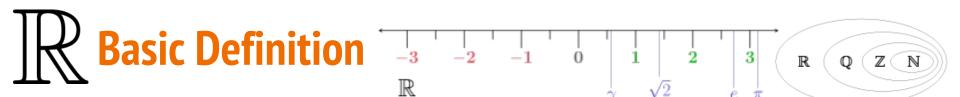
What is Real Number?

Kaan Ozgen-Bogazici University/2016 Fall-CMPE 220



->The set of real numbers include all the rational numbers, such as the integer -7 and the fraction 5/3, and all the irrational numbers, such as $\sqrt{2}$ (1.41421356...), π (3.14159265...)

In the 17th century, Descartes distinguished between real and imaginary roots of polynomials, then he used adjective "*real*" in this context.

Some explicit construction models

- 1) Construction from Cauchy sequences
- 2) Construction by Dedekind cuts
- 3) Stevin's construction
- 4) Construction using hyperreal numbers
- 5) Construction from surreal numbers
- 6) Construction from Z (Eudoxus reals)
- 7) Other methods

Current Formal Definition

The current standard axiomatic definition is that real numbers form the unique complete totally ordered field (\mathbf{R} ; +; x; <)

The synthetic approach axiomatically defines the real number system as a complete ordered field. This model for the real number system consists of a set R, two binary operations + and × on R (called addition and multiplication, respectively), and a binary relation \leq on R, satisfying the following properties:

Synthetic approach

Let \mathbb{R} denote the set of all real numbers. Then:

- The set \mathbb{R} is a field, meaning that addition and multiplication are defined and have the usual properties.
- The field ℝ is ordered, meaning that there is a total order ≥ such that, for all real numbers *x*, *y* and *z*:
 - if $x \ge y$ then $x + z \ge y + z$;
 - if $x \ge 0$ and $y \ge 0$ then $xy \ge 0$.
- The order is Dedekind-complete; that is: every non-empty subset *S* of \mathbb{R} with an upper bound in \mathbb{R} has a least upper bound (also called supremum) in \mathbb{R} .

The last property is what differentiates the reals from the rationals. For example, the set of rationals with square less than 2 has a rational upper bound (e.g., 1.5) but no rational least upper bound, because the square root of 2 is not rational.

Field Properties

1)(\mathbf{R} , +, ×) forms a field. In other words,

- For all *x*, *y*, and *z* in **R**, *x* + (*y* + *z*) = (*x* + *y*) + *z* and *x* × (*y* × *z*) = (*x* × *y*) × *z*. (associativity of addition and multiplication)
- For all *x* and *y* in **R**, *x* + *y* = *y* + *x* and *x* × *y* = *y* × *x*. (commutativity of addition and multiplication)
- For all x, y, and z in **R**, $x \times (y + z) = (x \times y) + (x \times z)$. (distributivity of multiplication over addition)
- For all x in **R**, x + 0 = x. (existence of additive identity)
- 0 is not equal to 1, and for all x in \mathbf{R} , $x \times 1 = x$. (existence of multiplicative identity)
- For every x in **R**, there exists an element -x in **R**, such that x + (-x) = 0. (existence of additive inverses)
- For every x ≠ 0 in R, there exists an element x⁻¹ in R, such that x × x⁻¹ = 1. (existence of multiplicative inverses)

Ordered Set Properties

2) (\mathbf{R} , \leq) forms a totally ordered set.

- For all x in \mathbf{R} , $x \le x$. (reflexivity)
- For all x and y in **R**, if $x \le y$ and $y \le x$, then x = y. (antisymmetry)
- For all x, y, and z in **R**, if $x \le y$ and $y \le z$, then $x \le z$. (transitivity)
- For all x and y in **R**, $x \le y$ or $y \le x$. (totalness)

3)The field operations + and × on **R** are compatible with the order \leq .

- For all x, y and z in **R**, if $x \le y$, then $x + z \le y + z$. (preservation of order under addition)
- For all x and y in **R**, if $0 \le x$ and $0 \le y$, then $0 \le x \times y$ (preservation of order under multiplication)

4)The order \leq is *complete* in the following sense: every non-empty subset of **R** bounded above has a least upper bound. In other words,

• If A is a non-empty subset of **R**, and if A has an upper bound, then A has a least upper bound u, such that for every upper bound v of A, $u \le v$.

THANK YOU FOR LISTENING!

https://en.wikipedia.org/wiki/Construction_of_the_real_numbers#Explicit_cons tructions_of_models

https://en.wikipedia.org/wiki/Real_number#Axiomatic_approach