonsense tutorial

and reliable reference

into all aspects of

Java SE 6.

RECOMMENDED BOOKS

BUY NOW
books.dzone.com/books/corejava1
books.dzone.com/books/corejava2

Cay S. Horstmann
Cay S. Horstmann has written many books on C++, Java and object-
oriented development, is the series editor for Core Books at Prentice-Hall
and a frequent speaker at computer industry conferences. For four years,
Cay was VP and CTO of an Internet startup that went from 3 people in a
tiny office to a public company. He is now a computer science professor
at San Jose State University. He was elected Java Champion in 2005.

Publications
n	 Core Java, with Gary Cornell (Sun Microsystems Press 1996–2007)
n	 Core JavaServer Faces, with David Geary (Sun Microsystems Press 2004–2006)
n	 Big Java (John Wiley & Sons 2001–2007)

Web Site Blog
http://horstmann.com http://weblogs.java.net/blog/cayhorstmann

COMMON javac OPTIONS COMMON java OPTIONS

Option Purpose

-cp or -classpath Sets the class path, used to search for class files. The class path is a
list of directories, JAR files, or expressions of the form directory/'*'
(Unix) or directory* (Windows). The latter refers to all JAR files
in the given directory. Class path items are separated by : (Unix)
or ; (Windows). If no class path is specified, it is set to the current
directory. If a class path is specified, the current directory is not
automatically included—add a . item if you want to include it.

-sourcepath Sets the path used to search for source files. If source and class files
are present for a given file, the source is compiled if it is newer. If no
source path is specified, it is set to the current directory.

-d Sets the path used to place the class files. Use this option to separate
.java and .class files.

-source Sets the source level. Valid values are 1.3, 1.4, 1.5, 1.6, 5, 6

-deprecation Gives detail information about the use of deprecated features

-Xlint:unchecked Gives detail information about unchecked type conversion warnings

Option Purpose

-cp or -classpath Sets the class path, used to search for class files. See the previous
table for details. Note that javac can succeed when java fails if the
current directory is on the source path but not the class path.

-ea or
-enableassertions

Enable assertions. By default, assertions are disabled.

-Dproperty=value Sets a system property that can be retrieved by System.
getProperty(String)

-jar Runs a program contained in a JAR file whose manifest has a
Main-Class entry. When this option is used, the class path is ignored.

-verbose Shows the classes that are loaded. This option may be useful to
debug class loading problems.

-Xmssize
-Xmxsize

Sets the initial or maximum heap size. The size is a value in bytes.
Add a suffix k or m for kilobytes or megabytes, for example, -Xmx10m

Get More FREE Refcardz. Visit refcardz.com now!

Core Seam

Core CSS: Part III

Hibernate Search

Equinox

EMF

XML

JSP Expression Language

ALM Best Practices

HTML and XHTML

Available:
Essential Ruby
Essential MySQL
JUnit and EasyMock
Getting Started with MyEclipse

Spring Annotations

Core Java

Core CSS: Part II

PHP

Getting Started with JPA

JavaServer Faces

Core CSS: Part I

Struts2

Core .NET

Very First Steps in Flex

C#

Groovy

NetBeans IDE 6.1 Java Editor

RSS and Atom

GlassFish Application Server

Silverlight 2

Visit refcardz.com for a complete listing of available Refcardz.

Design Patterns
Published June 2008

FREE

DZone communities deliver over 4 million pages each month to

more than 1.7 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

